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Abstract 
We construct a dynamic system model of a web of AN  animal species inte-
racting with PN  plant species using a system of coupled differential equa-
tions. The model has a parameter which represents the effect of animal on 
plant species that can be positive (mutualistic interaction) or negative (anta-
gonistic interaction). We work a Multispecies Mean Field Model MMFM in 
which the full set of AN  and PN  variables are reduced to a couple of an 
average animal and plant species. We study the conditions for existence of the  
MMFM and relate the result to the difference between animal and plant spe-
cies in the network. We compare our results with empirical data from polli-
nators (mutualistic) and herbivorous insect (antagonistic) networks. We con-
clude by combining analytical and empirical work that antagonistic networks 
present fewer animal species in relation to plant species than mutualistic ones. 
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1. Introduction 

Since the seminal paper [1], the stability complexity debate has evolved to a hot 
topic in theoretical ecology [2] [3]. From a mathematical perspective, the sta- 
bility complexity problem can be posed in at least two different contexts: firstly, 
the traditional approach of population dynamics, a set of coupled differential 
equations representing the density of a set of many interacting species [1] [4] [5] 
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[6]. In this framework, the main idea is to work the stability of the fixed points 
of the equations describing the time evolution of the populations [7]. On the 
other side, the stability complexity problem can be formulated using a more 
contemporary framework, namely the network theory [8] [9] [10]. In this 
approach, the focus is on the number, distribution, or assortativity of interac- 
tions, in one word: the pattern of connections in the network [11] [12]. 

In this work, we explore both mathematical approaches. Firstly, the coupled 
dynamic system is a flexible schema that permits a modeling of complex systems 
using phenomenological parameters such as the intrinsic growth rate of a popu- 
lation, its carrying capacity, or the interaction strength among species. All cited 
parameters can, in principle, be empirically estimated [13]. In addition, most 
empirical data available to compare with dynamic system models are records of 
food webs or pollinator networks which indicate the presence of interaction 
among a set of species. Confident time series records of populations interacting 
in a community are not available, but network inventories of interaction among 
species are common in the literature. We cite as examples web interaction inven- 
tories [14], pollinators flower networks [15] host parasite networks [16], and 
herbivory networks [17]. 

In this manuscript, we work with a dynamic multi-species model representing 
two different situations: mutualistic and antagonistic interactions. Pollination 
webs are formed by species which both profit from the interaction and then 
should be favored by adaptive forces. On the other hand, Herbivory (trophic) 
webs are formed by bipartite webs in which only herbivores profit. This is dif- 
ferently from pollination where in this case the plants are injured in the inter- 
action and adaptive forces involved in the interaction are opposite to what found 
in pollination. We consider a set of AN  animal species and a set of PN  plant 
species that interact with each other, but do not interact among themselves. The 
objective of this paper is to construct a Multispecies Mean Field Model MMFM 
reducing the original A PN N+  equations to two equations that represent the 
average animal and plant species. In this approach, the set of coupled dynamic 
equations may have an intricate topology with many fixed points, limit cycles, 
strange attractors, or even chaos because of the intrinsic non-linearity [18]. The 
reduced MMFM, as we shall see, has just one single fixed point of interest. 
Despite the strong simplification in this methodology, we extract useful hints 
about network properties, espeacially regarding the network pattern related to 
the stability of interacting systems, a key point in the complexity stability debate. 
We are aware that the MMFM that we present here lacks a rigorous mathe- 
matical foundation. However, we persist in this theoretic field because of the 
promising results we have found until now. 

In this paper, we consider a MMFM of a dynamic system of coupled Lotka 
Volterra like equations. The MMFM is a simplified two-dimension version of a 
multiple dimension system. The Lotka Volterra equations we deal with in our 
manuscript correspond to linear functional responses in the interaction term 
[19] [20], while we discuss more involved non-linear responses in the text. The 
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analysis of the conditions for existence of the MMFM reveals some properties of 
the complex many dimensional dynamic network underlying the complex dyna- 
mics. 

The main result of the cited paper of May [1] is that ecological networks are 
sparse. This conclusion is somewhat unexpected, we cite MacArthur that beli- 
eved that large number of interaction will stabilize networks and not the oppo- 
site [21]. Our work also uses a coupled of differential equations to model ecolo- 
gical webs. In contrast, we use different technique and our main findings con- 
cern differences between antagonistic and mutualistic networks. Our manuscript 
shows a theoretical model that explains the difference between the number of 
plant and animals in herbivorous and pollinator networks. The rest of the paper 
is organized as follows: in Section 2, we present the full multiple dimension 
dynamic system used to describe the model and the associated MMFM. In 
Section 3 we separately compare the existing conditions for mutualistic and 
antagonistic networks with empirical data. Finally, we present our main findings 
in Section 4 and discuss the number of animal and plants in the community. 

2. Methodology 

This section is divided in two parts. Initially, we expose the biological data used 
to test the methodology, namely the set of binary and quantitative interaction 
networks. The second part of the methodology is devoted to describe the mean 
field model that is in the center of our analysis. 

2.1. The Biological Data Set 

In this work, we employed a set of quantitative webs extracted from the lite- 
rature. We use a total of total 44n =  quantitative webs divided into two catego- 
ries: pollinators ( )poli 22n =  and herbivory ( )herb 22n = . Pollinator webs are a 
typical example of a mutualistic networks formed by flowering plants and polli- 
nator animal species, [22] [23]. Herbivory webs are a well studied example of 
antagonistic interaction, these networks are formed by herbivorous insect spe- 
cies and their respective host plants [24]. 

The empirical objects used in this work are ecological interaction webs which 
essentially are matrices of size AN  versus PN  corresponding to two groups of 
interacting animal and plant species, respectively. In the case of an interaction 
between species i  of the first set and species j  of the second the matrix 
element is , 1i ja = , otherwise , 0i ja = , for the binary case. In the more general 
case of quantitative matrices ,i ja  can assume any positive value. The connec- 
tivity of an animal species is defined as ,

A
j i jk a= ∑  and for a plant species 

,
P
i i jk a= ∑ . The empirical data used in this work is the same of the reference 

[25], where we show the full characteristic of the interacting networks. The 
herbivorous and pollinator webs used in this work are the totality of available 
webs in the literature at the time of the computation analysis. That means, we 
have not performed any exclusion criterion in the statistical analysis. The indices 
of the network we use are: the number of plant PN  and animal species AN , 
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the total number of connections (without weight) among plant and animal  

species L , and the connectance 
A P

LC
N N

= . 

2.2. The Mean Field Approximation 

We employ a model that is a close extension of the multispecies model develo- 
ped in the reference [26]. We extend the previous work to a model that encom- 
passes both mutualistic and antagonistic interactions. The theory is based on a 
two-species model proposed in the reference [2] for the mutualistic case but it is 
even older in the antagonist situation [27]. The evolution of the animal jA  and 
plant iP  abundances in time is achieved by: 
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where iP  and jA  represent the abundances of plant i  and animal j ; ir  
and jq  are the growth rates of plants i  and j  while iS  and jT  are the 
respective intraspecific competition coefficients. In addition, ijα  and ijβ  are 
the per-capita effects of animal j  on plant i , and vice-versa. The positive 
signal of ijα  models a mutualistic dynamic, the effect of animals on plants is 
positive, so it implies in an increase in plant species abundance. On the other 
hand, a negative signal models an antagonistic interaction in which animal 
species restrict plant species growth. 

We adopt a mean field approach that simplifies the model allowing further 
analytical insight. The reference [26] used a similar reduction technique to 
approximate modeling. Indeed, such reductions are common in theoretical eco- 
logy [27]. We assume that all plant species are equivalent, which means ir r= , 

iT T= , ijα α= ; and the same average equivalence is applied to animals: 

jq q= , jT T= , ijβ β= . 
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Moreover, we assume in the mean field approach that , ,i j i ja a C→ → . This 
means, we average the individual elements of the adjacency matrix by the con- 
nectance of the matrix. In addition, we use the notation tot 1

PN
iiP P

=
= ∑  and  

tot 1
AN

jjA A
=

= ∑ . The above equations become: 
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We perform the equations’ average for the set of animal and plant species in  

the following way. We add all 
d
d

jA
t

 in the above equation and divide the result  

by AN , the number of equations. Next, we introduce j AA A N= ∑ ; a simi- 
lar estimation is performed on the equations of plant species. In addition, we 
assume that the approximations 22A A≈  and 22P P≈  are valid in 
the case differences inside the groups jA  and iP  are not significant. This con- 
dition is assumed in the mean field approximation. Following these estimations 
we obtain: 
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Finally, we use tot PP N P=  and tot AA N A=  to find: 
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We are aware that the mean field statement employed in the analytical treat- 
ment that reduces the dimension of the system from A PN N×  to 2 2×  is 
accompanied by a brutal loss of information [28] [29]. However, despite this 
strong assumption, the model produces theoretical estimations that encourage 
further development of the concept. We use the notation for the equilibrium 
solution: P P∗=  and A A∗= . With help of this notation we can write the 
equilibrium points of the MMFM as: 
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There are four solutions for this pair of coupled system: the trivial null solu- 
tion ( )0,0 , a solution with absence of plants ( )0, q T , another with absence of 
animals ( ),0r s  and a non-trivial solution with A∗  and P∗  positives given 
by: 
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We note that any solution is biologically feasible only for A∗  and P∗  posi- 
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tives. Bellow, we develop this point in detail for mutualistic and antagonistic 
networks. We chose to drop the ±  symbol in the last equation, instead we 
adopt 0α >  for mutualistic interactions and 0α <  for herbivory. 

2.3. Discussion of a Nonlinear Model 

We may also consider more sophisticated mutualistic models that take into 
account a non-linear saturation process as in the reference [19] [20]. We remark 
that the nonlinear model, as any ordinary differential equation model, is a mean 
field approach; to expand our methodology to a non mean field regime we 
would have to explicitly include the space by using differential partial equations 
or cellular automata models [12]. The linear mutualistic model presents an exp- 
losive behavior that can be solved using saturation in the interaction response 
between animal-plant. In reference [20] the mutualistic interaction for one 
animal and one plant species A  and P  is modeled as: 

2

2
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However, for low handling time h , the non-linear equations reduce to the 
standard linear model. The main point in model choice is perhaps: how far are 
the linear model predictions compared to the non-linear one. The result of re- 
ference [20] is interesting, as it shows that the critical points of the non-linear 
model are in a broader interval which include the linear one, and the two models 
coincide in the limit of small non-linearity. In addition, the analytical treatment 
of the non-linear model is mathematically cumbersome and less intuitive than 
the linear case. Moreover, the linear model allows us to explicitly make analytical 
inferences and to test them. Despite its simplification, the linear model produces 
sound theoretical results that can be compared with empirical data. 

3. Condition for Existence of the Mean Field Model 

In our work, we study network properties and analyze what the MMFM can tell 
about network patterns that produce viable communities. In this way, we do not 
focus on species parameter q , r , S  and T  but on the interaction network 
properties: α  and β  at one side and network parameters: AN , PN  and 
C . 

We distinguish two situations in the study: the mutualistic interactions and 
the antagonistic interactions. The first is characterized by a positive effect of the 
plant animal encounter on plant population growth 0α >  whereas the second 
shows the opposite tendency that plant-animal interactions decrease plant 
growth 0α < . In the following, we distinguish these two situations to study 
MMFM conditions for the existence of viable solutions. 

3.1. Mutualism 

The condition for non-trivial existence of the system formed by Equations (7) 
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and (8) assumes that both A∗  and P∗  should be positive. Since the numera- 
tor of the right side of equation is always positive, in order to fulfill both con- 
ditions it is necessary that the denominator will be positive. Then, we have:  

2 .
A P

TS
C N N

αβ <                      (10) 

This inequality imposes that the quantities AN , PN , C , α  or β  should 
be small. The condition of small product A PN N×  and connectance C  is 
related to sparsity and it is a well known property of ecological networks [15] 
[22]. Moreover, the condition of small product αβ  was explored in reference 
[28], where it is interpreted as the effect of asymmetric dependence in mutua- 
listic networks. The limitations of the linear approach in this context was discu- 
ssed in reference [20]. 

3.2. Antagonism  

In the case of antagonistic interactions, we perform the transformation  
α α→ − . In this new situation, the denominator of Equations (7) and (8) will 
always be positive, and as a consequence, Equation (7) is trivially positive. The 
fixed point related to Equation (8) still has an additional condition that should 
be fulfilled:  

0.ArT CN qα− >                        (11) 

This new condition imposed to antagonistic systems implies that ACN  should 
be small, which means that the overall number of links in an antagonistic web 
should not be large. The simplest way to guarantee this condition is that the 
number of animals in the web, AN , should be small. We call attention that this 
condition is not present in mutualistic networks, therefore antagonistic webs 
should have a comparatively small number of animal species. We compare the 
number of animal and plant species for mutualistic and antagonistic cases in the 
next subsection. 

3.3. Data Comparison 

The condition for existence (11) which is exclusive of antagonistic networks claims 
that AN  should be small. In this way, we expect that the number of animals in 
antagonistic networks should be more restricted than the number of plants. 

The relative difference between animals and plants is presented in Figure 1. In 
this picture we show a bar-plot comparing the ratio A PN N  for all pollinators 
and herbivorous webs. In addition, we performed the Student’s t-test to check 
for difference between the groups 5.94t = , 46df = , 0.0001p < . We per- 
formed an extra test to check if the number of animals for herbivorous data set is 
significantly distinct from the number of plants 0.38t = − , 22df = , 0.71p = , 
which gives a negative result. 

4. Discussion 

In this paper, we work a multidimensional dynamic model that encompasses  
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Figure 1. The figure shows the ratio A PN N , the number of animal species divided by 
plant species in the network. The figure shows a larger relative number of animals in 
pollinator networks as compared to herbivorous networks. We depict a constant dashed 
line 1A PN N =  to help the visualization.  

 
mutualistic and antagonistic interactions in a single framework. The MMFM is 
based on reducing a set of A PN N+  coupled equations to two equations that 
describe the dynamic evolution of a paradigmatic animal and plant of the com- 
munity. At one hand, the MMFM implicates in a loss of information of the 
individual species and their interactions. On the other hand, the MMFM allows 
for computing the existence conditions of the system, and as a consequence, to 
make inference about these conditions of the full multispecies interaction net- 
work. 

The essence of Mean Field approach in theoretical science consists in erasing 
individual differences to capture overall features of the system. In a mean field 
approximation, the interaction details among individuals in a network are less 
important than the average properties of the system dynamics. The challenge of 
the Mean Field Theory consists in not taking into account superfluous heter- 
ogeneities of the problem, but instead focusing on overall aspects of the pheno- 
menon. The objective of the Mean Field theory is neither to give answers to in- 
dividual differences, nor to look at small differences in the system. In this pers- 
pective, the MMFM still gives answers that can be empirically verified, despite 
obvious limitations and strong reductionism. The dependence asymmetry and 
the sparsity of the networks are positive results of the Mean Field approach and 
have already been discussed in the literature [26]. The difference between animal 
and plant species has not previously explored, and our work is the first to point 
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out this theoretical result of the MMFM. In summary, the Mean Field Theory 
should be judged a posteriori. If the theoretical model gives a positive answer to 
empirical data, only then can it be taken seriously. 

The idea that antagonistic interactions are more modular like, whereas mu- 
tualistic ones are more nested was extensively explored in the literature [15] 
[30]. The antagonistic relations tend to follow an arms race co-evolutionary 
strategy that produces a formation of cliques in the network, while the mutua- 
listic interactions point to a generalist plus sub-generalist co-evolutionary strate- 
gy [31]. Our manuscript works out another, not so explored, difference between 
antagonistic and mutualistic networks: the number of animal and plants in their 
composition. In fact, an alternative and appealing title for our paper could be: 
“Why pollinator networks have more animals than plants in their structures 
than herbivorous networks?” This paper essays an explanation for this question, 
in fact, this is the objective of our work. 

It is well known that biodiversity of animal species is larger than plant species 
[32] [33] [34]. Following this simple rule, we should generally expect that the 
number of animal species should surpass the number of plant species in intera- 
cting networks. This expectation could be used as a null model for plant and 
animal species occupancy in an interacting network. Our theoretical results 
suggest that it is not valid for antagonistic interaction networks, which is in 
agreement with empirical results. In this way, as stated in Figure 1, pollinator 
networks are closer to a null model of animal and plant occupancy than antag- 
onistic networks which present a strong misbalance in their composition. 

Finally, we believe that this work is important for the discussion of the com- 
plexity stability debate. We are conscious of the strong simplification of our 
mathematical framework. Initially we propose a model of coupled differential 
equations that is already a mean field approach because it does not take into 
account the spatial structure of the landscape. Over this model we proceed to 
perform a further simplification, reducing the number of variables from  

A PN N+  to 2. In this way, our theoretic approach proceeds over a double mean 
field approximation: first, we exclude the spatiality, and secondly we reduce the 
number of degrees of freedom. A comparison of our results with empirical data 
suggest that despite the strong simplification of our theoretical approach, the 
mean field strategy is indeed a valuable tool. 
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