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Abstract 
Simultaneous measurements of position and momentum are considered in n 
dimensions. We find, that for a particle whose position is strictly localized in a 
compact domain nD ⊂   (spatial uncertainty) with non-empty boundary, the 

standard deviation of its momentum is sharply bounded by 1/2
1pσ λ≥  , while 

1λ  is the first Dirichlet eigenvalue of the Laplacian on D. 
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The most familiar formalization of the uncertainty principle of position and 
momentum is in terms of standard deviations [1] [2] [3]  

2.p xσ σ ≥                              (1) 

In the corresponding measurement process, the standard deviation of the po- 
sition xσ  is measured for a sample of particles initially prepared in a state ψ . 
Subsequently, the standard deviation of the momentum pσ  is measured for 
another sample of particles, which is also prepared in the same state ψ . Thus, 
the statistical errors are corresponding to ensembles of measurements of dif- 
ferent but identical prepared systems. 

An alternative interpretation of the Heisenberg principle for simultaneous 
measurements has been given recently [4]. The corresponding measurement 
process is as follows: Whenever a particle is strictly localized in a finite interval 
of length > 0x∆  with probability 1, then the standard deviation of its mo- 
mentum satisfies the inequality  

.p xσ π∆ ≥                              (2) 

Provided the wave function ψ  of the system is sufficiently regular at the 
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boundary of x∆ , the standard deviation of the momentum will remain finite 
and (2) is proved by applying the Wirtinger inequality [5] [6]. At this point it 
should be mentioned that the straight-forward application of Popoviciu’s  

inequality 
2x
xσ ∆

≤  to estimate xσ  in (1) leads to an inequality p xσ ∆ ≥  ,  

which is weaker than (2). This is because the equal sign of Popoviciu's inequality 
is achieved by a discrete random variable that takes on the values at the boundary 
of the interval x∆  with equal probability 1/2. However, in the quantum mecha- 
nical case under consideration the wave-function is zero at the boundary of the 
compact domain such that the equal sign of Popoviciu’s inequality can never be 
reached. It can be shown, that the inequality (2) cannot be further improved [4] 
[5]. 

In mathematics, the Wirtinger inequality is closely connected to the fact that 
the circle is uniquely characterized by the property that among all simple closed 
plane curves of given length L, the circle of circumference L encloses maximum 
area [6]. This property is most succinctly expressed in the isoperimetric in- 
equality 2 4L Aπ≥  where A is the area enclosed by a curve of length L, and 
where equality holds if and only if the curve is a circle. 

There are also isoperimetric inequalities of mathematical physics. They are 
special cases of isoperimetric problems in which typically some physical quantity, 
usually represented by the eigenvalues of a differential equation, is shown to be 
extremal for a circular or spherical domain. Extensive discussions of such pro- 
blems can be found in the book of Pólya and Szegö [7] and the review article by 
Payne [8]. 

The purpose of the present note is to establish the link between the mea- 
surement process of (2) and the corresponding analytic inequalities closely con- 
nected to the isoperimetric inequalities, such as Wirtinger’s or Poincaré’s in- 
equalities [7]-[13]. 

More precisely, let us consider non-relativistic particles in 2n ≥  spatial di- 
mensions. In analogy to the 1-dimensional interval x∆  of (2), let nD ⊂   be 
a simply connected domain (the spatial uncertainty) with compact closure and 
(piecewise) smooth boundary D∂ ≠ ∅ . Then, a Hilbert basis of ( )2L D , the 
space of square-integrable functions on D, is defined by the Laplacian on D with 
Dirichlet boundary conditions:  

0  in  ,u u Dλ∆ + =                          (3) 

0  on  .u D= ∂                            (4) 

Let { }iλ  be the set of eigenvalues and { }iu  the orthonormal basis of eigen- 
functions, 1,2,i =  . It is well known that there are infinite many eigenvalues 
with no accumulation point: 1 20 λ λ< ≤ ≤  and iλ →∞  as i →∞ . The 
scalar product in ( )2L D  will be denoted by angular brackets, that is to write 
φ ψ  for two state vectors ( )2, L Dφ ψ ∈ . Accordingly, the norm of ψ  is 

given by ψ ψ ψ≡ . 
Now, we consider the standard deviation pσ  of the momentum in the do- 
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main D. For every wave function ( )2L Dψ ∈ , the eigenvalue problem (3) is the 
same for its real part and its imaginary part. Both are collinear and thus we only 
have to consider the real valued problem. In this case, it is easy to show by 
partial integrations that the mean value of the momentum operator p̂ i= − ∇  
is equal to zero and the standard deviation of the momentum is given by  

22 2 .pσ ψ= ∇                            (5) 

A sharp lower bound of pσ  is now obtained by the associated variational 
characterization  

( ) { }
( )

2

2

12
\ 0

,inf
L D

D
ψ

ψ
λ

ψ∈

∇
=                       (6) 

while the quotient on the left-hand side is the well known Rayleigh quotient [6] 
[9]. The right hand side is the first eigenvalue 1λ  of the Dirichlet Laplacian 
which is in general dependent on the shape of the domain [6]. After substitution 
of (6) into (5), we obtain the corresponding inequality  

1
2

1 .pσ λ≥                              (7) 

That is, whenever there is a particle in a given domain D with probability 1, 
then the standard deviation of the momentum is bounded by (7). 

For an illustration, let us consider the case 2n = . Then, the eigenvalue 1λ  is 
proportional to the square of the eigenfrequencies of an elastic, homogeneous, 
vibrating membrane with fixed boundary. The Rayleigh-Faber-Krahn inequality 
for the membrane (i.e. 2n = ) states that  

2
0,1

1 ,
j
A

π
λ ≥                            (8) 

where 0,1j  is the first zero of the Bessel function of order zero, and A is the area 
of the membrane. Equality is attained in (8) only if the membrane is circular [9] 
[10] [11]. 

More general, the corresponding isoperimetric inequality in dimension n,  

( )
2/

2
1 /2 1,1,

n

n
n

C
D j

D
λ −

 
≥   
 

                     (9) 

was proven by Krahn [13]. The expression ,1mj  is the first positive zero of the 
Bessel function mJ , D  is the volume of the domain and ( )/2 2 1n

nC nπ= Γ +  
is the volume of the n-dimensional unit ball. Equality is attained in (9) if and 
only if D is a ball. Let d be the diameter of the n-dimensional ball, then we 
obtain the general inequality  

/2 1,12 .p nd jσ −≥                          (10) 

Due to the fact that /2 1,1nj −  behaves like 2n  for n →∞ , the asymptotic 
behavior of the right-hand side in (10) is of the same order as for the n- 
dimensional version of (1), which is expected to scale like n . 

Proposition. For dimension 1, 2,3n = , we get the following uncertainty 



T. Schürmann 
 

310 

relations:  

p dσ π≥                            (11) 

4.8p dσ ≥                           (12) 

2 .p dσ π≥                           (13) 

Proof. By applying (10) for 1, 2,3n = . For the Bessel-zero with 1=n  we 
have 1/2,1 2j π− = , for 2n =  we have 0,1 2.40482555769j =   and for 3n =  
we get 1/2,1j π= . 

The first of these inequalities is equivalent to (2) for x d∆ = , as it should be 
expected in one dimension. For the second inequality, we have applied the 
numerical approximation 0,1 2.40j ≈ . 

Actually, the derivation of (11)-(13) is based on the assumption that the 
Hilbert space is considered with respect to the ordinary Euclidean position 
space. For a formal extension to general (curved) position spaces the Laplacian 
of the variational problem (6) might be replaced by the corresponding Laplace- 
Beltrami operator of a Riemannian manifold. This procedure then leads to in- 
equalities whose lower bound (in addition) depends on the Ricci curvature of the 
manifold. However, first of all it seems to be appropriate to ensure that the 
quantum mechanical measurement process corresponding to the generalized 
momentum operator is well defined. Otherwise, there is no way for experimental 
verification at all. 
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