
Journal of Software Engineering and Applications, 2017, 10, 273-287
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2017.103016 March 23, 2017

CACS: Cloud Environment Autonomic
Computing System

Rizik M. H. Al-Sayyed1, Hussam N. Fakhouri2, Sharefa F. Murad3, Sandi N. Fakhouri4

1King Abdullah II School for Information Technology, Department of Business Information Technology, The University of
Jordan, Amman, Jordan
2King Abdullah II School for Information Technology, Department of Computer Science, The University of Jordan, Amman,
Jordan
3Faculty of Computer Science, Middle East University, Amman, Jordan
4Income and Sales Tax Department, Amman, Jordan

Abstract
This work proposes the adoption of Autonomic Computing System (ACS) in
Cloud environment. ACS was first introduced by IBM to create systems capa-
ble of managing automatic self-configuration, self-healing, self-optimization
and self-protection. These systems detect errors that cause failure, and then
recover and reconfigure itself. The concept is wildly adapted by many soft-
ware applications that have many restoring and recovery functionality such as
operating systems (e.g. Windows Server 2012). This paper proposes a cloud
ACS (CACS) for cloud computing environment that monitors, diagnoses,
checks and heals cloud applications automatically and immediately with al-
most unnoticeable recovery time. In order to evaluate CACS, an application
has been developed and applied for real time cloud applications. The results of
different experiments scenarios demonstrate the ability of adopting the pro-
posed system to heal well cloud applications. CACS is also compared with
Windows Server 2012 operating system in terms of healing ability, speed, cost,
methodology and other informative information. CACS showed domination
in almost all of these properties.

Keywords
Cloud Applications, Self-Healing, Auto-Restoring, Auto-Backup

1. Introduction

The wide and fast spread of Internet motivated large number of companies to
adopt the cloud solution and offer their services and business online, i.e. through
the World Wide Web (WWW). This wide spread requires more research to be

How to cite this paper: Al-Sayyed,
R.M.H., Fakhouri, H.N., Murad, S.F. and
Fakhouri, S.N. (2017) CACS: Cloud Envi-
ronment Autonomic Computing System.
Journal of Software Engineering and Ap-
plications, 10, 273-287.
https://doi.org/10.4236/jsea.2017.103016

Received: October 17, 2016
Accepted: March 20, 2017
Published: March 23, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.103016
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.103016
http://creativecommons.org/licenses/by/4.0/

R. M. H. Al-Sayyed et al.

274

developed to handle this quota of cloud applications in order to manage and
self-heal themselves. ACS was first proposed by IBM in 2007 [1]. ACS includes
the ability of the application to recover itself by detecting any fault or unex-
pected authorized and unauthorized changes on applications’ files. Cloud ACS
(CACS) applications require a 24/7 auto-monitoring of the applications as well
as a fast recovery mechanism that keeps the online functionality and service of
applications offered to customers available all the time. The importance of de-
veloping fast CACS is motivated by the effect that may occur to business appli-
cations and the need to avoid any intermission of these running applications
even for a short period of time. For example, an online business such as a bank
may lose customers’ trust and lose financially if any customers-related applica-
tion stopped functioning for just few hours. Many factors may affect online ap-
plications and cause them to stop as mentioned by Qin et al. in [2]. These factors
may be either internal or external. Viruses and worms for example are consid-
ered internal factors that may affect the server that hosts the applications; how-
ever, we will not consider internal factors in this paper. On the other hand, the
external factors include many attackers that attack the application and change
the content of cloud files for different reasons, including the use of different
methods such as xss, sql injection [3].

In cloud environment, the application on hosting cloud server could face
many problems including the deletion, replacement or modification of a com-
ponent. The risk of having one of these three problems is very high. For in-
stance, when an attacker replaces an application component by another one that
functions in the same way as the original one but has minor changes, it could (as
an example) allow the attacker to steal credit card information which will cause a
serious problem for both customers and owners. Most online cloud applications
owners do not perform tests to check if the component has been changed or not;
this is due to the complex architecture of this kind of applications and the lack of
knowledge at the owner level. This paper proposes a solution to such problem
and many others by applying CACS that has the functionality of self-healing,
self-monitoring, self-diagnosis and self-recovering to keep the cloud application
in good health!

Software systems have many anomalous conditions that appear among the
components of software systems. To handle such situations the software archi-
tecture for this purpose has been splitted into two layers: functional layer and
healing layer. This type of software systems provides software with many capa-
bilities [4].

Some authors introduce architecture for hybrid software models which com-
bine “endogenous” and “exogenous” approaches [5] where the architecture of
the multi-agent system flexibly allows agents to adapt the changes in behaviour
of the context providing a cooperative adaptation in the system.

This research, mainly focuses on techniques for “self-healing” cloud applica-
tions from functional failures by automatically detecting failures, diagnosing
faults, and healing these applications to behave and run as supposed to before

R. M. H. Al-Sayyed et al.

275

the failure happens.
To evaluate CACS mechanism, we perform a black box testing on the tested

software considering the whole cloud application files as one component. The
main goal is to ensure that this component runs well and has not been acciden-
tally or intentionally changed when compared with the original file. CACS en-
sures that all software components remain the same, without any modifications
or changes by any other external authorized and unauthorized effect and to en-
sure that these components have not been omitted or deleted from the server
and that the application’s directory does not contain any injected or added files.

Our research suggests the existence of a system that analyzes the content of
the released application components, a mechanism for monitoring the applica-
tion, a mechanism for diagnosing and detecting of failure and a healing mecha-
nism that brings back the software to its healthy status.

The major contribution of this paper is to define an automatic mechanism for
cloud applications fault recovery despite the cause of the fault. In summary the
research defines a mechanism for an external self-healing software application
that monitors, diagnoses and detects a failure automatically and efficiently. The
development and implementation of CACS considered a framework that man-
aged cloud application files regardless of their programming language. We also
provide an experimental result that demonstrates the efficiency of the proposed
system.

The reset of this paper is organized as follows: Section two presents related
work on ACS, and the mechanisms that are used for recovering different appli-
cation; Section three presents a full description of the proposed system; Section
four demonstrates the evaluation experiments and discusses their results; and
finally Section five provides the conclusion and future work.

2. Related Work

A framework for runtime monitoring and recovery of cloud service conversa-
tions is proposed by Simmonds et al. [6]. An improved development environ-
ment of self-healing software to show the capabilities of self-managing was pro-
posed by Park et al. [7]. A hybrid approach for self-management that combines
an endogenous self-adaptation approach with an exogenous self-healing ap-
proach was proposed by Weyns et al. [8]. A framework that helps in monitoring
and testing scalability of cloud applications on the cloud was proposed by Vasar
et al. [9]. A novel and simple approach for securing access to sensitive content
on the cloud and web environment where the content of sensitive data is protec-
tion of the content is proposed by Zohrevandi et al. [10].

Athanasopoulos et al. [11] proposed an approach for mining service abstrac-
tions, based on an agglomerative clustering algorithm. Their experimental find-
ings suggest that the approach is promising and can serve as a basis for future
research. Newsome et al., [12] a system for software with self-diagnose and self-
monitor, the main concern was to make the system recover and heal from dif-
ferent attacks and vulnerabilities, he wanted to make a better root with self-

R. M. H. Al-Sayyed et al.

276

healing property. They classified the process into two layers: healing layer and
functional layer, by the inspiration of the human biology characteristics and
methods to make benefit of the normal biological process (i.e. wound healing)
[13]. An overview of the existing approaches that focus on the self-healing
branch of the research was proposed by Harald et al. [14]. The importance of
communication in self-healing and how its failure affect the recovery and heal-
ing of the software, was illustrated by using the architectural model of Dab-
rowski et al. [15]. An approach of inserting a self-healing mechanism in compo-
nents that are specified according to a state chart and whose implementations
also offer the possibility to act on them in terms of state; i.e. forcing the compo-
nent to some state and rolling back one transition was proposed by Elkorobar-
rutia et al. [16]. Self-recovery is very essential in the world of continuous attack.
Its importance came into existence due to the good efforts it offers as an auto-
matic method; without human interaction; to recover information and data and
offer a security level for interrupted services; this model was proposed by Anand
et al. [17] to detect and recover failure.

3. Proposed System for Cloud Autonomic Computing System
(CACS)

CACS consists of automatic exterior healing system that monitors cloud files
and manage to maintain it unchanged at 24/7 working rate. The proposed sys-
tem apply black box testing concept to verify the stability of the cloud applica-
tions files. Hence there is no need to examine neither the internal code nor the
flow of its internal functions; rather than that CACS conceders the clouds appli-
cation files as one component and test its characteristics such as the existence of
the component, file size, hash key, creator and its correct location path. The sys-
tem monitors, diagnoses and recovers the cloud application files immediately at
the time of the external or internal effect that could cause any unexpected
change. In order to achieve that the proposed system were designed with three
main phases and have a life cycle run to guarantee the full time running of the
cloud files.

Figure 1 demonstrates the three main phases of CACS: phase 1: pre-healing,
phase 2: healing process and phase 3: post healing. The following subsections
describes in details their main structure and functionality.

Figure 1. CACS main phases.

R. M. H. Al-Sayyed et al.

277

3.1. Phase 1: CACS Pre-Healing

Pre-healing phase is the initial phase that prepares the system for the healing
phase. Starting by initializing the system and goes throw building the CACS da-
tabase. After that the cloud application files (cloudsite) were identified and
backup copies were created. The Pre-Healing phase also consists of running the
implemented system settings for the first time to determine and select the spe-
cific folder for the cloud application to monitor and sets the initial parameters
needed.

This phase also analyse the cloudsite files by gathering information such as:
the file size, date of creation, manufacturers of the file and the hash key. The
output of the released application is the input of the self-healing phase. As
shown in Figure 2, the output component is mainly the cloud applications files
and other files such as the assemblies of the bin folder.

Moreover, this phase includes building a database that stores all the informa-
tion’s about the cloud application that results from the analysis step, containing
the major and necessary information for the diagnosis process. The aim of using
a database is to keep a fast and organized method for diagnosing and referencing
cloud application components for any time in order to access a review or make
diagnosis. The phase also comprises creating a copy of original components of the
cloudsite to be reused later in the healing phase. This copy will be compressed
and stored in a separated directory specified by the CACS system and not on the
published cloud directory. The CACS system is independent programming lan-
guage; this enhance the system with the capability of analysing any type of cloud
application files in any programming language such as PHP, ASP, HTML, etc.
Figure 2 illustrates a flowchart for CACS steps in Pre-Healing Phase.

3.2. Phase 2: CACS Self-Healing

This phase consists of four basic processes; it starts by monitoring and ends by
fixing process. Figure 3 illustrates the four main processes for CACS Self-Healing.

The first step in phase 2 is monitoring. In which the system observe the
cloudsite component’s (files) for 24/7, This includes tracking all the cloud ap-
plication components as well as the cloudsite folder for any changes detected,
including the deletion, replacing, modification and addition of any new compo-
nent to the cloud directory folder.

The second step in phase 2 is comparing. This step conduct a deep compari-
son between the monitored components and the status record stored in the da-
tabase by the analysis phase. As mentioned previously, the database contains full
details of all components of the cloud application that are required for the diag-
nosis. The result provided by this step will be the input of the diagnosis step.

The third step in phase 2 is diagnosis. This step a decision will be made
whether to make an action or not, by mean if the system needs to be healed or
not (i.e. it is in good health). In this step a solution to the system will be required
and a suggestion if the system is infected or becomes in faulty state or in a good
health.

R. M. H. Al-Sayyed et al.

278

Figure 2. CACS pre-healing procedure flowchart.

Figure 3. CACS self-healing processes.

R. M. H. Al-Sayyed et al.

279

The fourth step in phase 2 is fixing. It is the process of restoring the original
component of the system and replacing or compensating the affected compo-
nent in order to maintain the system in a good health. In this step the solution to
the problem suggested by the diagnosis step is applied; when a fault is detected,
the latest saved copy of the application monitored will be restored to the cloud-
site directory. The restoring is triggered by detecting a change. This process will
take only few seconds before the application can restart online and became
available again for the users. The changes along with the healing event will be
stored in the database for further analysis and the process is automated.

To take a deep look at CACS self-healing, we present a full details flowchart
for the mechanism in Figure 4.

3.3. Phase 3: CACS Post-Healing

After the healing process ends, the post healing phase starts. Figure 5 shows the
three steps involved in this phase: storing changes in the database, storing af-
fected component and analysing reasons, and updating all cloud application
components.

Figure 4. CACS self-healing flowchart.

R. M. H. Al-Sayyed et al.

280

Figure 5. CACS post-healing processes.

The first step in phase 3 is storing change in the database. This process re-

cords all the information that has been done in the healing process including
storing the date and time of healing and the component that has been restored.
Storing this information will give the administrator a clear summary about the
history of the application after releasing it.

The second step in phase 3 is storing affected component and analysing
reasons. If the healing process resulted from a change in the component itself
either for any of the mentioned reason then keeping this file will give us indica-
tor about the reason that caused the fault and this will help the application de-
velopers to avoid such situations and to enhance or develop mechanisms to up-
date the software or the server so that it can face such cases. For example, if the
reason for a change was due to an illegal access to the server, then a certain pol-
icy could be in effect but if the change was due to a virus then the server should
act by clearing the virus itself.

The third step in phase 3 is updating all cloud application components. The
analysis process is an important step to maintain a future enhanced healthy
cloud application because of the previously mentioned reasons and due to the
fact that the analysis process results can be used to enhance and update the cloud
application itself, and in the case of distributing the application to may servers,
the updated component can be distributed to other servers as a precaution to
avoid been infected by the same way.

CACS healing involves the following cases:
• Deletion of a component that causes the system to fail to run
• Change of a component by external factor either human or non-human
• Original component replacing
• Addition of external component to the software folder

CACS dynamically modifies the cloudsite to correct the failure. The changes
that have been made will be stored to be analysed in the future by the system
administration. However if the same fault is frequently repeated this may indi-
cate the need to analyse the stored information’s about the recovery processes
that has been made to the affected components.

Analysing the changes along with the results of checking the diagnosis and
monitoring will provide a good indicator about the reasons that cause the system
failure. It also gives a brief overview about the main causes and their indicators.

R. M. H. Al-Sayyed et al.

281

By defining the reason the system administrator can find an appropriate solution
to handle the problem for good.

4. Evaluation

A research method or tool has more chances to be transferred to practitioners if
its usefulness is investigated through empirical user studies [18]. In order to
evaluate the usefulness of the research presented in this paper an empirical test
has been conducted. This section evaluates the ability of CACS to recover from
different modifications and unauthorized changes to the files of the cloud appli-
cations. In order to do that the following research questions were and then dif-
ferent scenarios have been made to illustrate each case:
• What advantages can we get when using CACS to heal cloud applications

that are affected by different performance scenarios?
• What is the time of heal using CACS when compared with other healing ap-

proaches?
There are three sources that might affect the cloudsite components:
1) external non-human factors

• virus
• Worm

2) software
• defect in the components
• conflict with other software
• operating system related

3) external human factors
• attacker
• spy
• fraud

To evaluate the proposed approach we need to evaluate the effectiveness and
the ability of the proposed system to recover from any different failure causes.
To this reason four experimental scenarios were tested: deletion of a file, moving
of a file, replacement of a file and editing a file. We initialized the implemented
auto cloud application monitoring system and selected the cloud application di-
rectory to be monitored. CACS will analyse the cloudsite directory and build the
database; see Figure 6. The second phase of the experiment will test the effec-
tiveness of the system to heal the deletion case by executing the application and
after that a file will be deleted from the cloud directory. To test the effectiveness
and performance of the system in detecting the problem of replacing a compo-
nent, we created a file name with the same name and extension of a specific file
on the cloud application directory. For testing the final case of editing a compo-
nent, we considered manual modification of the component and this is the hu-
man modification.

In Figure 7, we illustrated a full description of all the transactions collected.
All transactions are sorted in descending order according to date and time. More
description of Figure 7 is furnished in the three subsequent sections.

R. M. H. Al-Sayyed et al.

282

Figure 6. Analysed cloud application directory.

Figure 7. Transactions description.

4.1. Scenario1: Deletion of a Component

CACS responds to this case by restoring the deleted file from the original copy
that has been prepared in the initialization stage. CACS records the problem in
the database including the time, date, type of problem and the name of the file
that was deleted and replaced see Figure 7, line 5. CACS was very efficient to
recover different cloud application component extensions that were tested in-
cluding PHP, HTML, ASPX, DLL, and CSS. Figure 8 shows the flowchart for the
recovery process.

4.2. Scenario 2: Replacement with Similar Component

CACS responds to this case by deleting the full directory of the cloud application
and restoring the original copy of the cloudsite that has been prepared in the
initialization stage. CACS records the problem in the database including the
time, date, and type of problem and the name of the file that was replaced and
recovered; see Figure 7, line 7. Again, CACS was very efficient to recover dif-
ferent cloud application component extensions that were tested including PHP,
HTML, ASPX, DLL, and CSS (Figure 9).

4.3. Scenario 3: Modifying a Component

CACS responds to this case by deleting the full directory of the cloud application

R. M. H. Al-Sayyed et al.

283

Figure 8. Recovery from Deletion.

Figure 9. Recovery from replacement.

R. M. H. Al-Sayyed et al.

284

and restoring the original copy of the cloudsite that has been prepared in the
initialization stage. CACS records the problem in the database including the
time, date, and type of problem and the name of the file that was recovered see
Figure 7, line 4. Also, CACS was very efficient to recover different cloud appli-
cation component extensions that were tested including PHP, HTML, ASPX,
DLL, and CSS (Figure 10).

4.4. Measuring the Time Required to Heal a Process

In this experiment, we added cloudsite files of size 10 g and then we deleted 5 m
of the file as shown in Table 1. The aim of the experiment is to measure the time
needed to heal the system and compare it with windows server system restore.

Since the CACS heals by recovering the cloudsite files (components) and not
the full system restore or recovery, we notice that windows system restoration
works by restoring all files in windows server 2012. This took about 2400 second
while in CACS took only 5 seconds; this clearly makes the CACS a better choice.

In Table 2, we listed an exhaustive comparison between healing using CACS
and Microsoft Windows Server 2012 healing system; this is to give a clear picture
about the benefits of employing CACS for complex environments such as cloud.

Figure 10. Recovery from modification.

R. M. H. Al-Sayyed et al.

285

Table 1. Comparison of CACS with windows system restore [windows server 2012].

Method Size on server Size of cloudsite files Time for healing

CACS 12 g 10 m 5 seconds

Windows server 2012 12 g 10 m 40 × 60 (2400) seconds

Table 2. Comparison between the proposed system (CACS) and Microsoft Windows Server 2012.

Criteria
Microsoft Windows

[System Restore]
Proposed system

(CACS)
Antivirus Firewall Spyware

Reinstall the
cloud server

Recover error resulting from
deleting software component

Yes Yes No No No Yes

Heal Replaced component
that has same functionality

No. Yes No No No Yes

Heal at run time No Yes Yes No Yes No

Generate reports of the
diagnosis of the problem
and the healing process

Yes Yes Yes Yes Yes No

Store the affected component
for future analysis

No Yes Yes No Yes No

Methodology of repairing
Operating system

dependent

Automatically Compares,
analyses, diagnoses and

heals the cloud application
files; it returns the file to

its original state similar to
the manufacturer from

the backup files

Only files
changed by

virus signature
or worms

No repairing

Only files
changed by

virus signature
or worms

Install
fresh new
operating

system

State of the healing
To a specified
restore point

To the manufacturer
state either the original

or with updates
No healing No healing No healing No healing

Level of recovery Full restore Per file Per file No recover y Per file Full

Speed of recovery
Relatively slow
at least 10 min

Fast less than 1 min
(recover only the

affected file)
No recovery No recovery No recovery

Relatively
slow at least

20 min

As can be inferred from Table 2, CACS dominates all the properties; the table

is a strong evidence that CACS is better Microsoft Windows system in terms of
healing ability, speed, cost, methodology, and other informative information.

5. Conclusions and Future Work

Integrating self-healing approaches into cloudsites introduces a very efficient
improvement for the cloudsites performance. Many companies tried different
methods and approaches that aim at reducing the cost and time needed for the
rerun of the cloudsites after failures and tried to build a software system that has
the ability to heal itself. This research presents CACS, an approach for self-
healing cloudsites, CACS monitors the software for 24/7 duration and it has the

R. M. H. Al-Sayyed et al.

286

ability to capture continual information about the specific cloudsite compo-
nents that are being monitored. Our experimental results show the efficiency of
CACS in detecting failures and errors and efficiency in healing them.

As a future work, we hope that our work may inspire biological software en-
gineering processes aiming to improve the self-learning of the proposed ap-
proach and to generalize the concept to self-learning and self-adaptation.

References
[1] Nami, M.R. and Bertels, K. (2007) A Survey of Autonomic Computing Systems. In

3rd International Conference on Autonomic and Autonomous Systems, Athens,
19-25 June 2007, 26. https://doi.org/10.1109/conielecomp.2007.48

[2] Qin, F., Tucek, J., Sundaresan, J. and Zhou, Y. (2005) Rx: Treating Bugs as Aller-
gies—A Safe Method to Survive Software Failures. ACM SIGOPS Operating Sys-
tems Review, 39, 235-248. https://doi.org/10.1145/1095809.1095833

[3] Tucek, J., Newsome, J., Lu, S., Huang, C., Xanthos, S., Brumley, D. and Song, D.
(2007) Sweeper: A Lightweight End-to-End System for Defending against Fast
Worms. ACM SIGOPS Operating Systems Review, 41, 115-128.
https://doi.org/10.1145/1272998.1273010

[4] Ghosh, D., Sharman, R., Rao, H.R. and Upadhyaya, S. (2007) Self-Healing Sys-
tems—Survey and Synthesis. Decision Support Systems, 42, 2164-2185.

[5] Weyns, D. (2010) Capturing Expertise in Multi-Agent System Engineering with
Architectural Patterns. In: Architecture-Based Design of Multi-Agent Systems,
Springer, Berlin Heidelberg, 27-53.

[6] Simmonds, J., Ben-David, S. and Chechik, M. (2010) Guided Recovery for Web Ser-
vice Applications. Proceedings of the 18th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, Santa Fe, 7-11 November 2010, 247-
256. https://doi.org/10.1145/1882291.1882328

[7] Park, J., Youn, H. and Lee, E. (2009) An Automatic Code Generation for Self-
Healing. Journal of Information Science and Engineering, 25, 1753-1781.

[8] Hudaib, A.A. and Fakhouri, H.N. (2016) An Automated Approach for Software
Fault Detection and Recovery. Communications and Network, 8, 158.

[9] Vasar, M., Srirama, S.N. and Dumas, M. (2012) Framework for Monitoring and
Testing Web Application Scalability on the Cloud. Proceedings of the WICSA/
ECSA 2012 Companion, Helsinki, 20-24 August 2012, 53-60.
https://doi.org/10.1145/2361999.2362008

[10] Zohrevandi, M. and Bazzi, R.A. (2013) Auto-FBI: A User-Friendly Approach for
Secure Access to Sensitive Content on the Web. Proceedings of the 29th Annual
Computer Security Applications Conference, New Orleans, 9-13 December 2013,
349-358. https://doi.org/10.1145/2523649.2523683

[11] Athanasopoulos, D., Zarras, A.V., Vassiliadis, P. and Issarny, V. (2011) Mining Ser-
vice Abstractions (NIER Track). Proceedings of the 33rd International Conference
on Software Engineering, Waikiki, 21-28 May 2011, 944-947.

[12] Newsome, J., Brumley, D., Song, D. and Pariente, M.R. (2005) Sting: An End-
to-End Self-Healing System for Defending against Zero-Day Worm Attacks on
Commodity Software. CMU-CS-05-191.

[13] Hudaib, A.A., Fakhouri, H.N., Al Adwan, F.E. and Fakhouri, S.N. (2017) A Survey
about Self-Healing Systems (Desktop and Web Application).

https://doi.org/10.1109/conielecomp.2007.48
https://doi.org/10.1145/1095809.1095833
https://doi.org/10.1145/1272998.1273010
https://doi.org/10.1145/1882291.1882328
https://doi.org/10.1145/2361999.2362008
https://doi.org/10.1145/2523649.2523683

R. M. H. Al-Sayyed et al.

287

[14] Psaier, H. and Dustdar, S. (2011) A Survey on Self-Healing Systems: Approaches
and Systems. Computing, 91, 43-73. https://doi.org/10.1007/s00607-010-0107-y

[15] Dabrowski, C. and Mills, K. (2002) Understanding Self-Healing in Service-Discov-
ery Systems. Proceedings of the 1st Workshop on Self-healing Systems, Charleston,
18-19 November 2002, 15-20. https://doi.org/10.1145/582128.582132

[16] Elkorobarrutia, X., Izagirre, A. and Sagardui, G. (2006) A Self-Healing Mechanism
for State Machine Based Components.

[17] Padwalkar, A., Patil, S. and Mogre, N. (2015) Designing an Application for Recov-
ery of Data in Cloud Environment: A Problem Definition.

[18] Peeger, S.L. and Menezes, W. (2000) Marketing Technology to Software Practitio-
ners. IEEE Software, 17, 27-33. https://doi.org/10.1109/52.819965.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

https://doi.org/10.1007/s00607-010-0107-y
https://doi.org/10.1145/582128.582132
https://doi.org/10.1109/52.819965
http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	CACS: Cloud Environment Autonomic Computing System
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Proposed System for Cloud Autonomic Computing System (CACS)
	3.1. Phase 1: CACS Pre-Healing
	3.2. Phase 2: CACS Self-Healing
	3.3. Phase 3: CACS Post-Healing

	4. Evaluation
	4.1. Scenario1: Deletion of a Component
	4.2. Scenario 2: Replacement with Similar Component
	4.3. Scenario 3: Modifying a Component
	4.4. Measuring the Time Required to Heal a Process

	5. Conclusions and Future Work
	References

