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Abstract 

A novel algorithm for the direction of arrival (DOA) estimation based on the fractional Fourier transform 
(FRFT) is proposed. Firstly, using the properties of FRFT and mask processing, Multi-component LFM sig-
nals are filtered and demodulated into a number of stationary single frequency signals. Then the 
one-dimensional (1-D) direction estimation of LFM signals can be achieved by combining with the tradi-
tional spectrum search method in the fractional Fourier (FRF) domain. As for the multi-component LFM 
signals, there is no cross-term interference, the mean square error (MSE) and Cramer-Rao bound (CRB) are 
also analyzed which perfects the method theoretically, simulation results are provided to show the validity of 
our method. The proposed algorithm is also extended to the uniform circular array (UCA), which realizes the 
two-dimensional (2-D) estimation. Using the characteristics of time-frequency rotation and demodulation of 
FRFT, the observed LFM signals are demodulated into a series of single frequency ones; secondly, operate 
the beam-space mapping to the single frequency signals in FRF domain, which UCA in array space is 
changed into the virtual uniform circular array (ULA) in mode space; finally, the DOA estimation can be 
realized by the traditional spectral estimation method. Compared with other method, the complex 
time-frequency cluster and the parameter matching computation are avoided; meanwhile enhances the esti-
mation precision by a certain extent. The proposed algorithm can also be used in the multi-path and Doppler 
frequency shift complex channel, which expands its application scope. In a word, a demodulated DOA esti-
mation algorithm is proposed and is applied to 1-D and 2-D angle estimation by dint of ULA and UCA re-
spectively. The detailed theoretical analysis and adequate simulations are given to support our proposed al-
gorithm, which enriches the theory of the FRFT. 
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1. Introduction 
 
In various applications of array signal processing such as 
radar, sonar, communications, and seismology, there is a 
growing interest in estimating the DOA of LFM signals 
by dint of time-frequency analysis tools. G. Wang [1] 
proposed an iterative algorithm based on time-compen-
sation, but the initial estimate is necessary. Using inter-
polation in the spatial time-frequency distribution matri-
ces (STFD’s) [2], Gershman [3] extended the signal 
subspace technique and estimated effectively DOA of 

LFM signals, however Gershman’s approach presences 
model biases in addition to time consuming. The above 
Wigner-Ville distribution (WVD) based methods conse-
quentially suffer from the disturbance of cross-terms in 
the presence of multi-component signals.  

Using a new time-frequency analysis tool-FRFT, di-
rection estimation of LFM signals has been proposed in 
Reference [4]. However, only maximal energy concen-
tration point is selected as estimate data, easily interfered 
by surroundings. In this paper, a new FRFT based algo-
rithm is proposed. Firstly, Observed signals are separated 
into a number of single components by adding an adap-



H. T. QU  ET  AL. 
 
172 

tive filter in the FRF domain. Secondly, the separated 
components are demodulated into stationary signals. Fi-
nally, the 1-D DOA of LFM signals can be estimated by 
the traditional spectrum search method. This algorithm 
digs two dimensional time and frequency information 
without the initial estimate, frequency focusing and pa-
rameter partnership. With the increasing of the Sig-
nal-to-Noise ratio (SNR), the MSE is quite closed to the 
CRB [5], for multi-component signals, cross-terms and 
non-linear optimize operation are also avoided. 

For the UCA widely used in the third generation mo-
bile communication system, the time-frequency charac-
teristics of the FRFT are combined with the beamform-
ing technology in FRF domain, an algorithm for the 2-D 
DOA estimation of the multi-component LFM signals is 
also proposed. Compared with other methods, the preci-
sion is enhanced by a certain extent. Simulation verifies 
the method to be effective in the multipath and Doppler 
frequency shift existed complex channels. 
 
2. Background Knowledge of FRFT 
 
2.1. Definition and Properties of FRFT 
 
Recently the FRFT attracts more and more attention in 
the signal processing society, in 1980, Namias [6] firstly 
introduced the mathematical definition of the FRFT. 
Then Almeida [7] analyzed the relationship between the 
FRFT and the WVD, and interpreted it as a rotation op-
erator in the time-frequency plane. This characteristic 
makes FRFT especially suitable for the processing of 
LFM signals [8–9].  

As a generalization of the standard Fourier transform, 
the FRFT can be regarded as a counterclockwise rotation 
of the signal coordinates around the origin in the time- 
frequency plane. If the traditional Fourier transform of a 
signal can be considered as a / 2  counterclockwise 
rotation from the time axis to the frequency axis, the 
FRFT can be accordingly considered as a counterclock-
wise rotation from the time axis to the  axis with an 
angle

u
 , as illustrated by Figure 1.  

The FRFT of signal ( )x t is represented as  

( ) [ ( )] ( ) ( , )PX u F x t x t K t u dt 




      (1)  

where is called the order of the FRFT,p / 2p  , 

 denotes the FRFT operator and [pF ] ( , )K t u  is the 

kernel function of the FRFT  
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Figure 1. FRFT and WVD. 
 

This has the following properties, 
*( , ) ( , )K t u K t u                 (3) 

* ' '( , ) ( , ) ( )K t u K t u dt u u  



         (4) 

Hence, the inverse FRFT is  

( ) [ ( )] ( ) ( , )Px t F X u X u K t u du




      (5) 

Equation (5) indicates that signal ( )x t  can be inter-
preted as decomposition to a basis formed by the or-
thonormal LFM functions in the  domain, and the  
domain is usually called the fractional Fourier domain, in 
which the time and frequency domains are its special 
cases. The FRFT is a one-dimension linear transform and 
has the rotation-addition property. Essentially, the repre-
sentation of a signal in the fractional domains contains 
the information in both time and frequency domains of 
the signal; Thus the FRFT is considered as a time-fre-
quency analysis method and has close relationships with 
other time-frequency analysis tools. 

u u

In Reference [10], some important characteristics are 
expressed as  

2
2
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2.2. Discrete FRFT Computation 
 
In engineering applications, the discrete FRFT (DFRFT) 
is usually required. According to the definition of the 
FRFT, it is obvious that the numerical computation of 
the DFRFT is much more complicated than that of DFT. 
So far, there have been several DFRFT algorithms with  
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Figure 2. Normalized time-frequency support region. 

 
different accuracies and different complexities. In this 
paper, we select the decomposition algorithm proposed 
in Reference [11]. This algorithm decomposes the com-
putation of DFRFT to a convolution which can be com-
puted by FFT, and the result is very close to the output of 
continuous FRFT. In this algorithm, the signal represen-
tation in time domain and frequency domain should be 
approximately constrained with an interval of [ / 2T ,  

 and a bandwidth of / 2]T [ / 2, / 2F F ]  respectively, 

viz. the time-bandwidth product of the signal is N TF , 
and according to the uncertainty principle,  con-

stantly. If the sampling rate is selected as

1N

/s T T N , 

the discrete representations of the signal in time domain 
and frequency domain will have the same length, which 
is called the dimensionless normalized process and the 
principle can be shown in Figure 2. 

Therefore, Equation (1) can be expressed as     

2 2cot 2 csc cot( ) ( )j u j ut j tX u A e e e x t d     
 




  t    (9) 

where 

1 cot

2

j
A





  

For 0.5 1.5p  , signal  has a bandwidth 

which is at most 

2 cot ( )j te x  t

2F  and can be represented using 
Shannon formula 
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Substituting Equation (10) into Equation (9) and ex-
changing the sequence of the integral and the summation, 
we have 

 
2 2cot 2 csc / (2 ) cot / (2 )

( ) ( )

2 2

P

N
j u j un F j n F

n N

X u F x t

A n
e e e x

By quantizing the variable  in the fractional Fourier 
domain, Equation (11) can be finally discredited as 

u

2 2 2( 2 )/ (2 )( )
2 2 2
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An n
X m F x e xF

F F F
   


 



             
  

(12) 

where ( )X m  denotes the DFRFT of signal ( )x t , 

cot   , csc  . This algorithm can be imple-

mented by FFT, and has a computation complexity of 

2og )N( lN [11]. 

 
2.3. Two Special FRF Domain 
 
WVD is an important non-stationary signal analysis tool, 
which has a very simple relationship with FRFT; viz. the 
WVD of FRFT is the coordinate rotation of the original 
signal’ WVD, while the shape of WVD keeps unchanged 
in the rotation. Therefore, a lot of the WVD-based signal 
processing methods can be substituted by FRFT. The 
relationship of the two time-frequency analysis tools can 
draw a conclusion that “time width ” and “fre-

quency width (

( )u
)v ” will change with the difference of 

the rotation angle. Considering two extreme cases, 
0,u v      or 0,v u     , from the above 

analysis, the former corresponds to the rotation an-
gle 1cot  

cot  

, LFM signal becomes an impact func-

tion, which domain is called energy concentrated FRF 
one. The latter corresponds to the rotation an-
gle , LFM becomes a single fre-

quency signal, which domain is called demodulated FRF 
one and is the base of the proposed algorithm in this pa-
per. By dint of the time-frequency rotation property of 
FRFT, the detection, extraction and parameter estimation 
of LFM signals can be easily achieved. 

1  / 2 

 
2.4. The FRFT of Gaussian White Noise 
 
Theorem 1: The FRFT of zero-mean Gaussian white 
noise is still Gaussian white noise. 

Proof: let subject to the ( )n t 2(0, )N   distribution, 

and  is its FRFT, the mean is ( )pN u

     ( ) [ ( )] [ ( )] 0p p
pE N u E F n t F E n t     (13) 

Because the FRFT is the linear transform, does not 
change the distribution characteristics of Gaussian noise. 
Therefore, the noise is still a zero mean Gaussian noise. 

2

F F



      





  
 



As for the second-order statistical properties of noise, 
the correlation of the white noise  can be defined 
as: 

( )n t

 (11) 

 * 2( ) ( ) ( )E n t n t              (14) 
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The correlation of  is defined as: ( )pN u
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Submit Equation (2) to Equation (15), and obtain: 
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Due to Equation (16), we can see that the FRFT does not 
change the time-domain white characteristics of noise, 
while noise energy does not be changed. 

Assume the array noise is the zero-mean airspace one, 
viz. as for the array element k , the output noise is 
unrelated:  

(k l )

     * *( ) ( ) ( ) ( ) 0k l k lE n t n t E n t E n t    (17) 

The cross-correlation of the noise in FRF domain is 

 
 

*
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( )[ ( )]

( ) ( ) ( , ) ( , )

0

p p
k l

k l p p

E N u N u

E n t n K t u K u dtd 
 

 



     (18) 

The above equation shows, FRFT does not change the 
airspace white characteristics of noise. Therefore, we can 
draw a conclusion that FRFT does not change the statis-
tical properties of Gaussian white noise, the theorem 
certification has completed. 

Inference: as for the M  antenna array element, if the 
array output noise is zero mean and variance 2 , the 
noise covariance matrix in FRF domain is: 

 *( ) ( )p
N p pR E N u N u I  2

M     (19) 

 
3. 1-D DOA Estimation Algorithm 
 
3.1. ULA Array Model  
 
Let a ULA of M sensors receive LFM sources from 
the unknown directionsD 1 2{ , , , }D    , as illustrated by 

d

( )ks t

k

 

Figure 3. ULA and array model. 

 
Figure 3. The observed signal at the output of the th 
sensor can be described as  

i

1

( ) [ ] ( )
D

i k ik
k

ix t s t n


   t         (20)  

1,2, , 1i M          1,2, ,k D   
where, 

2( ) exp[ ( / 2)]k k ks t j t t          (21) 

( 1) cos /ik ki d c              (22)  

k , k  are initial frequency and FM rate, ( )ks t  is the 

th source in reference sensor k 1x .  is the additive 

white Gauss noise with variance 

( )in t
2 , which is assumed 

to be statistically independent with signal sources. ik  

is the th’s path delay,  is light velocity and  is 
sensor spacing. 

k c d

From (20) and (21), we get the direction matrix is 
time-variant; however the traditional estimation method 
is merely suitable for time-invariant signal model. 
Therefore, the traditional method cannot be used to the 
direction finding of LFM signals directly. 
 
3.2. 1-D Estimation Algorithm Description 
 
In this section, the main work is how to make the direc-
tion matrix time-invariant. The FRFT is actually a “Ro-
tation” of signal in time-frequency plane. An LFM signal 
can be turned into an impulse in a proper fractional do-
main, for the ULA model, signal ( )ks t

'k

 will present an 

impulse while the rotation angle cot k    . There 

will be the energy concentration, consequently a distinct 
peak will appear in that FRF domain, whereas the noise 
energy is distributed much more symmetrically in the 
entire time-frequency plane and will not be concentrated 
in any FRF domain [12].  

Using (20) and (21), we get that path delay can not 
change the FM rates, so the impulse corresponding rota-
tion angles of signal ( )ks t  are same in every sensor. 

Then Equation (20) is rotated with angle 'k
 by the 

FRFT from two sides: 

' ' ' '' ' '( ) ( ) ( ) ( )k k k k

D

i ik il i
l k

W u Y u Y u V u
   



   '     (23) 
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where, presents an impulse, and 

 are approximately considered as LFM signal 

and the white Gauss noise respectively.  

' '( )k
ikY u


)

' '( )k

D

il
l k

Y u





' '(k
iV u


Therefore, a mask operation is applied to (23) accord-
ing to the peak position , which is a narrowband 

filter with central frequency , and with a properly 

selected bandwidth , most energy of the signal 

 will be removed. This procedure can be re-

garded as an open loop adaptive time-varying filter 
whose central frequency varies linearly following the 
peak position .  

ikm

ikm

2L
' '( )k

ikY u


ikm

Signal  is performed the FFT (viz. FRFT 

of ). According to the rotation-addition property 
[10], the two procedures above are equivalence to one 
time rotation with angle 

' '( )k
ikY u


1p 

k  viz.  

3 / 2 cotk k    ; 

tank k                    (24) 

Using (6), (7) and (8), signal ( )ks t  is rotated with angle 

k by the FRFT can be expressed as  

2

2

( )

1 tan ( sin ) tan
exp[ ]

1 tan 2 1 tan

exp[ ( sin cos / 2 cos )]

k
k

k k k k

k k k k

k k k k k

S u

j u

j u



k    
  

    



  
 

 


 

21 tan
exp[ ( sin cos / 2)]

1 tan

exp( cos ) exp( cos )

k
k k k

k k

k k k k

j
j

ju B ju


  

 
  


 



   

 (25) 

where,  
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exp[ ( sin cos / 2)]
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k k k
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j
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
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 
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From (25) and (26), it can be seen that LFM signal ( )ks t  

has been transformed into the single frequency signal 

in the FRF domain.  ( )k
kS u

Similarly, the FRFT of path delayed signal ( )ks t   

with rotation angle k can be expressed as  

2

2
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exp( cos )exp[ ( cos sin )]

k
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k k k k k

F s t B j

j ju

    

     

 

 
 (27) 

 

In practice,   is too small viz.  

sin cosk k

2exp( sin cos / 2) 0k kj            (28) 

Substituting (28) into (27), we get  
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2
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
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From the above analysis, Using (25) and (29), the ob-
served signals described by (20) are performed the FRFT 
with rotation angle k  from two sides  

( ) ( ) ( )k k k
ik ik ikX u S u N u           (30) 

1, 2, , 1i M     

Equation (30) can be compactly represented by matrix 
form as follows  

( ) ( ) ( )k k k k
k k k kX u A S u N u         (31) 

1[ , , , , ]k T
k k ik MkA a a a             (32) 

where, denotes the transpose of matrix.  T

2

2

exp( cos )

2
exp( cos ( 1) cos )

ik ik k k

k k

a j

j i d
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



 
     (33) 

1 2( ) [ ( ), ( ), , ( )]k k k k
k k k MkX u X u X u X u       

1 2( ) [ ( ), ( ), , ( )]k k k k
k k k MkN u N u N u N u         (34) 

From (32) and (33), the direction matrix k
kA  is only 

relative to the direction information k , so the observed 

signal model has been time-variant in the FRF domain.  
In the FRF domain, the covariance matrix of the ob-

served signal can be defined as  

2[ ( ) ( )]k k k k k kH H
XX k k k SS kR E X u X u A R A      I    (35) 

where, H denotes the conjugate transpose of matrix. 
k

SSR is the auto-correlation matrix of signal sources. The 

composite covariance matrix (35) has the same structure 
as the covariance matrix arising in the case of stationary 
signals. Therefore, the DOA can be estimated by per-

forming eigendecomposition to k
XXR . Using the signal 

subspace k
NS  and the noise subspace k

NE , the space 

spectrum function of the th source in the FRF domain 
can be given by [13]  

k

( ) 1/ ( )k k k kH H
k k N NP A E E     kA       (36)  

( )kP   is performed an 1-D search and k can be obtain 

by the maximal peak rotation angle. Similarly, all the 
Direction of LFM signals can be estimated in turn. This k     
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algorithm is considered as FRFT based demodulation 
method. 

To summarize, the proposed algorithm can be formu-
lated as follows:  

1) The observed signals at all sensors are rotated with 
a continuously variable angle by the FRFT; per-
form a 2-D peak search in the ( , )m plan to obtain 
the maximal peak position  and corresponding 

rotation angle
ikm

'k
  respectively. 

2) Mask operations are applied according to at 

every sensor, then the filtered 
ikm

2L  points are per-
formed the FFT to obtain stationary signals conse-
quently.  

3) Get the covariance matrix of the stationary signals 
and perform eigendecomposition in the FRF do-
main, construct the spectrum function ( )kP  ac-

cording to (36).  
4) Perform 1-D peak search to ( )kP  and obtain the 

DOA of the th LFM signal. k

5) For multi-component LFM signals, all the direction 
can be estimated by repeating the above proce-
dures. 

 
4. 2-D DOA Estimation Algorithm Using UCA 
 
4.1. Introduction 
 
UCA has many advantages which the linear array cannot 
match. E.g. UCA can be implemented with all-direction- 
funding; its precision measurement does not change with 
the azimuth significantly and is fit for the system cor-
recting. UCA is the main receiving antenna of base sta-
tion system in the third generation mobile communica-
tion system. Thus, the UCA based DOA estimation has 
been a research hotspot in array signal processing. 
Mathwes [14] proposed an UCA-RB-MUSIC method, 
which can be only suitable for the stationary signals; 
however, the actually existed signals are non-stationary 
ones which are represented by LFM. Tao ran [4] pro-
posed an algorithm of LFM signal DOA estimation. 
However, the method does not apply to the UCA. 

Due to the above analysis, we propose a novel DOA 
estimation algorithm based on FRFT using UCA, as for 
the multi-component LFM signals, using the characteris-
tics of time-frequency rotation and demodulation of 
FRFT. Firstly, the observed signals are demodulated into 
a series of single frequency ones; secondly, operate the 
beam-space mapping to the single frequency signals in 
FRF domain, which UCA in array space is changed into 
the virtual ULA in mode space; finally, the DOA estima-
tion can be realized by the traditional spectral estimation 
method. The proposed algorithm mines the time, fre-
quency and spatial information maximally; compared 

with other method, the complex time-frequency cluster 
and the parameter matching computation are avoided; 
meanwhile enhance the precision [15]. As for the 
multi-component LFM signals, there is no cross-term 
interference, the proposed algorithm is also applicable 
for the multi-path and Doppler frequency shift channels. 
 
4.2. UCA Array Model 
 
Assuming  independent LFM signals and the pitch 
and azimuth angle is 

D

1 1 2 2{( , ), ( , ), , ( , )}D D      
N

 re-

spectively, the array element number of UCA is  and 
radius is , the center is the reference point of receiving 
antenna, as shown in Figure 4. Then the output of the 

th sensor is: 

r

i

1

( ) [ ] ( )
D

i k ik
k

ix t s t n


   t        (37) 

1,2, ,i N      1, 2, ,k D 

where,  
2( ) exp[ ( / 2)]k k ks t j t t            (38) 

sin cos( ) /ik k k ir c              (39) 

2 ( 1) /i i N                    (40) 

( )ks t  is the k th LFM source, and k  and k  are the 

initial frequency and FM rate respectively, ik  is the 

path delay and  is the light velocity.  is the ad-

ditive white Gaussian noise with zero mean and variance 

c ( )in t

2 , which is independent with signals. 
From the Equations (37) and (38), the direction matrix 

of observed signals is time-varying in UCA, while the 
traditional DOA estimation algorithm is only suitable for 
the time-invariant model, which cannot be used to deal 
with LFM signal directly. 
 
4.3. 2-D Estimation Algorithm Description 
 
From Equations (26) and (28), operate the FRFT to Equa-
tion (37) with the rotation angle k  from two sides: 

( ) ( ) ( )k k k
ik ik ikX u S u N u              (41) 


















DOA

X

Y

Z

r
kθ

k
i  

Figure 4. Uniform circular array. 
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The matrix form of Equation (41) is: 

( ) ( ) ( )k k k k
kX u A S u N u              (42) 

1[ , , , , ]k T
k ik NkA a a a                 (43) 

where,  donates the transpose of matrix. T

2

2

exp( cos )

exp( 2 sin cos( ) cos / )

ik ik k k

k k i k

a j

j r

  

    



  
  (44) 

From Equations (43) and (44), in appropriate FRF 
domain, direction matrix kA  is only related to angle 
information  , , viz. the observed signals have been 
transformed into unvaried smooth signal model. There-
fore, the mode excitation method can be used to estimate 
the DOA of LFM signals. 

The spatial beam former H
rF  in FRF domain is de-

fined as 
H H

r
HF Q CeR               (45) 

where, H  denotes the conjugated transpose of matrix. 

 1 0 1, , , , , ,MCe diag j j j j j         M     (46) 

( , , , , )H H
M o MR N Q Q Q            (47) 

Select the central Hilbert matrix, 

0'

1
[ ( ), , ( ), , ( )]M MQ v v v

M
             (48) 

0( ) [ , , , , , , ]jM j j j jMv e e e e e              (49) 

'2 /t M           (50) [ ,t M M  ]

where, the largest model number ,M kr ' 2 1M M  . 

Wave number 2 / ,k      is the initial frequency 

corresponding center wavelength of LFM signals. H
rF  

can change the UCA in the array space into the virtual 
ULA in the mode space, and finally, the DOA estimation 
can be achieved by the eigendecomposition based search 
method. 

Summarize the above and the main steps are as fol-
lows: 

1) The observed signals are continuously operated by 
FRFT; perform a 2-D peak search in the ( , )m  

plan to obtain the maximal peak position ikm  and 

corresponding rotation angle 'k
  of the k th 

LFM signal respectively. 
2) Select 2L  points whose center is ikm  and cal-

culate the FFT (FRFT with 1p  ), obtain the k th 

single frequency signal ( )k
ikX u . 

3) Let ( )k
ikX u  pass the beam switch H

rF , viz. 

( ) ( )

( ) ( )

k k

k k k

H
ik r ik

H H
r k r

Y u F X u

F A S u F N u

 

  



 
 , 

And calculate its covariance matrix 

[ ( ) ( )k k ]H
Y ik ikR E Y u Y u  . 

4) Define Re( )YR R , perform eigendecomposition 

to R  and obtain the signal subspace S  and 
noise subspace G . Construct: 

1
( , )

( , ) ( , )k k T T
ik k k ik k k

P
a GG a

 
  




,      

where, ( , ) ( , )H
ik k k r k ka F a   

k

, perform 2-D 

spectrum search and obtain   and k . 

5) As for the multi-component LFM signal, repeat the 
above process and obtain all the DOA of signals 
respectively. 

 
5. Performance Analysis and Simulation 
 
5.1. FRFT Property Simulation 
 
5.1.1. Simulation of FRFT and WVD 
As we all know, WVD is also one of the most important 
and most widely used time-frequency analysis tool, 
which is bound to FRFT with the existence of close ties. 
The derivation process is relatively complex; however, 
there is a very simple relationship between FRFT and 
WVD, that is, FRFT of WVD is the coordinate’s rotation 
form of WVD of original signal [10]. 

In order to validate the relationship between the FRFT 
and WVD, experiments of compute simulations are 
given. We assume a wideband LFM signal ( )s t  with a 

length of 1024, which is modeled as: initial frequency 
and FM rates are 9MHz  , 0.7 /MHz s   , sample 

frequency is 50sf MHz . The WVD of ( )s t  is shown 

in Figure 5 (a), ( )s t

5

 is performed the FRFT by the rota-

tion angle 0.1   and get the transformed signal 
. The WVD of the transformed signal  

is shown in Figure 5(b). Compared the two figures, it can 
be found that the WVD of  is just the rotation 

of the WVD of 

0.15 ( )S u 0.15 ( )S u

0.15 ( )S u

( )s t  by angle 0.15 , meanwhile the 

figure shape is invariable. So the FRFT is testified a kind 
of rotation arithmetic operators in the time-frequency 
plane. 
 
5.1.2. Two Special FRF Domain Simulation 

2( ) exp[ ( 2)]s t j t t   , signal model is: 1 9MHz  , 

1 1400000 /MHz s   . Sampling rate 50sf MHz , the 

number of snapshots is 1024. Perform continuous FRFT 
to signal and operate spectrum peak search, in the appro-
priate FRF domain, ( )s t  shows the ergy property of en
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(a) 

 
(b) 

Figure 5. (a) The WVD of The WVD of ( )t , (b) s 0.15π( )S u . 

 

 

 

(b) 

Figure 6. (a) Energy concentration property of FRFT, (b) 
Demodulated property of FRFT. 

 

concentration, as shown in Figure 6(a). The signal con-
tinues to be rotated 2  

ain, 

in FRF domain, viz. in the 

demodulated FRF dom ( )s t  shows the demodulated 

property, as shown in Figure 6(b). 
 
5.1.3. Gaussian White Noise Simulation 
Assume the complex Gaussian white noise is: 

( ) (1,1024) (1,1024)w n randn jrandn 
continuous FRFT to it, the energy distrib

 and perform 

ution of   

in different FRF domain is shown in Figure 7. We can 
see that the Gaussian white noise does not show energy 
concentration property in any FRF domain and can still 
be regarded as white noise. s theorem 1 is verified. 

 ( )w n

 Thu

 

 

Figure 7. Energy distribution in different FRF domain. (a) 

Copyright © 2009 SciRes.                                                                                 WSN 



H. T. QU  ET  AL. 
 

179

5.2. 1-D DOA Estimation Simulation 
 
5.2.1. MSE and CRB Analysis 
The FRFT is a 1-D linear transform [10]. In the FRF 

domain  is approximately considered as the 

additive Gauss white noise. Therefore, the probability 

density  of signal

( )k
kN u

 function ( )k
kX u  represents normal 

school and the corresponding likelihood function can be 
expressed as  

2

2

1
[ ]

(2 ) ( / 2)

1
exp{ [ ] [ ]}

k

k k k k k k

k M M

H
k k k k k k

L X

X A S X A S



     

 





  
   (51) 

Using Reference [5], the CRB of the proposed method 
in the FRF domain can be represented as  



1( )RB

12
k k k k

k

H H H
2

Re ( ) ( ) ( ) ( )k H
k k k k k k k k

C

S d w I A A A A d w S k     



 
 

 


 

(52) 

where, 2  is the noise variance and I  is unit matrix, 

( ) /k
k kd w dA dw . 

Similarly, the MSE of the ed algorithm in the 
FRF domain can be represented as  

propos

1 ( )VAR    1
2

1 2 1 1 1
11

2
[ ( )[ ( ) ]

( )] / {[ ] [ ( ) ] }

k k k k

k k k k k

H H H
MU k k k k k k

H
k XX XX k k X

d w I A A A A

d w R R A A R

   

    


   

 

where, 

11X

(53) 

k
XXR is covariance matrix of the observed signals, 

e MSE of 
the proposed method will be more and more closed to the 
CRB with the increasing of the sensor number and the 
SNR. 
 
5.2.2. MSE and CRB Simulation 

 to d
u

 impinging from

11 denotes the first row and first line element of matrix.  

From (52) and (53), it can be obtain that th

[ ]

In order  validate the proposed metho , experiments of 
compute simulations are given. We ass me the ULA of  

6M   2D   far field wideband 

ar
LFM signals with a length of 1024, which is modeled as: 
initial frequency and FM rates e 1 200 Hz  ，

1 900 /Hz s   ; 2 200 Hz  ， 2 300 /Hz s 
0

2 70   respec-

, 

 and angles 

tively.

of arri

 Sample fre

val are 1
quency is

030
 s 900f Hz

e FRF dom

, the mask snap-

in. The input Sshots are 2 3L  00  in th a NR 
varies fr 15dB to 29dB with an interval 2dB, at each 
level of the SNR, we run 100 Monte-Carlo experiments, 

MSE of the proposed method and original method are 

 

Figure 8. MSE of proposed and original method. 

 

 

Figure 9. MSE and CRB of proposed method. 
 
shown in Figure 8. Obviously, the accuracy of our 
method has certain improvement comparing with the 
method proposed in the Reference [4]. 

In same assumption, the input SNR various from 
–15dB to 6dB with an interval 3dB, 100 times 
Monte-Carlo simulations are performed at each level of 
the SNR, MSE of the first signal and CRB are shown in 
Figure 9. It can be seen, the MSE of proposed method is 
closed to the CRB even at the lower SNR. 
 
5.3. 2-D DOA Estimation Simulation 
 
5.3.1. 2-D Estimation RMSE Simulation 

2D  two far-field LFM sources shoot the 20N   
0 050 ),   

1

UCA

( 3

om 

the 

 with the angle information 

} .  The signa
1 1{( 60 , 

l  model is:  0 0
1 10 , 70 )      
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200 Hz , 1 300 /Hz s  ; 2 200 Hz  , 2   

900 /Hz s . Sampling rate is sf   900Hz , number 

of snapshots is 1024, and the cover filter length is 
2 300L  . The Figure 10(a) gives the 2-D DOA 
tio

 RMSE (root 
ean square error, RMSE) comparison curves of the 

be seen in 
igure 10(b). The accuracy of our method has certain 

thm. 
 

estima-
n of signal one in the 0dB SNR. 
Change the input SNR range from 0dB to 20dB with 

the interval 5dB, firstly perform big step search to obtain 
the rough DOA estimation. Then run the high differen-
tiation search with the 0.001rad step. Run 300 time 
Monter-Carlo experiment respectively, the
m
proposed algorithm and literature one can 
F
improvement compared to the original algori

 
(a) 

 
     (b) 

Figure 10. (a) 2-D DOA estimation using UCA, (b) RMSE 
comparison curves using UCA. 

5.3.2. 2-D Estimation Performances in Complex 
Channel and Simulation 

In mobile communication system, the proposed algo-
rithm is applied to the complex channel which the multi- 
path and Doppler shift is existed simultaneously. In the 
same simulation conditions, viz. the random signal 
source model is: 



(54) 
where,

2

1

( ) exp( )exp[ ( ( ) ( ) / 2)]
E

k e e k e k e
e

s t M jf t j t t   


    

1 21, 0.9M M  , 

1 2 2f f

Doppler frequency shift is 

0,  , multi-path delay is 1 20, 1/ 900   . 

When the SNR is 0dB, the simulation result of signal one 
in most powerful path can be shown in Figure 11(a).  

 

 

(a) 

 
          (b) 

Figure 11. (a) 2-D DOA estimation in complex channel, (b
RMSE curves in complex ch l. 

) 
anne
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Change the input SNR range from –21dB to 0dB with 
the interval 3dB. Run 300 time Monter-Carlo experiment 
respectively, the RMSE comparison curves of signal one 
can be seen in Figure 11(b), which can show that the 
proposed algorithm is also effective in complex channel. 
 
6. Conclusions 
 
Analyzing the definition and characteristics of the FRFT, 
a novel DOA estimation algorithm has been presented
the implementation of the method, mask operation is
introduced to simply the filtering procedure with no ac-
curacy degradation. Demodulation operation is us
extend the application range of the traditional estimate
method without performance loss. Compared with other
methods, the veracity has certain improvement while th
cross-terms and interp oided. The prop
is also expanded to the timation using UCA,

 addition, the pro-
po

aking this method more reliable in theory and in prac-
rich the principle and applicatio
he optimization, the 2-D Cramer-R

is-

 2000.  

. S. Zhou, “A novel method for the DOA 

” IEEE Transactions on ASSP, Vol. 

 

p. 2395– 

. In 
 

37, No. 5, May 1989.  

[6] V. Namias, “The fractional Fourier transform and its 

ed to 
 
 

application in quantum mechanics [J],” IMA Journal of 
Applied Mathematics, No. 25, pp. 241–265, 1980. 

[7] L. B. Almeida, “Fractional Fourier transform and 
time-frequency representations [J],” IEEE Transactions 

e 
 olation are av

 2-D DOA es
osed

 

on Signal Processing, Vol. 42, No. 11, pp. 3084–3091, 
1994. 

[8] Y. Q. Dong, R. Tao, S. Y. Zhou, et al., “SAR moving 
target detection and imaging based on fractional Fourier which is suitable for the multi-path and Doppler fre-

quency shift complex environment. In
sed the method can be also applied to DOA estimation 

of LFM signals in colored noise or near-field environ-
ment, which is not described in this paper. 

The theoretical analyses about the error and CRB are 
also provided and verified by simulation results thus 

fil

m
tice, meanwhile en

e FRFT. As for t
n of 

ao 

[10] R. Tao, L. Qi, and Y. Wang, “Principle and application of 
the fractional Fourier transform,” Tsinghua Publishing 
Company, Beijing, 2004.  

[11] H. M. Ozaktas, O. Arikan, M. A. Kutay, et al., “Digital 

th
Bound of the proposed algorithm is the further research 
direction. 
 
7. Acknowledgements 
 
The authors would like to thank the reviewers for their 
detailed comments on earlier versions of this paper. 
 
8. References 
 
[1] G. Wang and X. G. Xia, “Iterative algorithm for direction 

of arrival estimation with wideband chirp signals,” IEE 
Proceedings of Radar, Sonar, Navig, Vol. 147, No. 5, pp. 
233–238, 2000. 

[2] A. Belouchirani and M. G. Amin, “Time-frequency MU-
SIC [J],” IEEE Signal Processing Letters, Vol. 6, No. 5, 
pp. 109–110, 1999. 

 

 

[3] A. B. Gershman and M. G. Amin, “Wideband direction 
of multiple chirp signals using spatial time-frequency d
tributions,” IEEE Signal Processing Letters, Vol. 7, pp. 
152–155, June

4] R. Tao and Y[
estimation of wideband LFM sources based on FRFT,” 
Transactions of Beijing Institute of Technology, Vol. 25, 
No. 10, pp. 895–899, 2005. 

[5] P. Stoica and A. Nehorai, “Music, maximum likelihood, 
and cramer-rao bound,

transform,” Acta Armamentarii (in Chinese), Vol. 20, No. 
2, pp. 132–136, 1999. 

[9] L. Qi, R. Tao, S. Y. Zhou, et al., “Adaptive time-varying 
ter for linear FM signal in fractional Fourier domain,” 

Proceedings of the 6th ICSP, Posts and Telecommunica-
tions Press, Beijing, pp. 1425–1428, 2002. 

computation of the fractional Fourier transform,” IEEE 
Transactions on Signal Processing, Vol. 44, No. 9, pp. 
2141–2150, 1996. 

[12] L. Qi, R. Tao, S. Y. Zhou, et al., “Detection and parame-
ter estimation of multicomponent LFM signal based on 
the fraction Fourier transform [J],” Science in China (Se-
ries E), Vol. 47, No. 2, pp. 184–198, 2004. 

[13] X. D. Zhang, et al., Modern Signal Processing (Second
editor), Tsinghua Publishing Company, Beijing, 2002. 

[14] C. P. Mathews, “Eigenstructure techniques for 2-D angle 
estimation with uniform circular arrays,” IEEE Transac-
tions on Signal Processing, Vol. 42, No. 9, p
2407, September 1994. 

[15] L. M. Yang “DOA estimation for wideband sources 
based on UCA,” Journal of Electronics, China, Vol. 23, 
No. 1, January 2006. 


