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Abstract 
We report results from several ab-initio computations of electronic, transport 
and bulk properties of zinc-blende beryllium selenide (zb-BeSe). Our nonrela-
tivistic calculations utilized a local density approximation (LDA) potential 
and the linear combination of atomic orbitals (LCAO). The key distinction of 
our calculations from other DFT calculations is the implementation of the 
Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and 
Franklin (BZW-EF), in the LCAO formalism. Our calculated, indirect band 
gap is 5.46 eV, from Г to a conduction band minimum between Г and X, for a 
room temperature lattice constant of 5.152 Å. Available, room temperature 
experimental band gaps of 5.5 (direct) and 4 - 4.5 (unspecified) point to the 
need for additional measurements of this gap. Our calculated bulk modulus of 
92.35 GPa is in excellent agreement with experiment (92.2 ± 1.8 GPa). Our 
predicted equilibrium lattice constant and band gap, at zero temperature, are 
5.0438 Å and 5.4 eV, respectively. 
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1. Introduction and Motivations  

In recent years, several studies have been carried out on the structural, electronic 
and transport properties of beryllium selenide (BeSe). BeSe is a member of the 
alkaline earth selenides. This wide band-gap semiconductor has attracted great 
interest for electrical and optoelectronic devices and as a promising base materi-
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al for blue-green laser diodes and light emitting diodes [1]. This compound 
crystallizes in fourfold-coordinated, cubic zinc-blende (B3) structure at ambient 
temperature. A unique characteristic of this compound is the ratio of the ex-
tremely small cation (Be) to a much larger anion (Se). This uniqueness accounts 
for the high degree of covalent bonding and is similar to the case of boron based 
group III-V compounds [2]. Furthermore, the hardness, bonding energy and 
stability of this compound make it a potentially good material for various tech-
nological applications [3].  

Few experimental studies have been performed on this compound; experi-
mental difficulties include its toxic nature and its instability in air. This com-
pound is difficult to handle experimentally as a single crystal or an epitaxial 
layer. Yim et al. [4] prepared crystalline powder of BeSe by passing H2Se vapor 
over Be metal at 1100˚C, repeatedly, for a total of 12 hours, until an X-ray 
powder pattern showed sharp K doublets. These authors performed measure-
ments at room temperature; they estimated the band gap to be within the range 
of 4 - 4.5 eV and clearly stated the need for further investigations. They utilized 
the optical absorption measurements on cold pressed samples of BeSe powders 
mixed in KBr. These authors did not specify whether the band gap was direct or 
indirect because of shallow absorption edges and the lack of a high absorption 
coefficient. They stated in their work that further studies have to be done on this 
compound to understand the band structure. In 1999, Wilmers and his group 
[5] employed spectroscopic ellipsometry in the UV/VUV region. They investi-
gated the optical properties of various samples of BexZn1-xSe by varying the stoi-
chiometry of beryllium and selenium to obtain BeSe at room temperature. The 
BexZn1−xSe layers were grown on GaAs in a molecular-beam epitaxy chamber. 
The thickness of the layers ranged from 200 to 800 nm. This group analyzed the 
structure of the spectra in the pseudodielectric function to obtain a direct band 
gap of 5.5 eV. Depending on the thickness of the actual samples of zb-BeSe, the 
band gap of 5.5 eV could be a slight overestimate for the band gap of bulk 
zb-BeSe; quantum confinement is known to lead to larger band gaps for thinner 
films. The above two experimental reports place the band gap of zb-BeSe in the 
range of 4 eV to 5.5 eV. As shown below, even the lower limit of 4 eV is unde-
restimated by previous, ab-initio theoretical DFT calculations.  

Several theoretical studies [6]-[21] of electronic and related properties of BeSe 
have been reported. Recently, Yu et al. [6] studied the structural and electronic 
properties of BeSe using the plane-wave pseudopotential method. Their calcula-
tions produced an indirect band gap of 2.73 eV. Guo and his colleagues [7] em-
ployed both GGA and LDA potentials to investigate the electronic, optical, and 
structural properties of zb-BeSe. These authors utilized the plane-wave pseudo-
potential method in both calculations. They obtain an indirect band gap of 2.787 
eV and 2.402 eV, respectively, with GGA and LDA potentials, from this work. 
The full-potential linearized augmented plane wave plus local orbitals (FP- 
LAPW + lo) calculations of Allay-e-Abbas et al. [8], for the zb-BeSe, led to an 
indirect band gap of 2.43 eV. The 2011 LDA and GGA work of Al-Douri et al. 
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[9] respectively, obtained band gap values of 2.397 eV and 2.682 eV; they em-
ployed the full-potential linearized augmented plane wave (FP-LAPW) method.  

The calculated band gap value of 2.4179 eV was reported in the work of 
Rached et al. [10]. They utilized the full-potential linear muffin-tin orbitals (FP- 
LMTO). The plane-wave pseudopotential method was employed by Srivastava et 
al. [11]. They obtained a band gap of 2.43 eV. The LDA study of Khenata et al. 
[12] produced a band gap of 2.475 eV. Utilizing the full-potential linearized 
augmented plane wave (FP-LAPW) method, Hassan and Akbarzadeh [13] inves-
tigated the ground state properties and structural phase transition of zb-BeSe. 
They employed the LDA and GGA functionals to obtain two different band gaps 
of 2.33 eV and 2.66 eV, respectively. The full potential linearized augmented- 
plane wave calculations by Berghout et al. [14], with an LDA potential, resulted 
in a band gap of 2.41 eV. Another LDA study done by the same authors [12] uti-
lized the plane-wave pseudopotential method to produce a slightly higher band 
gap value of 2.43 eV. Furthermore, Heciri and his group [15] performed first- 
principle calculations to study the electronic structure of BeSe. In this work, the 
full-potential linearized augmented plane wave plus local orbital (APW + lo) 
method was used. They reported an indirect band gap of 2.23 eV and 2.51 eV for 
PW-LDA and PBE-GGA, respectively. The scalar relativistic calculation reported 
by Okoye [16] is employed with full-potential linearized augmented plane wave 
(FP-LAPW) approach. He obtained a band gap of 2.63 eV using the Perdew, 
Burke and Ernzenhof (PBE) GGA. Table 1 below shows the GGA results are 
mostly higher than those obtained with LDA potentials. The band gaps obtained 
from other formalisms such as Hartree Fork, Green function and screened cou-
lomb approximation (GWA) are shown in Table 1.  

In addition to the previous LDA and GGA methods used by these authors [7], 
they further employed the screened exchange LDA (sX-LDA) to produce a 
higher band gap value of 3.455 eV. Also, Alay-e-Abbas et al. [8] used the mod-
ified Becke and Johnson (mBJ) LDA to increase the band gap to 3.53 eV. Anoth-
er pseudopotential calculation of Yadav and his group [17] found the band gap 
to be 3.59 eV. They employed both GGA and GW approximation in their calcu-
lations. The Engel-Vosko GGA calculations of Al-Douri et al. [9] and El Haj 
Hassan et al. [13] led to a gap of 3.655 eV and 3.61 eV, respectively. Both authors 
utilized the full-potential linear augmented plane wave (FP-LAPW) method. In 
2000, Fleszar and Hanke [18] studied the electronic excitation in BeSe by em-
ploying the ab-initio GW approximation to produce a gap of 3.66 eV. For the 
same compound, the early theoretical work performed by Stukel [19] used both 
a nonrelativistic self-consistent orthogonalized plane wave (SCOPW) method 
and the slater's free-electron-exchange approximation to determine the energy 
band structure. These calculations produced an indirect band gap of 3.61 eV. 
Seven years after, Sarkar and Chatterjee [20] obtained a gap of 4.37 eV from Г to 
K. In their work, they applied the APW method in conjunction with an LCAO 
interpolation scheme. Gonzalez-Diaz et al. [21] calculated a band gap of 2.39 eV 
using the first principle pseudopotential method.  
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Table 1. Previous, calculated, indirect band gaps of zb-BeSe and room temperature experi 
mental values. 

Computational formalism and method Potentials (DFT and Others) Eg(Г-X) eV 

Norm conserving non-local pseudopotential LDA 2.39a 

FP-LAPW LDA 2.475e 

FP-LAPW LDA 2.33f 

One electron Green’s function LDA 2.31i 

Plane-wave pseudopotential LDA 2.43j 

FP-LAPW LDA 2.397m 

FP-LAPW LDA 2.41n 

Plane-wave pseudopotential LDA 2.43n 

FP-(L)APW + lo LDA 2.23b 

FP-LMTO LDA 2.4179d 

Plane-wave pseudopotential LDA (5.11 Å) 2.402k 

Plane-wave pseudopotential sX-LDA 3.455k 

FP-LAPW + lo mBJLDA 3.53c 

FP-LAPW GGA 2.66f 

Pseudopotential GGA 2.63h 

FP-(L)APW + lo GGA 2.51b 

FP-LAPW + lo GGA 2.43c 

Plane-wave pseudopotential GGA (5.15 Å) 2.787k 

FP-LAPW GGA (5.178 Å) 2.63l 

Plane-wave pseudopotential GGA 2.737o 

FP-LAPW GGA 2.682m 

FP-LAPW GGA-EV 3.61f 

FP-LAPW GGA-EV 3.655m 

SC-OPW Slater’s Free-electron Exchange 3.61g 

Pseudopotential GWA 3.59h 

One-electron Green’s function GWA 3.66i 

APW with LCAO 
Hatree-Fock self-consistent  

atomic potential 
4.73 (Г-K)p 

Experiment Spectroscopic ellipsometry 
5.5 (Γ-Γ)q 

(direct) 

Experiment 
Optical absorption  

measurement 
4 - 4.5  

(unspecified)r 

aReference [21] bReference [15] cReference [8] dReference [10] eReference [12] fReference [13] gReference [19] 
hReference [17] iReference [18] jReference [11] kReference [7] lReference [16] mReference [9] nReference [14] 
oReference [6] pReference [20] qReference [5] rReference [4]. 

 
From the theoretical results obtained with ab-initio LDA and GGA potentials, 

it is evident that the calculated band gap values were underestimated by an av-
erage of 1.5 eV or more as compared to the measured ones. While results pro-
duced by calculations using DFT-derived potentials, which are not entirely DFT 
potentials, are closer to the experimental ones, they still underestimate the latter 
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by approximately 0.5 eV or more. The discrepancies between theoretical results 
and measured band gap values of zb-BeSe are a key motivation for our work. 
From the theoretical results obtained with ab-initio LDA and GGA potentials, it 
is evident that the calculated band gap values were underestimated by an average 
of 1.5 eV or more as compared to the measured ones. While results produced by 
calculations using DFT-derived potentials, which are not entirely DFT poten-
tials, are closer to the experimental ones, they still underestimate the latter by 
approximately 0.5 eV or more. The discrepancies between theoretical results and 
measured band gap values of zb-BeSe are a key motivation for our work. 

2. Method 

In this work, the computational method used has been described in detail in 
previous publications by our group [22]-[29]. We performed self-consistent cal-
culations using the Ceperley and Alder local density approximation (LDA) po-
tential [30] as parameterized by Vosko, Wilk, and Nusair [31]. The computa-
tional package used in this calculation is from the Ames laboratory of the US 
Department of Energy (DOE), Ames, Iowa [32] [33]. We implemented the linear 
combination of atomic orbitals (LCAO), using Gaussian functions in the radial 
parts of the orbitals. Our calculations are nonrelativistic and were first per-
formed at an experimental lattice constant of 5.152 Å (room temperature) [34]. 
In contrast to other calculations, we implemented the Bagayoko, Zhao, and Wil-
liams (BZW) method [22] [23] [24], as enhanced by Ekuma and Franklin (BZW- 
EF) [25]. The difference between the enhanced version of our method (BZW- 
EF) and the previous method (BZW) is the pattern in which we increase the ba-
sis set. That is the addition of orbitals. In BZW, the orbitals representing unoc-
cupied energies are added to the basis set in the order of increasing, excited 
energies of the atomic or ionic species in the solid. The BZW-EF method add s 
p, d, and f orbitals, for a given principal quantum number at a given site, if ap-
plicable, before adding the corresponding, spherically symmetric s orbital for 
that principal quantum number. This feature of the BZW-EF method rests on 
the realization of the primacy of the polarization of p, d, and f orbitals over the 
spherical symmetry of s orbitals, for the valence electrons of the material under 
study.  

In line with the rules of the BZW-EF method, we start our calculations with a 
small basis set no smaller than the minimum basis (MB), i.e., the one that is just 
large enough to account for all the occupied energies in the atomic or ionic spe-
cies of the material under study. We used the orbitals obtained from the 
self-consistent calculations for the atomic species of Be2+ and Se2− to construct 
the basis set for the solid calculations. After the first calculation, we performed a 
second self-consistent calculation, utilizing a basis set that consists of the one for 
Calculation I plus an appropriate, unoccupied orbital representing an excited 
energy level in the ionic species of the system. We compare the occupied ener-
gies from Calculations I and II, numerically and graphically. In general, they are 
found to be different, with some occupied energies from Calculation II being 
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lower than corresponding ones from Calculation I. This lowering means that the 
initial basis set is not complete in size, angular symmetry or radial function for 
the description of the ground state of the material. We then perform a third cal-
culation with the basis set of Calculation II plus an appropriate orbital chosen as 
described above. Again, we compare the occupied energies of Calculations II and 
III. This process continues until three consecutive calculations, i.e., N, (N + 1) 
and (N + 2), produce the same occupied energies. This fact is the criterion for 
the attainment of the absolute minima of the occupied energies, i.e., the ground 
state. These three calculations, upon the attainment of self-consistency, lead to 
the same charge density and Hamiltonian content, even though the Hamiltonian 
matrices have different dimensions. The first of the three calculations, N, is 
therefore the one providing the DFT description of the material. Its results have 
the full, physical content of DFT. Basis sets of Calculations (N + 1), (N + 2), and 
higher produce the occupied energies obtained from Calculation N, whose basis 
set is known as the optimal basis set. Unoccupied energies from Calculation (N 
+ 1), (N + 2), and higher, that are different from their corresponding values 
from Calculation N do not belong to the spectrum of the Hamiltonian that is a 
unique functional of the ground state charge density, a density that did not 
change from its value obtained with the optimal basis set.  

The above explanation for the selection of Calculation N is based on the first 
DFT theorem, as first provided by Bagayoko [29]. An equally valid selection of 
Calculation N is based on the Rayleigh theorem for eigenvalues. According to 
the Rayleigh theorem [26], successive calculations with larger basis sets that 
contain the optimal one generate increasing numbers of eigenvalues, by virtue of 
the fundamental theorem of algebra. They do not change the occupied energies. 
This theorem explains the lowering of some unoccupied energies by Calcula-
tions (N + 1), (N + 2) and higher, after attainment of the absolute minima of the 
occupied energies. This lowering is a mathematical artifact, i.e., the non-trivial 
basis set and variational effect [22] [29] totally avoided by the BZW and BZW- 
EF method as explained below.  

The Rayleigh theorem [26] states that when the same eigenvalue equation is 
solved with two basis sets containing n and (n + 1) basis functions, respectively, 
with the smaller basis set totally included in the larger one, then the ordered ei-
genvalues (from the lowest to the highest) obtained with (n + 1) functions are 
lower than or equal to their corresponding values obtained with n functions. In 
the implementation of the BZW-EF method, we avoid the above basis set and 
variational effect by selecting the outputs from the calculation with the optimal 
basis set, i.e., the first one to produce the absolute minima of the occupied ener-
gies. Larger basis sets, that contain the optimal basis set, produce the charge 
density and Hamiltonian obtained with the optimal basis set. The changing (i.e. 
lowering) of an unoccupied energy by these larger basis sets is a mathematical 
artifact stemming from the Rayleigh [22] [26] [29].  

Details needed for the replication of our work follow. Beryllium selenide exhi-
bits a cubic lattice in the space of F4-3m. The locations of the ions of Be and Se 
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are at (0, 0, 0) and (1/4, 1/4, 1/4), respectively. We used a room temperature ex-
perimental lattice constant of 5.152 Å for the first part of our work. We per-
formed self-consistent calculations for Be2+ and Se2− to obtain the input orbitals 
required in generating the orbitals used in the LCGO formalism for solid state 
calculations. A set of even-tempered Gaussian functions were employed in con-
structing the atomic orbitals of the ionic species. We used 16 even-tempered 
Gaussian functions with minimum and maximum exponents of 0.24 and 0.9 × 
105, respectively, to describe the s and p orbitals of Be2+. The s and p orbitals of 
Se2− were constructed using 22 even-tempered Gaussian functions, with mini-
mum and maximum exponents of 0.135 and 0.24 × 106, respectively. The con-
vergence for a given self-consistent calculation was attained after 60 iterations, 
when the potential did not change by more than 10−5 between the last two con-
secutive iterations. The computational error made in accounting for the valence 
electrons was 0.00579210 for the 28 electrons or 2.0686 × 10−4 per electron. 

3. Results 

Table 2 below contains orbitals employed in the successive solid state calcula-
tions. This table also provides the total numbers of orbitals for the description of 
the valence states, along with band gaps from Г to the minima of the conduction 
band at high symmetry points and elsewhere. 

Our calculated LDA BZW-EF band structure is in Figure 1. This band struc-
ture is obtained from the basis set of Calculation II and III. It is observed that the 
bands from Calculation II cannot be distinguished from those from Calculation 
III up to 10 eV. In other words, there is a perfect superimposition of not only the 
occupied ones, but also for the conduction bands up to 10 eV. The calculated in-
direct, band gap from Γ to a conduction band minimum between Γ and X, is 5.46 
eV. 
 
Table 2. Successive, self-consistent calculations of the BZW-EF method for zb-BeSe 
(Calculations I-IV) and additional, illustrative Calculations (II* & III*). The basis set of 
Calculation II led to the absolute minima of the occupied energies; it is the optimal basis 
set. Column 1: Calculation number, Column 2: Valence orbitals for Be2+, Column 3: 
Valence orbitals for Se2−. Column 4: Total number of valence functions, Columns 5-8: 
the band gaps (Eg, in eV) from Г to L, Г to Г, Г to X, and from Г to X. The optical band 
gap is the smallest one, in Column VII, from Г to a conduction band minimum between Г 
and X, as obtained with the optimal basis set. 

1 2 3 4 5 6 7 8 

I 1s2 2s0 2p0 3s2 3p6 3d10 4s2 4p6 36 6.992 6.894 6.457 7.332 

II 1s2 2s0 2p0 3p0 3s2 3p6 3d10 4s2 4p6 42 6.781 6.056 5.460 6.580 

III 1s2 2s0 2p0 3p0 3s2 3p6 3d10 4s2 4p6 4d0 52 6.780 6.056 5.459 6.579 

IV 1s2 2s0 2p0 3p0 4p0 3s2 3p6 3d10 4s2 4p6 4d0 58 6.782 6.031 5.456 6.582 

II* 1s2 2p0 3p0 3s2 3p6 3d10 4s2 4p6 40 7.517 5.726 5.656 6.328 

III* 1s2 2p0 3p0 3s2 3p6 3d10 4s2 4p6 4d0 50 7.517 5.717 5.655 6.303 
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Figure 1. Electronic band structure of zb-BeSe as obtained from Calculations II (_) and 
III (- -), at an experimental lattice constant of 5.152 Å, using our BZW-EF method. The 
Fermi energy has been set to zero and its position is denoted by the horizontal, dotted 
lines. The calculated band gap, as obtained with the optimal basis set of Calculation II, is 
from Γ to a point between Γ and X. This band gap is 5.46 eV. 
 

Our results for the total density of states (DOS) and partial densities of states 
(pDOS) of beryllium selenide are shown in Figure 2 and Figure 3, respectively. 
The total valence bandwidth is 13.59 eV. This result is close to those of Okoye 
(13.8 eV) [16] and Gonzalez-Diaz (14.16 eV) [21]. The valence bands are in two 
groups. The widths of the upper and lower groups are 5.25 eV and 1.81 eV, re-
spectively. Our calculated width for the upper group of valence bands is close to 
the finding of Rached et al. [10] of 5.42 eV. The DOS for the valence states has a 
broad peak between −1 and −2.8 eV, a clear shoulder between −3 and −3.6 eV, 
and two sharp peaks at −4.4 and 12.0 eV. For the conduction band DOS, we 
found a mild shoulder at +6.4 eV and a sharp peak at +7 eV, atop a broad one 
from +6.4 eV to 10 eV.  

As shown in Figure 3, the partial densities of states (pDOS) describe the con-
tribution of various valence s, p, d, and states, if applicable, to the band struc-
ture. The upper valence band is mainly composed of the p states from Se with 
slight contributions of p and s states on Be. The lowest group of valence bands 
consists only of the s state of Se. On the other hand, the minimum of the con-
duction band, located between Γ and X, is mainly dominated by p and s states of 
Be, with a minor contribution from p on Se. According to Rached et al. [10], the 
upper valence bands are dominated by p states of Se, while the lower valence 
bands are mainly from s states on Se. Our results qualitatively confirm this pic-
ture. The conduction band is due to the Be 2p. There are no reported experi-
mental data for the DOS and pDOS that are known to us.  
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Figure 2. Calculated, total density of states (DOS) for zb-BeSe, as obtained from the 
bands in Figure 1. The vertical, dotted line denotes the Fermi level. The value of the band 
gap obtained is clearly shown in the insert. 
 

 
Figure 3. Calculated, partial densities of states (pDOS) for zb-BeSe, as obtained from the 
bands in Figure 1. 
 

In Table 3, we list the energies of the valence and low laying conduction 
bands at high symmetry points in the Brillouin zone. These energies are ob-
tained from the self-consistent Calculation II, using the room temperature expe-
rimental lattice constant of 5.152 Å. The purpose of listing these energies is to 
enable detailed comparisons of our results with future experimental measure-
ments, utilizing several techniques ranging from X-ray and UV spectroscopies to 
optical absorption. 

Effective masses of electron and hole are important factors in determining the 
transport property of a material. In order to determine the accuracy of the shape 
and curvature of a calculated band, the results of the effective masses from the  



R. Inakpenu et al. 
 

561 

Table 3. Calculated, electronic energies (eV) of zb-BeSe at high symmetry points in the 
Brillouin zone. These energy values are obtained from the optimal basis set of Calculation 
II at a room temperature experimental lattice constant of 5.152 Å. The Fermi energy is set 
to zero in the table. The minimum points of the lowest conduction band, at the high 
symmetry points, are shown with bold values. 

L-point Γ-point Between Γ and X point X-point K-point 

13.771 8.143 9.740 12.485 12.434 

7.799 6.056 9.740 12.485 10.912 

7.799 6.056 9.557 7.268 9.434 

6.781 6.056 5.460 6.580 6.980 

−0.996 0.000 −1.673 −2.458 −2.054 

−0.996 0.000 −1.673 2.458 −3.689 

−5.1996 0.000 −3.007 −4.626 −4.245 

−12.281 −13.542 −12.679 −11.844 −11.864 

 
theoretical work should be in agreement with those of the measured effective 
masses. We calculated the electron effective mass at X in the vicinity of the 
minimum of the conduction band as shown in Figure 1. From X to Г (longitu-
dinal), X to U (transverse) and X to W (transverse) directions, the results for the 
electron effective mass in units of m0 (free electron mass) are 1.217 m0, 0.303 m0 
and 0.302 m0, respectively. Furthermore, we calculated the hole effective masses 
at the top of the valence band. For heavy hole 1 along these directions, (Г-L)111, 
(Г-X)100, and (Г-K)110 the effective masses are 1.309 m0, 0.572 m0 and 0.891 m0, 
respectively. For heavy hole 2, along the same direction, (Г-L)111, (Г-X)100, and 
(Г-K)110, the effective masses are 1.309 m0, 0.572 m0, and 0.637 m0, respectively. 
Effective masses of the light hole along (Г-L)111, (Г-X)100, and (Г-K)110, directions 
are 0.178 m0, 0.285 m0, and 0.235 m0, respectively. According to the calculation 
done by Stukel [19], the heavy hole effective masses are 1.3 m0 for Г-L(111) and 0.6 
m0 for Г-X(100) while those of the light hole are 0.2 m0 for Г-L(111) and 0.3 m0 for 
Г-X(100), also the electron effective mass is 1.2 m0 for Г-X(100). There are no known 
experimental data available for the effective masses of zb-BeSe to compare our 
results. We expect future experiments to verify our values. Our results are in 
agreement with the theoretical works of Stukel [19]. 

The calculated total energy versus the lattice constant is shown in Figure 4. 
We utilized this curve to obtain the calculated bulk modulus which is a measure 
of the degree of hardness of the material. The lattice constant corresponding to 
the minimum value of the total energy is known as the equilibrium lattice con-
stant. The value of our predicted, equilibrium lattice constant is 5.044 Å. The 
calculated bulk modulus is 92.3 GPa. This result is in excellent agreement with 
the only experimental value known to us of 92.2 ± 1.8 GPa [32]. Other calculated 
[7] [10] [11] [12] [13] [16] [17] [18] [19] LDA results produced values that are 
about 1.0 GPa lower than ours. The hardness of zb-BeSe is related to its low io-
nic nature, unlike some other semiconductors in group II-VI with high ionic 
bonding. 
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Figure 4. Plot of the total energy (eV) of BeSe versus the lattice constant (Å). The mini-
mum value of the total energy on the curve is located at the equilibrium lattice constant of 
5.044 Å. 

4. Discussion 

A review of the content of Table 1 leads to an obvious question. Indeed, the pre-
vious calculations utilizing ab-initio LDA or GGA potentials, unlike ours, have 
uniformly underestimated the band gap of zb-BeSe. Even the calculation utiliz-
ing DFT derived ad hoc potentials mostly underestimated the band gap. The key 
reasons for these underestimations are thoroughly explained by Bagayoko [29]. 
The first of these reasons is that the results of these calculations cannot be ex-
pected to possess the full, physical content of DFT, due to the fact that they uti-
lized a single basis set; such calculations lead to a stationary solution among po-
tentially infinite others. The minimization resulting from self-consistent itera-
tions cannot correct for any major deficiency of the selected basis set in terms of 
size (i.e., number of functions), angular symmetry, and radial characteristics. 
The successive calculations of the BZW-EF method, with the increase of the size, 
angular features, and radial components of the basis set, verifiably lead to the 
absolute minima of the occupied energies, i.e., the ground state, as required by 
the second Hohenberg-Kohn theorem.  

A second reason for the underestimation, also related to the use of a single ba-
sis set, stems from the fact that such a basis set, deliberately selected to be ade-
quately large in size, is generally over-complete for the description the ground 
state. Consequently, unphysical, unoccupied energies, lower than their values 
obtained with the smallest basis set leading to the ground state, are generally 
produced by single basis set calculations. The unphysical nature of these lo-
wered, unoccupied energies was explained in the section above on our method, 
in terms of both the first Hohenberg-Kohn theorem and the Rayleigh theorem 
for eigenvalues. The explanation for the agreement between our results and ex-
perimental ones rests on the fact that the BZW-EF calculations strictly adhere to 
the conditions inherent to the validity of DFT, including the verified, attainment 
of the ground state and the avoidance of over-complete basis sets by virtue of the 
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first DFT theorem or the Rayleigh theorem for eigenvalues.  
Our calculated, indirect band gap of 5.46 eV calls for further experimental in-

vestigations for the following reasons. While this value is clearly in the 4 to 5.5 
eV range for available experimental results, it is desirable that new experiments 
attempt to narrow this rather wide (1.5 eV) range. Additionally, the first experi-
mental report did not specify the direct or indirect nature of the band gap. The 
second one found a direct band gap while our result is an indirect band gap, as 
qualitatively found by most of the previous, theoretical calculations. Our calcu-
lated, room temperature direct gap of 6.056 eV, at Γ, is only 0.6 eV larger than 
our calculated, optical band gap of 5.46 eV. All measurement procedures do not 
find an indirect band gap; this fact is amply illustrated in the case of TiO2 that 
was considered to be a direct gap material until the work of Ekuma and Bagayo-
ko [35] found an indirect one of 2.95 eV, very close to the direct one of 3.05 eV. 
Santara et al. [36] confirmed the prediction of Ekuma and Bagayoko and ex-
plained how measurements with non-polarized light could not find this indirect 
band gap, but they led to the slightly larger direct gap for TiO2. 

5. Conclusion  

In conclusion, we have performed ab-initio, self-consistent calculations of elec-
tronic energy bands, total density of states (DOS), partial densities of states 
(pDOS), effective masses and bulk modulus of zb-BeSe. The distinctive feature 
of our calculations as compared to previous ab-initio and empirical calculations 
is the implementation of the Bagayoko, Zhao, and Williams (BZW) method, as 
enhanced by Ekuma and Franklin (BZW-EF). Our calculated, indirect band gap 
is 5.46 eV, from Г to a conduction band minimum between Г and X, for a room 
temperature lattice constant of 5.152 Å. Our bulk modulus is in excellent agree-
ment with experiment within the experimental uncertainties. Our results for the 
band gap, DOS, pDOS, effective masses and bulk modulus, along with similar 
ones from this group [22] [23] [24] [25] [26], strongly suggest that LDA BZW- 
EF calculations have the capability to accurately describe and predict electronic 
and related properties of semi-conductors. Based on this capability, our calcula-
tions are expected to inform and to guide the design and fabrication of semi-
conductor-based devices. Our results and the limited, available experimental 
ones strongly suggest the need for further measurements of electronic properties 
of zb-BeSe, including its band gap.  
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