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Abstract 
In this work it was established different electromagnetic wave propagation 
modes of hot plasma located in rotating electromagnetic field when the tem-
perature is finite and when the temperature is considered as infinite. It is no-
ticed that the plasma is completely transparent and isotropic with refractive 
index equal to unity when the temperature is infinite. 
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1. Introduction 

Plasma Physics remains up today an area of great scientific interest. This is due 
to the multitude of applications that are involved in this area and also to the fact 
that none satisfactory explanation has not yet been given to several phenomena 
occurring in the plasma. The plasma does not yet so far reveal all its secrets [1]. 

In this work, we are going to establish the different electromagnetic wave 
propagation modes of hot plasma located in rotating electromagnetic field. To 
perform this, we have divided our study as follows. 

In Section 2, we have presented the basis of the hot plasma dielectric tensor. In 
Section 3, we established the dispersion equation and the different propagation 
modes in the direction of the angle θ with the rotating magnetic field direction, in 
case of the finite temperatures and then in case that the temperature is growing to 
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infinite value ending with discussion. Finally, the conclusion is in Section 4. 

2. Hot Plasma Dielectric Tensor [2] 
2.1. Hypotheses 

The plasma, in study through these lines, is a gas completely ionized and obeys 
to the following double inequality: 

0 e Dr d λ� �                         (1.1) 

where parameters, 0 ,  er d  and Dλ  are the Landau length, the average distance 
between particles and the Debye length. 

This double inequality suggests that binary correlations are less important in 
plasma as well as collective interactions. This allows us to assimilate the studied 
plasma as an ideal gas [3]. 

As the plasma is hot, the aleatory component of the particle velocity and the 
temperature effects are taken into account. 

From the above hypothesis, the plasma in examination can be described from 
Maxwell-Boltzmann distribution function as follows [4]. 
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            (1.2) 

where a a aP m v=  as the linear momentum of particle kind “a”;  

Bk  = Boltzmann constant; 

aT  = temperature of particle kind “a” [1] [3]. 

2.2. Dielectric Tensor [2] [5] [6] 

Examining this system in comparison with a referential rotating with the mag-
netic field and which axis OY coincides with the magnetic field vector B  direc-
tion was the electrical conductivity tensor given by: 
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where ae  and an  are respectively the particles charge and number of kind “a”. 
This gives after integration which operating variable to change the electrical 

conductivity tensor whose elements are given below: 
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12 21 23 32 0c c c cσ σ σ σ= = = =                    (1.7) 
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where hω  is the rotating magnetic vector pulse, 
2

2 4π a a
L

a a

e n
m

ω = ∑  is the Larmor 

frequency and the vector aK  is defined as below:  

( ) ( ) ( ) ( ), sin 1 cosa h h
a a h a h

t t t t
m m m

ω ω
ω ω

⋅ Λ Λ Λ = − + + − 
  

b k b b k b k bK k     (1.8) 

where b  is the unite vector along the magnetic field vector B . 
Finally as the dielectric tensor of our system is connected to the electrical 

conductivity tensor by: 

4π c
ij ij ijiε δ σ= +

Ω
                      (1.9) 

Its elements will be: 
21
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12 21 23 32 0ε ε ε ε= = = =                    (1.13) 

where we admit that: 
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The dielectric tensor of hot plasma located in a rotating electromagnetic field 
can be written as follow: 
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or in two terms: 
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           (1.18) 

3. Propagation Modes of Electromagnetic Waves 

We consider that the wave vector k  makes a θ  angle with the OY axis which 
carries the vector magnetic field B  as shown in Figure 1. 

The vector k  in this case is given by: 

( )sin sin , cos , sin cosk k k kθ β θ θ β=               (2.1) 
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Figure 1. Representation of the k  and B  vectors. 

 
And we have in this case: sinxz θ=k k  is the projection of k  d in XOY plan 
1) Dispersion equation [7] 
From the following Maxwell equations: 
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where B  is the magnetic field, E  the electric field and ιJ  the density of the 
induced electric current respectively. 

When we replace in (2.3) B  by its expression derived from (2.2) we find: 
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By applying Fourier transformation to (2.4) we found:  
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And the ith component of the electric current density is given by: 

( ) ( ) ( ), , ,i
i ij jj k k E kσΩ = Ω Ω                  (2.6) 

The equations’ system above, will be written in terms of components as fol-
low: 
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As the system (2.7) is linear and homogeneous it will admit a nontrivial solu-
tion only if the principal determinant of (2.7) is zero [8], i.e.: 
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2
2

2 0i j ij ijk k k
C

δ εΩ
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The relationship (2.8) is the dispersion equation of the electromagnetic wave 
in our plasma. Introducing (1.16) in Equation (2.8) while taking into account 
that the index of refraction “n” of the wave in the medium is connected to the 
wave vector k  and pulse wave “Ω” by the relation: 

kCn =
Ω

                           (2.9) 

 
where “Ω” is pulse wave. 

The determinant (2.8) in our case is given by:  
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After developing and removing any symmetric terms while combining other 
terms and taking into account the relationship: 

2 2cos sin 1β β+ =                      (2.11) 

The expression (2.10) is reduced to:  
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Finally when considering 

1 1,  c cD d G dε ε= + = −                   (2.13) 

Putting (2.13) in (2.12) we have: 
4 2 0An Bn C− + =                     (2.14) 

This expression (2.14) is the general dispersion relation of hot plasma located 
in rotating electromagnetic field, where coefficients A, B and C are given by: 
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When solving Equation (2.14) with respect to the square of the refractive index 
“n2” we get: 

2
2 4
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B B ACn

A
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=                     (2.16) 

However, it is more interesting to solve (2.12) with respect to the angle θ . 
Indeed by dividing the terms of (2.12) by 2cos θ  while taking account of: 
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We got: 

( )( )
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As we observe, the angle β  does not appear in the relation (2.14) nor in 
(2.18). Only the angle “θ” is the angle between the vector wave k  and the vec-
tor magnetic field B  found in the two relationships (2.14) and (2.18). This 
suggests that not only the electromagnetic wave propagation modes depend only 
on the angle between the vectors k  and B  but also that all directions of rev-
olution generated by vector k  making an angle θ with B , around the axis OY 
carrying the vector B , are equivalent. 

With this reality, we can use a simpler case of an oblique vector to have an il-
lustration of the different propagation modes in the event the wave vector k  
make any angle Θ  with the vector magnetic field B . 

2) Propagation modes of electromagnetic waves 
In case β is the angle right ( π 2β = ). 
This corresponds to a situation where the vector k  is situated in the XOY 

plan as shown in Figure 2. 
In this case the vector k  is given by: 

( )sin , cos ,0k k kθ θ=                    (2.19) 

and the system of Equation (2.7) is given: 
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        (2.20) 

We can note that in this system, three wave propagation modes each 
represented by a line of the equation system (2.20). For ease of calculation, con-
sider these modes starting from the third line to the first 
a) First Mode: third line 

( )2
10 0c

x y zidE E n Eε+ + − =                 (2.21) 

 

 
Figure 2. The vector k  making an angle Θ  with the vector B  carried by the OY axis 
lies in the XOY plane. 
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From the Equation (2.21) we can write zE  relative to xE  as follows: 

2
1

z xc

idE E
nε

= −
−

                     (2.22) 

The wave represented by the third line is illustrated by Figure 3 [9] 
In this figure, we can see that the electric field vector xE  is the vector sum of 

two components lE  and tE  such as: 

lE  is oriented in the direction of the vector k  and is the longitudinal com-
ponent of the wave. It is given by: 

sinl xE E θ=                        (2.23) 

while tE  is oriented along the direction perpendicular to the wave vector k  
in the XOY plane and is expressed as following: 

cost xE E θ=                        (2.24) 

Therefore, the transverse part of the wave consists of two components respec-
tively oriented as follows: 

The first, in the direction perpendicular to k  in plane XOY given by Equa-
tion (2.24); and the second in the direction of OZ, as expressed by Equation 
(2.22). 

T z t= +E E E                        (2.25) 

With TE  the transverse component of the wave 
Polarization 
The transverse component of the wave is elliptically polarized in the plane 

perpendicular to the vector k .  
Indeed we have: 

2
1 cos 1
c

t

z

iE n
E d

ε
θ

−
= − ≠                    (2.26) 

So we have a hybrid mode whose transverse component is elliptically pola-
rized in the plane perpendicular to the wave vector k . 
b) Second mode: the second line 

The second wave, shown in Figure 4, is given by the second line of our equa-
tion system (2.20) as set out below: 

 

 
Figure 3. The component xE  is the result of two vectors lE  and tE . 
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Figure 4. Representation of a plane wave propagating in the XOY plan. 

 

( )2 2 2
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From this Equation (2.27) we can express yE  versus xE   
2
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−
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This wave as shown in Figure 4, has two components: 
(a) A longitudinal component given by: 

sin cosL x yE E Eθ θ′ = +                   (2.30) 

(b) A transverse component as: 

cos sinT x yE E Eθ θ′ = −                    (2.31) 

Taking into account (2.28) we have: 
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After development we have: 
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This is the longitudinal component. 
And the transverse component is expressed by: 
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Finally: 
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Polarisation 

( )2 2
2 2

'
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L
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T
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ε θ ε
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ε θ ε
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We have a hybrid wave propagation elliptically polarized in the XOY plan. 
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c) Third mode: the first line 
The third mode represented by the first equation of the system (2.20) is given 

by the following expression: 

( )2 2 2
1 cos cos sin 0c

x y zn E n E idEε θ θθ− + − =          (2.35) 

This mode has: 
• a longitudinal component given by the LE′  of the second embodiment such 

as it is expressed by Equation (2.32). 
• while the transverse portion, in addition to the component TE′  given by the 

relation (2.33) and oriented along the perpendicular to the wave vector k  
in the XOY plane, it has a further component in the direction OZ as given by 
the relation (2.22) and denoted zE . 

The transverse portion in this mode is elliptically polarized in the plane per-
pendicular to the wave vector k . 

Indeed we have: 
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( )

2
1 2

2 2
2

cos
1

d sin

c c
T

c
z

niE
E n

ε ε θ

ε θ

−′
= − ≠

−
                (2.36) 

We have three hybrid modes of which one is elliptically polarized in the 
propagation plane and the others two transverse components are elliptically po-
larized in the plane perpendicular to the direction of propagation. 

3) Temperature ta tend to infinity 
The relation (1.18) giving hot plasma dielectric tensor includes two terms of 

which the second would vanish when the aT  tends to infinity. The plasma di-
electric tensor is reduced in this case to unit matrix of order 3 given below: 

1 0 0
0 1 0
0 0 1

c
ij ijε δ

 
 = =  
 
 

                    (2.37) 

Taking into account (2.19), the system of Equation (2.7) can be written: 
2 2 2

2 2 2

2

1 cos sin cos 0
sin cos 1 sin 0 0

0 0 1

x

y

z

n n E
n n E

n E

θ θ θ
θ θ θ
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         (2.38) 

The main determinant of (2.38) is given by: 

( ) ( )( )2 2 2 2 2 4 2 21 1 cos 1 sin sin cosn n n nθ θ θ θ ∆ = − − − −       (2.39) 

After developing the terms in bracket of Equation (2.39) and regrouping the 
same terms, we finally have: 

( )221 n∆ = −                        (2.40) 

For the same reason mentioned in the previous case, namely that the system 
(2.38) can admit a nontrivial solution only if the principal determinant of the 
system is zero, we will have: 

( )21 0n− =                        (2.41) 



R. M. Mutombo et al. 
 

10/11 OALib Journal

The relation (2.41) is the dispersion relation for the hot plasma located in an 
electromagnetic field during rotation, when the temperature aT  of the particles 
becomes extremely high. 

We see that as the temperature approaches infinite values, the propagation 
modes are the same in all directions and not dependent over the direction of k . 

From the dispersion relation (2.41) we see that the refraction index “n” of 
transverse waves is equal to unity independently of the direction of wave propa-
gation. This also means that the phase velocity is equal to the light speed in va-
cuum. Taking the case where the wave vector k  is parallel to the axis OX. 

The angle θ is then equal to a right angle ( π 2θ = ). The system (2.38) is then 
written: 

2

2

1 0 0
0 1 0 0
0 0 1

x

y

z

E
n E

n E

  
  − =  
  −  

                (2.42) 

The system (2.42) shows the existence of three waves: 
1) a longitudinal wave with the electric field oriented in the direction of prop-

agation OX. 
2) two identical transverse waves with electric field linearly polarized respec-

tively on the OY axis and the OZ axis. 
This situation can be explained by the fact that the thermal motion of the par-

ticles becomes so intense that the effects of the magnetic field become negligible. 

4. Conclusions 

We have derived the expression of the dielectric tensor of hot plasma located in 
a rotating electromagnetic field. We noticed that the temperature effects are ex-
pressed by an exponential factor depending on the temperature. As the temper-
ature is not too high, we found three modes of elliptical hybrid polarization such 
that one is polarized in the wave propagation plane while two others have their 
transverse components elliptically polarized in the plane perpendicular to the 
direction of the vector k .  

The presence of the angel θ in the dispersion relation shows the anisotropic 
character of our medium in study. When the temperature aT  tends to be ex-
tremely high, our medium in study not only appears isotropic, but also has a re-
fractive index equal to unity. In any direction of propagation we have a longitu-
dinal mode and two ordinary transverse waves linearly polarized with the same 
phase velocity equal to the speed of light in vacuum (Vph = C). 
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