
Journal of Applied Mathematics and Physics, 2017, 5, 680-692 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

DOI: 10.4236/jamp.2017.53057  March 24, 2017 

 
 
 

An Efficient Algorithm for the Numerical 
Computation of the Complex  
Eigenpair of a Matrix 

R. O. Akinola*, K. Musa, I. A. Nyam, S. Y. Kutchin, K. V. Joshua 

Department of Mathematics, Faculty of Natural Sciences, University of Jos, Jos, Nigeria 

 
 
 

Abstract 
In computing the desired complex eigenpair of a matrix, we show that by 
adding Ruhe’s normalization to the matrix pencil, we obtain a square nonli-
near system of equations. In this work, we show that the corresponding Jaco-
bian is non-singular at the root and that with an appropriately chosen initial 
guesses, Ruhe’s normalization with a fixed complex vector not only converges 
quadratically but also faster than the earlier Algorithms for the numerical 
computation of the complex eigenpair of a matrix. The mathematical tools 
used in this work are Newton and Gauss-Newton’s methods. 
 

Keywords 
Quadratic Convergence, Newton’s Method 

 

1. Introduction 

In [1], Akinola and Spence considered the problem of computing the eigenpair 
( ),λx  from the generalized complex eigenvalue problem:  

,λ=Dx Px                           (1) 

where , 0, ,n λ∈ ≠ ∈x x D   is a large real n n×  non-symmetric matrix and 
P  a real symmetric positive definite matrix. After adding the normalization [2]  

1,H =x Px                           (2) 

to (1), they obtained a combined system of equations of the form ( ) 0,F =u  
where , ,H λ =  u x  given as  

( )
( )

0.1 1
2 2

HF
x

λ − 
 = = − +
  

D P x
u

Px
                   (3) 

How to cite this paper: Akinola, R.O., 
Musa, K., Nyam, I.A., Kutchin, S.Y. and 
Joshua, K.V. (2017) An Efficient Algorithm 
for the Numerical Computation of the Com- 
plex Eigenpair of a Matrix. Journal of Ap-
plied Mathematics and Physics, 5, 680-692. 
https://doi.org/10.4236/jamp.2017.53057  
 
Received: December 28, 2016 
Accepted: March 21, 2017 
Published: March 24, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

   
Open Access

http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2017.53057
http://www.scirp.org
https://doi.org/10.4236/jamp.2017.53057
http://creativecommons.org/licenses/by/4.0/


R. O. Akinola et al. 
 

681 

In trying to solve the nonlinear system (3), two drawbacks were encountered. 
The first one is that if x  from ( ),λx  solves (3), then so does exp iθx  for any 

[ )0,2πθ ∈ , which means that x  has no unique solution. Secondly, x  in 
TH =x x  is not differentiable since x  does not satisfy the Cauchy-Riemann 

[3] equations which implies that (3) cannot be differentiated and the standard 
Newton’s method cannot be applied. The author then proposed that the above 
drawbacks could be overcome at least for the I=P  case. Before the works of 
Akinola, Ruhe [4] and Tisseur [5] added the differentiable normalizations  

1,H =c x                            (4) 

and  
T ,sτ τ=e x                           (5) 

where c  is a fixed complex vector and ( )max ,τ = D P  for some fixed s. 
Adding each of the two normalization to (1), Ruhe and Tisseur then obtained 
the following combined system of equations;  

( ) ( ) 0,
1HF

λ− 
= = − 

D P x
u

c x
                    (6) 

and  

( ) ( )
T 0,
s

F
λ

τ τ
 − 

= = − 

D P x
u

e x
                    (7) 

which have the corresponding Jacobians  

( ) ( ) ,
0u HF

λ− − 
=  
 

D P Px
u

c
                   (8) 

and  

( ) ( )
T .

0u
s

F
λ

τ
 − − 

=  
 

D P Px
u

e
                   (9) 

In this paper, we show that the square Jacobian given by (8) is nonsingular at 
the root using the ABCD lemma if the eigenvalue of interest is algebraically sim-
ple. The major distinction between the two-norm normalization and Ruhe’s 
normalization is that the two-norm normalization is a natural normalization 
which makes the choice of c  free. The Jacobian (9) above was shown to be 
singular in [5] at the root if and only if λ∗  is a finite multiple eigenvalue of the 
pencil ( ),D P . 

In this paper, we compare the numerical performance of the algorithm (Algo-
rithm 1) based on Ruhe’s normalization (i.e., an application of Newton’s method 
on (6) using the Jacobian (8)) with previous algorithms developed by Akinola et 
al., in [1] [6] and [7]. All three algorithms: Algorithm 2 as discussed in [1], Al-
gorithm 3 as described in [6], Algorithm 4 as presented in [7] were based on the 
natural two-norm normalization for the eigenvector. We show that with the 
same starting guesses, and a carefully chosen fixed complex vector c  that the 
algorithm based on Ruhe’s normalization converges faster than the other three. 



R. O. Akinola et al. 
 

682 

The plan of this paper is as follows: in Section 2, we used Keller’s ABCD Lemma 
[8] to show that the Jacobian (8) is nonsingular at the root in Theorem 2.1 and 
we present the four Algorithms. In Section 3, we compare the performance of 
the four algorithms on three numerical examples. Eigenvalues are used in diffe-
rential equations in studying stability and in complex biological systems in de-
termining eigenvector centrality (see also [9] [10]). 

2. Methodology 

In this section, we proof the main result in this paper which states the condition 
under which the Jacobian matrix (8) (for =P I ) is non-singular at the root, 
that is ( ),λ∗ ∗ ∗=x x . This is then followed by a presentation of Algorithm 1, 
which is actually Newton’s method for solving (6). The remaining algorithms 
have been discussed extensively in [1] [6] and [7]. For the sake of avoiding self 
plagiarism, we refer the interested reader to those articles. 

Algorithm 1 involves solving an ( )1n +  by ( )1n +  square system of equa-
tions using LU factorisation and does not involve splitting the eigenvalue and 
eigenvector into real and imaginary parts. 

Algorithm 2 involves splitting the eigenpair into real and imaginary parts to 
obtain an under-determined non linear system of equations. This results in solving 
a ( )2 1n +  real under-determined linear system of equations for ( )2 2n +  real 
unknowns using Gauss-Newton method [11]. This is solved using QR factorisation. 

Algorithm 3 also involves splitting the eigenpair into real and imaginary parts 
but with the help of an added equation we obtained a square ( )2 2n +  by 
( )2 2n +  system of linear equations which is solved using LU factorisation. 

Algorithm 4 is closely related to Algorithm 1 in the sense that both uses complex 
arithmetic. While Algorithm 1 used a fixed complex vector which does not change 
throughout the computation, Algorithm 4 uses the natural two-norm normalization 
which ensures that the eigenvector is updated at each stage of the computation. 

Theorem 2.1. Let ( )λ∗−D I  be an n  by n  matrix, , nC∗ ∈x c . Let  

( ) ,
0H

λ∗ ∗ − −
=  
  

D I x
M

c
                    (10) 

be an ( )1n +  by ( )1n +  matrix. If λ∗−D I  is singular and ( )rank λ∗− =D I
1n − , then M  is nonsingular if and only if 0Hψ ∗ ≠x , for all  

( ) { }\ 0
H

λ∗∈ −ψ D I  and 0Hφ ≠c , for all ( ) { }\ 0φ λ∗∈ −D I . Where  
( )λ∗−D I  is the nullspace of λ∗−D I .  

Proof: Let M  be nonsingular. Assume λ∗−D I  is singular and 0Hφ =c , 
we want to show by contradiction that 0Hφ ≠c . We multiply M  from the 
right by the nonzero vector [ ],0 Hφ  to yield  

( ) ( ) 0
.

0 00H H

λ λ φφ

φ

∗ ∗ ∗   − − −   
= =      

         

D I x D I

c c
           (11) 

This shows that we have multiplied the nonsingular matrix M  by a nonzero 
vector to obtain the zero vector, this implies that M  is singular, a contradic-



R. O. Akinola et al. 
 

683 

tion, hence 0Hφ ≠c . Similarly, let 0H ∗ =ψ x , multiply M  from the left by 
the nonzero vector [ ],0 Hψ  to obtain  

[ ] ( ) ( ) 00 0 .
0

H HH H

H

λ
ψ λ

∗ ∗
∗∗

 − −  −  = − =      

D I x ψ xψ D I
c  

This shows that M  is singular, contradicting the nonsingularity of M , 
therefore, 0H ∗ ≠ψ x . 

Conversely, let λ∗−D I  be singular of ( )rank 1nλ∗− = −D I , and assume 
0H ∗ ≠ψ x  and 0Hφ ≠c . We want to show that M  is nonsingular. If we can 

show that the vector [ ], Hqp  is zero in  

( ) ,
00H q

λ∗ ∗ − −    
=     

      

D I x p

c

0

 
then M  is nonsingular. After expanding the above equation, we obtain  

( ) 0qλ∗ ∗− − =D I p x                      (12) 

0.H =c p                           (13) 

By using the fact that ( ) 0H Hλ∗− =ψ D I  in ( ) ( ) 0H Hqλ∗ ∗− − =ψ D I p ψ x , 
we have ( ) 0Hq ∗ =ψ x . But by assumption, 0H ∗ ≠ψ x , hence 0q = . With this 
value of q , we are left with ( ) 0λ∗− =D I p  in (12) and because λ∗−D I  is 
singular, this implies that αφ=p . After substituting the value of p  into (13), 
we have 0Hα φ =c  from which 0α =  is immediate since 0Hφ ≠c . There-
fore, 0=p  and M  is nonsingular.  

Next, we present Algorithm 1 for computing the complex eigenpair of D  
using complex arithmetic. This is the main contribution to knowledge in this 
paper.  

 
Algorithm 1 Eigenpair Computation using Newton’s method 

Input: ( ) ( ) T0 0
max, , , kλ =  D x c  and tol. 

1: for 0,1, 2, ,k =   until convergence do 
2:   Compute the LU factorisation of  

( )( ) ( )

.
0

k k

H

λ − −
 
  

D I x

c
 

3:   Form  

( )
( )( ) ( )

( )
.

1

k k
k

kH

λ −
= −  

 − 

D I x
d

c x
 

4:   Solve the lower triangular system ( ) ( )k kL =y d  for ( )ky . 

5:   Solve the upper triangular system ( ) ( )k kU∆ =v y  for ( )k∆v . 

6:   Update ( ) ( ) ( )1k k k+ = + ∆x x x . 
7: end for 

Out for: ( )maxkv . 
 

Stop Algorithm 1 as soon as ( ) tolk∆ ≤v . 
Next, we present Algorithm 4 for computing the complex eigenpair of D  

using complex arithmetic. 



R. O. Akinola et al. 
 

684 

Algorithm 2 Eigenpair Computation using Gauss-Newton’s method [1] 

Input: D , ( ) ( ) ( ) ( ) ( ) T0 0 0 0 0
1 2 max, , , , kα β =  v x x  and tol. 

1: for 0,1, 2, ,k =   until convergence do 

2:   Find the reduced QR factorisation of ( )( )T
=k

vF v QR . 

3:   Solve ( ) ( )( )T k k= −R g F v  for ( )kg . 

4:   Compute ( ) ( )k k∆ =v Qg  for ( )k∆v . 

5:   Update ( ) ( ) ( )1 .k k k+ = + ∆v v v  
6: end for 

Out for: ( )maxkv . 

 
Algorithm 3 Eigenpair Computation using Newton’s method [6] 

Input: ( ) ( ) ( ) ( ) ( ) ( ) ( ) T0 0 0 0 0 0 0
1 2 max, , , , , , kα β   = =   D w x x v w  and tol . 

1: for 0,1, 2,k =   until convergence do 
2:   Compute the LU factorisation of 

( )

T

T

0 0 .

0 0

 −
 
− 

 
  

M w Jw
w

Jw

 

3:   Form 

( ) ( )T1 1 .
2

0

k

− 
 
 = −
 
 
 

Mw

d w w  

4:   Solve the lower triangular system ( ) ( )k kL =c d  for ( )kc . 

5:   Solve the upper triangular system ( ) ( )k kU∆ =v c  for ( )k∆v . 

6:   Update ( ) ( ) ( )1 .k k k+ = + ∆v v v  
7: end for 

Out for: ( ) ( ) ( ) ( )max max max max
T

, ,k k k kα β =  v w . 

 
Algorithm 4 Eigenpair Computation using Newton’s method in complex arithmetic [7] 

Input: ( ) ( ) ( ) T0 0 0
1 max, , , kλ =  D v x  and tol. 

1: for 0,1, 2, ,k =   until convergence do 

2:   Compute the LU factorisation of 
( ) ( )

( )( )
.

0

k k

Hk

λ − −
 
 − 

D I x

x
 

3:   Form ( )

( )( ) ( )

( ) ( )
.1 1

2 2

k k

k

k kH

λ −
 = −  
− +  

D I x
d

x x
 

4:   Solve the lower triangular system ( ) ( )k kL =y d  for ( )ky . 

5:   Solve the upper triangular system ( ) ( )k kU∆ =v y  for ( )k∆v . 

6:   Update ( ) ( ) ( )1 .k k k+ = + ∆v v v  
7: end for 

Out for: ( )maxkv . 

3. Numerical Experiments 

In this section, we compare the performance of the algorithm (Algorithm 1) ob-
tained by adding Ruhe’s normalization with three other algorithms (Algorithm 



R. O. Akinola et al. 
 

685 

2, Algorithm 3 and Algorithm 4) which were presented in the last section on 
three numerical examples. Throughout this section ( ) ( ) ( )

1 2,k k kT T =  w x x  and 
( ) ( ) ( ),k k kα β =  λ . 
Example 3.1. 
Consider the matrix  

0 1
.

1 0
D  
=  −   

We compared the performance of the four algorithms on the two by two matrix 
and the results are as presented in Table 1, Table 2, Table 3 and Table 4 respec-
tively. In all four algorithms we used the same initial guesses ( )0 36.0 10α −= × ,  

( )0 19.9 10 iβ −= × , ( )0 1 1
,

0 0
i   

= +   
   

x  and ( )A iI= +c  . It was observed that  

 
Table 1. Values of ( ) ( )k kiα β+  for the two by two matrix using Algorithm 1.  

k  
( ) ( )k kiα β+  

( ) ( )1k k+ −x x  ( ) ( )1k k+ −λ λ  ( )k∆v  ( )( )kF v  

0 6.00000e−03+9.90000e−01i 1.7e+02 2.0e+00 1.7e+02 2.7e+00 

1 1.41739e+00+2.39290e+00i 1.7e+02 3.7e+00 1.7e+02 3.4e+02 

2 7.08322e−14−1.00000e+00i 3.2e+02 1.4e−13 3.2e+02 6.3e+02 

3 4.90140e−16−1.00000e+00i 2.2e−11 5.4e−16 2.2e−11 4.4e−11 

 
Table 2. Values of ( ) ( )k kiα β+  for the two by two matrix using Algorithm 2. Quadratic 
convergence is shown in columns 4, 6 and 7 for 3, 4k k= =  and 5k = . 

k  
( )kα  

( )kβ  
( ) ( )1k k+ −w w  ( ) ( )1k k+ −λ λ  ( )k∆v  ( )( )kF v  

0 6.00000e−03 0.99000 1.1e+00 1.8e−02 1.1e+00 2.1e+00 

1 3.09120e−03 1.00505 4.2e−01 4.3e−03 4.2e−01 6.4e−01 

2 8.65482e−04 1.00141 8.2e−02 1.5e−03 8.2e−02 8.9e−02 

3 6.54625e−05 1.00011 3.4e−03 1.2e−04 3.4e−03 3.4e−03 

4 2.19153e−07 1.00000 5.6e−06 4.2e−07 5.7e−06 5.7e−06 

5 1.23636e−12 1.00000 1.6e−11 2.4e−12 1.6e−11 1.6e−11 

6 4.04413e−18 1.00000 7.9e−17 1.0e−18 7.9e−17 1.6e−16 

 
Table 3. Values of ( )kα  and ( )kβ  for the two by two matrix using Algorithm 3. Qua-
dratic convergence is shown in columns 4, 6 and 7 for 3,4k =  and 5k = . 

k  
( )kα  

( )kβ  
( ) ( )1k k+ −w w  ( ) ( )1k k+ −λ λ  ( )k∆v  ( )( )kF v  

0 6.00000e−03 0.99000 1.1e+00 1.8e−02 1.1e+00 2.1e+00 

1 3.09120e−03 1.00505 4.2e−01 4.3e−03 4.2e−01 6.4e−01 

2 8.65482e−04 1.00141 8.2e−02 1.5e−03 8.2e−02 8.9e−02 

3 6.54625e−05 1.00011 3.4e−03 1.2e−04 3.4e−03 3.4e−03 

4 2.19153e−07 1.00000 5.6e−06 4.2e−07 5.7e−06 5.7e−06 

5 1.23636e−12 1.00000 1.6e−11 2.4e−12 1.6e−11 1.6e−11 

6 4.41777e−18 1.00000 0.0e+00 0.0e+00 0.0e+00 0.0e+00 



R. O. Akinola et al. 
 

686 

Table 4. Values of ( ) ( )k kiα β+  for the two by two matrix using Algorithm 4. Quadratic convergence is shown in columns 3, 5 and 
6 for 3,4k =  and 5k = . 

k  
( ) ( )k kiα β+  

( ) ( )1k k+ −x x  ( ) ( )1k k+ −λ λ  ( )k∆v  ( )( )kF v  

0 6.00000e−03+9.90000e−01i 1.1e+00 1.8e−02 1.1e+00 2.1e+00 

1 −3.09120e−03+1.00505e+00i 4.2e−01 4.3e−03 4.2e−01 6.4e−01 

2 −8.65482e−04+1.00141e+00i 8.2e−02 1.5e−03 8.2e−02 8.9e−02 

3 −6.54625e−05+1.00011e+00i 3.4e−03 1.2e−04 3.4e−03 3.4e−03 

4 −2.19153e−07+1.00000e+00i 5.6e−06 4.2e−07 5.7e−06 5.7e−06 

5 −1.23633e−12+1.00000e+00i 1.6e−11 2.4e−12 1.6e−11 1.6e−11 

6 1.68283e−17+1.00000e+00i 0.0e+00 8.4e−18 7.6e−17 1.5e−16 

 

 
Figure 1. Distribution of the complex eigenvalues of the 20 by 20 grcar matrix. The x -axis is the real axis while the y -axis is the 
imaginary axis. 
 

Algorithm 1 converged after only four iterations while it took seven iterates for 
the other three to converge to the eigenvalue iλ∗ = . 



R. O. Akinola et al. 
 

687 

Example 3.2. 
The grcar matrix [12] [13] is a non symmetric matrix with sensitive eigenva-

lues and defined by  

( )
1, if   1

, 1, if      and   
0, Otherwise.

i j
i j i j j i k

− = +
= ≤ ≤ +



D

 
Figure 1 shows the distribution of the complex eigenvalues of the twenty by 

twenty grcar matrix on the real and imaginary axis. All the four algorithms discussed 
in the last section converged to the eigenvalue 11.58207 6.43690 10 iλ∗ −= + ×  after 
12 iterations with the same starting guesses as shown in Table 5, Table 6, Table 
7 and Table 8. However, unlike the first example in which Algorithm 1 con-
verged faster than the other three, that was not the case, maybe due to the sensi-
tivity of its eigenvalues. 

 

 
Figure 2. Distribution of the complex eigenvalues of the 200 by 200 bmw 200.mtx matrix. The x -axis is the real axis while the y - 
axis is the imaginary axis. 



R. O. Akinola et al. 
 

688 

Example 3.3. 
Consider the 200 by 200 matrix D  bwm200.mtx from the matrix market li-

brary [14]. It is the discretised Jacobian of the Brusselator wave model for a 
chemical reaction. The resulting eigenvalue problem with P = I  was also stu-
died in [9] and we are interested in finding the rightmost eigenvalue of D  
which is closest to the imaginary axis and its corresponding eigenvector. Figure 
2 shows the distribution of the complex eigenvalues of the matrix. 

For this example, in all four algorithms we take ( ) ( )0 00.0,  2.5α β= =  in line 

with [9] and took ( )0
1 1 2 1=x , ( )0

2
3 1 1

2
=x  and 11

2 1
i= +c , where 1 is 

 
Table 5. Values of ( ) ( )k kiα β+  for the twenty by twenty grcar matrix using Algorithm 1. 
Quadratic convergence is shown in columns 3 and 5 for 10k =  and 11.  

k  
( ) ( )k kiα β+  

( ) ( )1k k+ −x x  ( ) ( )1k k+ −λ λ  ( )k∆v  ( )( )kF v  

0 9.00000e−02+2.00000e−01i 1.2e+00 1.3e+00 1.8e+00 2.2e+00 

1 1.08132e+00+1.08186e+00i 1.5e+00 2.6e+00 3.0e+00 1.6e+00 

2 3.72785e+00+9.63132e−01i 9.1e−01 1.3e+00 1.6e+00 4.0e+00 

3 2.47494e+00+7.62445e−01i 5.7e−01 7.6e−01 9.4e−01 1.2e+00 

4 1.71950e+00+7.19775e−01i 7.6e−01 4.6e−01 8.9e−01 4.3e−01 

5 1.26075e+00+7.25835e−01i 3.7e−01 3.1e−01 4.8e−01 3.5e−01 

6 1.56634e+00+7.38078e−01i 3.1e−01 1.6e−01 3.5e−01 1.1e−01 

7 1.62480e+00+5.86198e−01i 1.1e−01 6.7e−02 1.3e−01 5.1e−02 

8 1.58877e+00+6.42286e−01i 1.9e−02 6.8e−03 2.0e−02 7.7e−03 

9 1.58214e+00+6.43859e−01i 4.3e−04 1.8e−04 4.6e−04 1.3e−04 

10 1.58207e+00+6.43690e−01i 2.1e−07 7.1e−08 2.2e−07 7.8e−08 

11 1.58207e+00+6.43690e−01i 4.6e−14 1.9e−14 4.9e−14 1.5e−14 

 
Table 6. Values of ( ) ( )k kiα β+  for the twenty by twenty grcar matrix using Algorithm 2. 
Quadratic convergence is shown in columns 4, 5 and 6 for 9,10k =  and 11. 

k  
( )kα  

( )kβ  
( ) ( )1k k+ −w w  ( ) ( )1k k+ −λ λ  ( )k∆v  ( )( )kF v  

0 9.00000e−02 0.20000 7.6e−01 1.4e+00 1.6e+00 2.0e+00 

1 1.49489e+00 0.11791 1.1e+00 1.1e+00 1.5e+00 1.1e+00 

2 2.03853e+00 1.09037 5.5e−01 5.1e−01 7.5e−01 1.3e+00 

3 1.70500e+00 0.69852 4.6e−01 3.2e−01 5.6e−01 3.2e−01 

4 1.50162e+00 0.45319 5.5e−01 3.8e−01 6.7e−01 1.8e−01 

5 1.84080e+00 0.63082 3.1e−01 1.9e−01 3.6e−01 2.6e−01 

6 1.66945e+00 0.55208 1.5e−01 1.3e−01 2.0e−01 7.6e−02 

7 1.55071e+00 0.60360 7.0e−02 5.4e−02 8.9e−02 2.3e−02 

8 1.58816e+00 0.64225 7.9e−03 6.2e−03 1.0e−02 4.5e−03 

9 1.58207e+00 0.64358 1.4e−04 1.1e−04 1.8e−04 5.9e−05 

10 1.58207e+00 0.64369 3.0e−08 2.1e−08 3.7e−08 1.8e−08 

11 1.58207e+00 0.64369 2.0e−15 1.6e−15 2.5e−15 7.8e−16 



R. O. Akinola et al. 
 

689 

Table 7. Values of ( ) ( )k kiα β+  for the twenty by twenty grcar matrix using Algorithm 3. 
Quadratic convergence is shown in columns 4, 5 and 6 for 9,10k =  and 11.  

k  
( )kα  

( )kβ  
( ) ( )1k k+ −w w  ( ) ( )1k k+ −λ λ  ( )k∆v  ( )( )kF v  

0 9.00000e−02 0.20000 7.6e−01 1.4e+00 1.6e+00 2.0e+00 

1 1.49489e+00 0.11791 1.1e+00 1.1e+00 1.5e+00 1.1e+00 

2 2.03853e+00 1.09037 5.5e−01 5.1e−01 7.5e−01 1.3e+00 

3 1.70500e+00 0.69852 4.6e−01 3.2e−01 5.6e−01 3.2e−01 

4 1.50162e+00 0.45319 5.5e−01 3.8e−01 6.7e−01 1.8e−01 

5 1.84080e+00 0.63082 3.1e−01 1.9e−01 3.6e−01 2.6e−01 

6 1.66945e+00 0.55208 1.5e−01 1.3e−01 2.0e−01 7.6e−02 

7 1.55071e+00 0.60360 7.0e−02 5.4e−02 8.9e−02 2.3e−02 

8 1.58816e+00 0.64225 7.9e−03 6.2e−03 1.0e−02 4.5e−03 

9 1.58207e+00 0.64358 1.4e−04 1.1e−04 1.8e−04 5.9e−05 

10 1.58207e+00 0.64369 3.0e−08 2.1e−08 3.7e−08 1.8e−08 

11 1.58207e+00 0.64369 2.0e−15 1.6e−15 2.5e−15 8.3e−16 

 
Table 8. Values of ( ) ( )k kiα β+  for the twenty by twenty grcar matrix using Algorithm 4. 
Quadratic convergence is shown in columns 4, 5 and 6 for 9,10k =  and 11.  

k  
( ) ( )k kiα β+  

( ) ( )1k k+ −x x  ( ) ( )1k k+ −λ λ  ( )k∆v  ( )( )kF v  

0 9.00000e−02+2.00000e−01i 7.6e−01 1.4e+00 1.6e+00 2.0e+00 

1 1.49489e+00+1.17906e−01i 1.1e+00 1.1e+00 1.5e+00 1.1e+00 

2 2.03853e+00+1.09037e+00i 5.5e−01 5.1e−01 7.5e−01 1.3e+00 

3 1.70500e+00+6.98519e−01i 4.6e−01 3.2e−01 5.6e−01 3.2e−01 

4 1.50162e+00+4.53192e−01i 5.5e−01 3.8e−01 6.7e−01 1.8e−01 

5 1.84080e+00+6.30823e−01i 3.1e−01 1.9e−01 3.6e−01 2.6e−01 

6 1.66945e+00+5.52083e−01i 1.5e−01 1.3e−01 2.0e−01 7.6e−02 

7 1.55071e+00+6.03599e−01i 7.0e−02 5.4e−02 8.9e−02 2.3e−02 

8 1.58816e+00+6.42251e−01i 7.9e−03 6.2e−03 1.0e−02 4.5e−03 

9 1.58207e+00+6.43581e−01i 1.4e−04 1.1e−04 1.8e−04 5.9e−05 

10 1.58207e+00+6.43690e−01i 3.0e−08 2.1e−08 3.7e−08 1.8e−08 

11 1.58207e+00+6.43690e−01i 2.0e−15 1.6e−15 2.5e−15 7.9e−16 

 
the vector of all ones. Results of numerical experiments are as tabulated in 
Tables 9-12 respectively. We observed that while it took Algorithm 1 with a 
fixed complex vector six iterations to converge to the desired eigenvalue  

51.81999 10 2.13950i−× +  as shown in Table 9, it took eight, ten and eight ite-
rates for Algorithm 2 (Table 10), Algorithm 3 (Table 11) and Algorithm 4 
(Table 12) respectively to achieve the same result. This shows that Algorithm 1 
converged faster than the others. 

As shown in Table 1 and Table 9, we observed that an application of Algo-
rithm 1 showed faster convergence to the eigenvalue of interest with a close 
enough initial guess than the previous algorithms already discussed in [1] [6] 
and [7] viz-a-viz: Algorithm 2, Algorithm 3 and Algorithm 4 respectively.  



R. O. Akinola et al. 
 

690 

Table 9. Values of ( ) ( )k kiα β+  for the 200 by 200 matrix of Example 3.3 using Algorithm 
1. Columns 4 and 5 shows that the results converged quadratically for 1,2,3k =  and 4. 

k  
( ) ( )k kiα β+  

( ) ( )1k k+ −x x  ( ) ( )1k k+ −λ λ  ( )k∆v  ( )( )kF v  

0 0.00000e+00+2.50000e+00i 1.0e+00 5.5e−02 1.0e+00 3.8e+01 

1 −5.34905e−02+2.48607e+00i 4.2e−02 3.7e−01 3.8e−01 5.5e−02 

2 −2.93885e−03+2.11634e+00i 4.0e−03 2.3e−02 2.4e−02 1.6e−02 

3 1.47186e−04+2.13954e+00i 4.5e−05 1.3e−04 1.4e−04 9.5e−05 

4 1.82101e−05+2.13950e+00i 2.3e−09 1.1e−08 1.1e−08 6.1e−09 

5 1.81999e−05+2.13950e+00i 7.9e−15 1.2e−14 1.5e−14 1.8e−14 

 
Table 10. Values of ( )kα  and ( )kβ  for the 200 by 200 matrix of Example 3.3 using 
Algorithm 2. Columns 6 and 7 show that the results converged quadratically for 

3,4,5,6k =  and 7. 

k  
( )kα  

( )kβ  
( ) ( )1k k+ −w w  ( ) ( )1k k+ −λ λ  ( )k∆v  ( )( )kF v  

0 0.00000e+00 2.50000 3.8e+00 7.8e−01 3.9e+00 3.6e+01 

1 2.34253e−01 1.75371 1.8e+00 2.2e−01 1.8e+00 7.8e+00 

2 1.18745e−01 1.94460 8.1e−01 1.4e−01 8.2e−01 1.7e+00 

3 4.47044e−02 2.06484 2.5e−01 7.0e−02 2.6e−01 3.4e−01 

4 8.82702e−03 2.12479 3.1e−02 1.7e−02 3.5e−02 3.7e−02 

5 2.48114e−04 2.13905 4.8e−04 5.2e−04 7.1e−04 7.1e−04 

6 1.80714e−05 2.13950 1.2e−07 2.5e−07 2.8e−07 2.8e−07 

7 1.81999e−05 2.13950 2.1e−14 2.9e−14 3.6e−14 6.0e−14 

 
Table 11. Values of ( )kα  and ( )kβ  for the 200 by 200 matrix of Example 3.3 using 
Algorithm 3. Columns 6 and 7 show that the results converged quadratically for 

3,4,5,6k =  and 7. 

k  
( )kα  

( )kβ  
( ) ( )1k k+ −w w  ( ) ( )1k k+ −λ λ  ( )k∆v  ( )( )kF v  

0 0.00000e+00 2.50000 3.8e+00 7.8e−01 3.9e+00 3.6e+01 

1 2.34253e−01 1.75371 1.8e+00 2.2e−01 1.8e+00 7.8e+00 

2 1.18745e−01 1.94460 8.1e−01 1.4e−01 8.2e−01 1.7e+00 

3 4.47044e−02 2.06484 2.5e−01 7.0e−02 2.6e−01 3.4e−01 

4 8.82702e−03 2.12479 3.1e−02 1.7e−02 3.5e−02 3.7e−02 

5 2.48114e−04 2.13905 4.8e−04 5.2e−04 7.1e−04 7.1e−04 

6 1.80714e−05 2.13950 1.2e−07 2.5e−07 2.8e−07 2.8e−07 

7 1.81999e−05 2.13950 1.1e−14 9.2e−14 9.2e−14 6.3e−14 

8 1.81999e−05 2.13950 1.7e−14 6.8e−14 7.0e−14 5.6e−14 

9 1.81999e−05 2.13950 1.4e−14 6.8e−15 1.5e−14 5.1e−14 



R. O. Akinola et al. 
 

691 

Table 12. Values of ( )kα  and ( )kβ  for the 200 by 200 matrix of Example 3.3 using 
Algorithm 4. Columns 5 and 6 show that the results converged quadratically for 

3,4,5,6k =  and 7. 

k  
( ) ( )k kiα β+  

( ) ( )1k k+ −x x  ( ) ( )1k k+ −λ λ  ( )k∆v  ( )( )kF v  

0 0.00000e+00+2.50000e+00i 3.8e+00 7.8e−01 3.9e+00 3.6e+01 

1 2.34253e−01+1.75371e+00i 1.8e+00 2.2e−01 1.8e+00 7.8e+00 

2 1.18745e−01+1.94460e+00i 8.1e−01 1.4e−01 8.2e−01 1.7e+00 

3 4.47044e−02+2.06484e+00i 2.5e−01 7.0e−02 2.6e−01 3.4e−01 

4 8.82702e−03+2.12479e+00i 3.1e−02 1.7e−02 3.5e−02 3.7e−02 

5 2.48114e−04+2.13905e+00i 4.8e−04 5.2e−04 7.1e−04 7.1e−04 

6 1.80714e−05+2.13950e+00i 1.2e−07 2.5e−07 2.8e−07 2.8e−07 

7 1.81999e−05+2.13950e+00i 1.1e−14 3.7e−14 3.8e−14 6.3e−14 

4. Conclusion 

In this paper, we have shown using the ABCD Lemma that the Jacobian ob-
tained from adding Ruhe’s normalization to the matrix pencil is non-singular at 
the root. With a proper choice of the fixed complex vector and an initial guess 
close to the eigenvalue of interest, we recommend the use of Algorithm 1 for the 
numerical computation of the desired complex eigenpair of a matrix because of 
its faster convergence. 

Acknowledgements 

The authors acknowledge valuable suggestions of an anonymous referee which 
helped in improving the final version of this paper. The main part of this work 
was done when the first author was a Ph.D. student at the University of Bath and 
duly acknowledge financial support in the form of a studentship. 

References 
[1] Akinola, R.O. and Spence, A. (2014) Two-Norm Normalization for the Matrix Pen-

cil: Inverse Iteration with a Complex Shift. International Journal of Innovation in 
Science and Mathematics, 2, 435-439. 

[2] Stewarti, G.W. (2001) Matrix Algorithms, Volume II: Eigensystems. SIAM, Phila-
delphia. 

[3] Kreyszig, E. (1999) Advanced Engineering Mathematics. John Wiley & Sons Inc., 
New York.  

[4] Ruhe, A. (1973) Algorithms for the Nonlinear Eigenvalue Problem. SIAM Journal 
on Numerical Analysis, 10, 674-689. https://doi.org/10.1137/0710059 

[5] Tisseur, F. (2001) Newton’s Method in Floating Point Arithmetic and Iterative Re-
finement of Generalized Eigenvalue Problems. SIAM Journal on Matrix Analysis 
and Applications, 22, 1038-1057. https://doi.org/10.1137/S0895479899359837 

[6] Akinola, R.O. and Spence, A. (2015) Numerical Computation of the Complex Ei-
genvalues of a Matrix by Solving a Square System of Equations. Journal of Natural 
Sciences Research, 5, 144-156. 

[7] Akinola, R.O. (2015) Computing the Complex Eigenpair of a Large Sparse Matrix in 

http://epubs.siam.org/loi/sjnaam
http://epubs.siam.org/loi/sjnaam
http://epubs.siam.org/loi/sjnaam
https://doi.org/10.1137/0710059
http://epubs.siam.org/loi/sjmael
http://epubs.siam.org/loi/sjmael
http://epubs.siam.org/loi/sjmael
https://doi.org/10.1137/S0895479899359837


R. O. Akinola et al. 
 

692 

Complex Arithmetic. International Journal of Pure & Engineering Mathematics, 3, 
137-158. 

[8] Keller, H.B. (1977) Numerical Solution of Bifurcation and Nonlinear Eigenvalue 
Problems. In: Rabinowitz, P., Ed., Applications of Bifurcation Theory, Academic 
Press, New York, 359-384. 

[9] Parlett, B.N. and Saad, Y. (1987) Complex Shift and Invert Strategies for Real Ma-
trices. Linear Algebra and Its Applications, 88-89, 575-595. 
https://doi.org/10.1016/0024-3795(87)90126-1   

[10] Meerbergen, K. and Roose, D. (1996) Matrix Transformations for Computing 
Rightmost Eigenvalues of Large Sparse Non-Symmetric Eigenvalue Problems. IMA 
Journal of Numerical Analysis, 16, 297-346. 
https://doi.org/10.1093/imanum/16.3.297  

[11] Deuflhard, P. (2004) Newton Methods for Nonlinear Problems. Springer, Heidel-
berg, 174-175.  

[12] Grcar, J. (1989) Operator Coefficient Methods for Linear Equations. Technical Re-
port SAND89-8691, Sandia National Laboratories, Albuquerque, New Mexico, Ap-
pendix 2. 

[13] Nachtigal, N.M., Reichel, L. and Trefethen, L. (1992) A Hybrid GMRES Algorithm 
for Nonsymmetric Linear Systems. SIAM Journal on Matrix Analysis and Applica-
tions, 13, 796-825. https://doi.org/10.1137/0613050 

[14] Boisvert, B., Pozo, R., Remington, K., Miller, B. and Lipman, R. Matrix Market.  
http://math.nist.gov/MatrixMarket/  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles  
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jamp@scirp.org 

https://doi.org/10.1016/0024-3795(87)90126-1
https://doi.org/10.1093/imanum/16.3.297
https://doi.org/10.1137/0613050
http://math.nist.gov/MatrixMarket/
http://papersubmission.scirp.org/
mailto:jamp@scirp.org

	An Efficient Algorithm for the Numerical Computation of the Complex Eigenpair of a Matrix
	Abstract
	Keywords
	1. Introduction
	2. Methodology
	3. Numerical Experiments
	4. Conclusion
	Acknowledgements
	References

