
Journal of High Energy Physics, Gravitation and Cosmology, 2017, 3, 178-247 
http://www.scirp.org/journal/jhepgc 

ISSN Online: 2380-4335 
ISSN Print: 2380-4327 

DOI: 10.4236/jhepgc.2017.32019  March 16, 2017 

 
 
 

Axiomatic Affine Unification with Large 
Gravitational Vector Field Yields Vector-Metric 
Theory of Gravitation, Electromagnetism and 
Field Description of Mass-Particles 

Boris Hikin 

Artwork Conversion, Los Angeles, USA 

 
 
 

Abstract 
Under assumption of existence of extremely large gravitational vector field, 
this paper proposes a road map for building an Axiomatic Eddington Affine 
Unification theory yielding both Maxwell’s electromagnetism and Vector- 
metric theory of gravitation, in which inverse of the square-magnitude of the 
vector serves as Newton’s gravitational constant. The dependence of the vec-
tor’s magnitude with distance may offer an explanation of both Pioneer ano-
maly and “star rotation abnormality” in some Galaxies. In addition, the theory 
provides formalism for a classical description of atomic particles (such as 
protons and electrons) with highly non-linear equations and highly localized 
solutions. The existence of large Gravitational vector field can, for some va-
riables (sub-fields), lead to elliptical type ( )tt xx∂ + ∂  differential equations 
(unlike in Maxwell’s electromagnetism, which is hyperbolic tt xx∂ − ∂ ), that by 
its nature forbids the existence independent waves and their propagation. 
Proposed Unified field description might provide the avenue for smooth tran-
sition to the world Quantum physics. 
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1. Short Summary of the Paper and Its Results 

This paper presents a road map for building a unified field description of matter. 
It describes the physical basis (postulates) and the physical phenomenon in more 
or less generic terms and writes most formula in symbolic manner. But even in 
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such general description we demonstrate that this theory produces comparable 
(if not superior) formulation of Gravitation and Electromagnetism as well as 2 
other vector fields that act similarly to neutrino and Bozon particles. In addition 
it does provide avenue for building field theory of mass-particles, such as elec-
trons and protons. 

Our starting point is our desire to derive Newton gravitational constant, and 
in fact the entire gravitation, thru only atomic “interaction” (i.e. some property 
that are present in every atomic formation) and atomic units coupled with the 
number of particles in the Universe (or at least of our Galaxy). 

We use Affine description only as an avenue for obtaining the Lagrangian and 
the covariant set of equations that describe the evolution of the fields. We do not 
subscribe to any geometrical interpretation and/or any “geometrization” of 
physical forces or physical entities other than metric tensor that describes the 
curved space. 

For the majority of physicists who undoubtedly reject the field unification 
idea strictly on the grounds that true description of matter must be Quantum 
Mechanical, may I suggest this thought for consideration? One can view field 
description proposed here as a classical limit of quantum mechanical wave func-
tions description and use it as a starting point for quantization as it has been, for 
example, done for bozon quantum field theory, which starts as a classical non- 
zero mass vector field. 

1) Our main assumption is such that gravitation is described as two entities: 
metric tensor ijr≡r  and by a Gravitational vector iG≡G  which is an attri- 
bute of all particles (or at least the heavy ones) just like Electromagnetic field is 
an attribute of all charged particle. The difference though is that the Gravitational 
field always comes with “the same sign” sort of speak and thus is allowed to accu-  

mulate and reaches in our Milky Way Galaxy an enormous value of 33 110
cm

— 

the inverse Plank’s length. The large number for G  is the reason for the small 
value of Newton Gravitational constant NK , which is inverse proportional to 

the square of amplitude of the Gravitational vector field 
3

2N
cK

G
 

= 
 

G


. At  

large distances from the gravitational source 2G  has this dependence with re-
spect to the distance ρ  and the value of G  vector at infinity ( )2G∞ :  

( )
( ) ( )

1
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where N is number of particle (or effectively the mass of the source) and aL  is 
atomic length. 

This relation between Newton gravitational constant and the Gravitational 
vector, or dependence Newton Gravitational constant upon the distance could 
be the basis of both Pioneer anomaly and the abnormal star rotation in some 
Galaxies. As distance increases the Newton Gravitational constant increases, 
which in effect increases the attraction toward the center. In our solar system the 
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effect is small and looks like “extra pull” by the Sun toward its center, which re-
duces the speed of a satellite. In some Galaxies where N is large the effect could 
be quite significant to alter the rotation periods of the stars as a function of their 
distances from the central source. See Section 3—Introduction. 

2) We begin building the theory using Affine Unification approach thru non- 
symmetrical affine connections Γ , but not as a geometrical description, but ra-
ther as axiomatic one. We define tensor of Total-Matter ( )TM  as “generalized” 
Riemann tensor and we define the Lagrangian density L  of the Total-Matter 
as a function of the tensor TM  only. The equations of motions for Γ  are ob-
tained by means of variations with respect to Γ  (see Section 4—Affine Unifica-
tion):  

( )( )4 Td 0.LS x L δ
δ

= => =∫ M Γ
Γ

 

The most interesting and perhaps the most suitable are these two Lagrangians 
of the 4th power: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

444 T T T

inv

4T 2 T

Tinv

d    where   det

       or   det ;   
det

s Ri Ri
s

ijkl

s M MRi
s

Ri

S xL L

L

λ

λ

−

=

=

    = =      

∆  = =   
 
 

∑∫

∑

M Γ M Γ M Γ

M Γ Δ M Γ Δ
M Γ

 

where MΔ  is Levi-Chivita tensor, 
invs=∑  indicate the summation of all possi-

ble invariants with a constant sλ  coefficient associated with each particular 
invariant. 

3) We then define space metric ijr≡r  based on the elimination of some 
components of the Tensor-Potential i

jkP≡P  defined as ( )i i i
jk jk jkP rγ= Γ − . In 

general P  consists of 64 components and could be split on 4 vectors and 3 
traceless 3-index tensors—one fully symmetrical ijkN≡N  and two torsion type 
tensors ijk ikjK K≡ = −K  and ijk ikjC C≡ = −C  each of which has only 16 inde-
pendent components.  

( )

( )

0;    ;    0;    0
det

;    0;    0
det

ijkl
ij ij

ijk ijk ikj ijk ijk

ij

ijkl
ij

ijk ikj ijk ijk

ij

N r K K K r K
r

C C C r C
r

∆
= = − = =

∆
= − = =

 

where 
( )det

ijkl

ijr

∆  is Levi-Chivita tensor. 

Our definition of metric r  is based on requirement that two torsion tensors 
are proportional to each other: 0µ=K C  ( 0µ —constant). 

This procedure makes the metric r  a dynamic variable of the theory and 
transfers the Affine description to Tensor-Potential description over curved 
space with metric r . See Section 5—Tensor Potential. 

4) The general form of the Lagrangian of the Total-Matter can be written thru 
the combination of invariants of the the Total-Matter TM  and thru the con-
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stants nsλ  associated with each invariant:  

( ) ( ) ( ) ( ) ( )

4 4

1,

T T T T T T

inv

d d

where   det .

n
n

nn

n ns Ri Ri
s

S xL x L

L λ

=

−

=

= ≡

    =      

∑∫ ∫

∑ M P M P M P



 

5) The determination of the constant parameters nsλ  as well as maximum 
“n” is done by the way of reducing the above Lagrangian to the Lagrangian of 
the “small system”—the system for which its own Gravitational field in much 
smaller then the Gravitational field at infinity as viewed from point of view of 
the “small system”. In the end of this procedure the Lagrangian of the “small 
system” should have a typical field-theory form. During this derivation there will 
be some “unwanted” terms, which must vanish. The requirements for vanishing 
these terms should be satisfied by the choice of the λ -constants in front of in-
variants that form the Lagrangian. 

6) We show that utilizing the above procedure, the Lagrangian of the “small 
system” (or weak Gravitational field), as it is in our Solar System, can be simpli-
fied to have this form:  

( )
( )

( )

Grav
4 4

2d d ;    M LS r xL xL L L
G∞

= − ≈ = +∫ ∫
 

where ( )ML  represents the Lagrangian of the “typical” Matter in flat Minkowski 
space and ( )GravL  corresponds to Lagrangian that describes the Gravitation thru 
vector G  and the metric r —both (labeled as bar functions) being corrections 
to a constant Gravitational field at infinity G∞  and flat Minkowski space cor-
respondingly. See Section 6—Lagrangian—expr. (60). 

7) One of the feature of the existence large Gravitational field G  is that both 
Lagrangian of the Matter ( )ML  and of the Gravitation ( )GravL  include a unit 
vector U  of the Gravitation vector ( )( )1,0,0,0i

i i iU G G G= =G . This fact 
allows the equations of motion for some variables (in fact most variables) to   
be not hyperbolic ( )tt xx∂ − ∂  as Minkowski metric demands, but elliptical 
( )tt xx∂ + ∂ , which by its nature forbids the existence independent waves and 
their propagation. In elliptic equations the field’s time dependence is such that 
the field modifies itself (thus will have time depending behavior), but it quickly 
decays to zero any king of oscillating harmonics that it produces. Applied to the 
description of Gravitation, it would state that there are no Gravitational waves, 
which is supported by the results of long time LIGO program in US and around 
the world. 

8) In the weak gravitational fields the ( )GravL  provides all the information 
needed for description of either vector G  and metric r  in both vacuum and 
inside the matter. It also contains the terms corresponding to Grav-field to me-
tric interaction. However as we showed, in a specific system of coordinate this 
interaction vanishes and metric becomes depending only on the matter that 
produced it (i.e. its deviation from the flat space). This might support the Eins-
tein idea that Gravitation can be described as a curved space and it alone governs 
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the “classical body” movement. 
The special system coordinate which is equivalent to the “rest” system of 

coordinates is defined as the one where metric (or its correction ijr≡r ) satisfies 
the first order derivatives relations—the “gauge”:  

( ) ( )

, 1 , 2 , 3 , 4 , 5 ,

, 1 , 2 0 ,0 3 00, 4 00,0 5 ,0or   

where   ;    1,0,0,0    diag 1, 1, 1, 1

km m n m n m n s m
ik m i mi n mn i mn s i m i

km
ik m i i i i i

ij
ij i ij

r r r U U r U U r U U U U r U U

r r r r r U r U

r r U

δ α α α α α

δ α α α α α

δ δ

= + + + +

= + + + +

= = = − − −  
and all α -s are the constants defined by the λ -constants which define the form 
of Lagrangian—see item 4) above as well as expr. (85). See Section 7—  Equa-
tions for Gravitational Field and Metric. 

9) In the case of weak Gravitational field (as in our Solar system) for the de-
scription of Electromagnetic field (or to be more accurate its vector potential) 

iE≡E  this theory derives the Lagrangian ( )EL  in this form:  

( ) ( ) ( )

( )

Max Max

Max

, ,where   diag 1, 1, 1, 1 ;    

E E Eik jl ik ik
ij kl i j kl i k

ij
ijij i j j i

EL E E E F E J

E E E

δ δ δ δ

δ δ

= + +

= = − − − = −  

which differs from the Maxwell Lagrangian by the presence of the mass-photon 
term ( )2 EE F , where the 2-index tensor ( )EF  is a short distance function asso-
ciated with and defined by the localized mass-matter (or particle such as proton, 
electron, etc.) and thus is zero outside of mass-matter. The assymptotics at large 
distances ρ  should still be ( )eQ ρ  with ( )eQ  being a constant, which for the 
a single particle would lead to a charge defined as:  

( ) ( )3
0 0all space

de E ij
i jQ x J E F δ = + ∫  

which by the proper “normalization” procedure must be set to 1± . As long as 
the asymptotics at infinity is still eQ ρ , the Maxwell description of the Elec-
tromagnetic field of a macro system (in statistical sense) of charged particles (as 
long as they far enough away from each other and probably moving with the 
speed much less than the speed of light) could be recovered by introducing Di-
rac’s δ -function as a flux.  

( ) ( )
Max

or   ;    where   ejk
ij i i iE J J Q uδ δ= = ∑ r  

where iu  4-dimensional vector velocity. In that sense the standard Maxwell eq-
uations for the Electromagnetic field should be viewed as an approximation of 
more complex equations above derived thru Affine Unification. See Section 8— 
Electromagnetic and Other Fields. 

10) The proposed theory also suggests the existence of two other vector fields 
D  and B . The first one, D  is described by Maxwell type equation, but with a 
flux corresponding not to a charge particle but to a dipole (zero total charge). 

( ) ( )

( ) ( ) ( ) ( )

Max Max MaxMax

, ,

3 3
0 0 ,all space all space

   where   

and   diag 1, 1, 1, 1 ;    d d 0

D Dik jl ik
ij ij ijkl kl jl i j j i

e D Dij ik
ij i k

D D DL D F D D

Q x J x F

δ δ δ δ

δ δ δ

= + = −

= = − − − ≡ = =∫ ∫  
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The D -photon has zero mass everywhere (both vacuum and inside the mass- 
matter) and its interaction with mass-matter is such that it only can exchange 
the energy—very much similar to a neutrino. See Section 8—Electromagnetic 
and Other Fields; see after expr. (132). 

11) Derived from Affine Unification the description of B  vector field, sug-
gest the existence of short-distance, strong-interactive with mass-matter and 
highly non-linear particle (like Bozons), whose Lagrangian in vacuum contains 
terms proportional to the forth power of B . See Section 8—Electromagnetic 
and Other Fields; see text starting at expr. (150). 

12) Proposed theory provides an avenue of describing the micro world (mass- 
particle like proton and electron) from field point of view and thus to offer al-
ternative approach to the Quantum Theory, or at least, offers a classical ap-
proximation and a smooth transition from one classical description of the mat-
ter to the quantum mechanical one. In this theory the mass-matter is described 
by one fully symmetrical 3-index tensor N  and one torsion-type 3-index ten-
sor C . The Lagrangian of the mass-matter is highly non-linear (4th power) 
with respect to the tensors N  and C , which leads to the highly localized solu-
tion. The Einstein formula 2E mc=  is in a effect a “normalization require-
ment” for the constants of integrations for N  and C . It would make sense to 
assume (or to require) that the equations for N  and C  are described by an 
elliptical equations (which only possible due to existence of the Gravitational 
Unit vector U ), thus corresponding to (or providing) the mass-matter particle’s 
stability. See Section 9—Mass-Matter. 

13) In proposed theory the Cosmology of Universe naturally leads to oscillat-
ing Universe. As Universe expands the average Gravitational field decreases, the 
effective value of Newton’s Gravitational constant increase, which increases gra-
vitational pull of masses. Eventually, this pull will be strong enough to stop the 
expansion and reverse it to compression of the Universe. At the other end the 
shrinking of the size of Universe increases the average value of the gravitational 
field G , effectively decreasing the Newton’s gravitational constant and thus de-
creasing gravitational pull of masses. The mass’ kinetic energy (the temperature of 
Universe) would be large enough to stop contraction of the Universe and reverse it 
back to expansion. Thus leading to the eternal oscillation of the Universe. 

Its mathematical form (even with assumption of uniform distribution of mat-
ter in the Universe) is much more complex since it cannot use a “small system” 
Lagrangian, but must use the exact Lagrangian of the Total Matter, which is (at 
least) of forth power with respect to Grav-field G  (or more accurate ′G ), 
space curvature (Riemann metric tensor ijklR ) and the regular Matter. And in 
order to find (fully define) such Lagrangian—to find all the λ -s and the para-
meter “n”—we must execute the program described in this paper. 

Because in proposed theory the Gravitation is described only thru atomic pa-
rameters—i.e.   as a measure of energy and mass, c  being the speed of light 
and aL  being the atomic length—and the number of particle in the Universe, it 
is not difficult to see that the scale of the basic parameters of the Universe—the 
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radius of Universe UL  (measures in atomic length U aL L ) and the Time-Scale 
of the Universe UT —are given by a simple relation with respect to the number 
of particles in the Universe N, where both of basic Universe parameters are pro-
portional to a square root of the number of particles: U a U aL L T c L N= = , 
with 8310 .N ≈  

2. Definitions 

General convention: 
a) Capital Latin letters represent unknown functions. Capital “bold” Latin let-

ters (except for r ) represent a tensor. For example E  is a vector field 
( )iE≡E , P  is a 3-index tensor i

jkP≡P  and ijr≡r  is a metric tensor; 
b) Non-capital Latin letters (typically i, j, k, l, m, n) used as index take values 

0, 1, 2, 3; 
c) Non-capital Greek letters are constants; For example, λ —constants in de-

finition of the Lagrangian L in general, µ —in definition of Matter M , σ — 
in definition of Lagrangian of the square-vector S , π—in definition of tensor 
Potential P ; 

d) Non-capital Greek letters used as an index take value “x”, “y”, “z” in flat 
Minkowski space; 

e) Capital Latin letters used as index (usually in parentheses and usually upper 
index) identifiers of the group of functions (such as Electromagnetic field, etc.). 
For example: ( )EL  refers to Lagrangian of the vector field E . 

1) NK —Newton gravitational constant; 2
aL c mc=  —atomic length. 

2) ijr≡r —metric tensor; ( ) ( )diag 1, 1, 1, 1 ;  diag 1, 1, 1, 1ij
ijδ δ= − − − = − − − — 

flat Minkowski metric in Descartes coordinates. ( )diag 1,1,1,1i
jδ = —Kronecker 

symbols. 
( )1 p

ijkl≡ ∆ = −Δ —fully antisymmetric symbols, where p is a permutation 
number from “1234”.  

( )
1

det
a ijkl

ija
≡ ∆Δ —Levi-Civita fully asymmetrical tensor based on the 

symmetric tensor .ija  

3) ( ), , ,
1
2

i im
jk mj k mk j jk mr r r rγ ≡ + − —Christoffel symbols. 

, ,
i i i i m i m
jkl jl k jk l mk jk ml jkR γ γ γ γ γ γ≡ = − + −R —4-D (time-space) Riemann tensor 

built on .i
jkγ  

i i
jk kj≡ Γ ≠ ΓΓ —non-symmetrical Affine Connections. 

TM —tensor of the total Matter defined thru Affine Connections Γ  (see ex-
pression 9). For example, ( )T

, , .
i i i i m i m

jl k jk l jm jl ml jkjkl
M ≡ Γ −Γ + Γ Γ −Γ Γ  

( ) ( ) ( )T T T1
2

k k

Ri jkl lkj
M M ≡ +  

M —symmetric “Ricci” tensor for TM . 

( )T T i i i
jk jkjk

P γ≡ = Γ −P —Potential defined by Γ  and metric r . 

G —vector field; ( );  i
i iG G G G≡ =G ; G

∞
—value of the vector field at in-

finity i iU G G≡ =U —unit vector of vector G  i iS GG≡ =S —square-vector. 
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i
jkP≡P —Tensor-Potential defined as TP  without the field G . 

M  is the tensor of Matter defined as a tensor of Total-Matter without gravi-
tational field T

0
: .

=
=

G
G M M  

∗E —Vector field defined thru a fully antisymmetric tensor 
( )

.
det

l
ijkl

mn

E

r

∆
 

( )
( )

Mxw

, ,
det

l
ijkl

k l l k

mn

E
E E

r
∗

∆
= −′E —Maxwell “star” tensor. 

J —one-index tensor ( )iJ≡J . 
F —two-index tensor ( )ijF≡F . 
N —3-index fully symmetrical traceless tensor ( ); 0 .j

ijk jkN N≡ =N  
C —3-index traceless torsion type tensor ( ).ijk ikjC C≡ = −C  

0;  0j ijkl
jk ijkC C= ∆ = ; ( )1 p

ijkl≡ ∆ = −Δ —fully anti-symmetric symbols. 
K —3-index traceless con-torsion type tensor ˆ ˆ .ijk ikj jik kijC C C C= ≡ +  
H —symbolic writing of a pair 3-index tensors N  and ( ): , .≡C H N C  
L —Lagrangian density defined as ( )det .ijL L r=  
4) All “bar” functions are tensors defined over flat Minkowski space. All cova-

riant derivatives replaced by partial ones. The indeces are raised by Minkowski 
metric ( )diag 1, 1, 1, 1 .ijδ = − − −  

ij ij ijr rδ= + ; ( )2
i ii

S G S∞= + ; ( )1,0,0,0iU =  ( ), , ,
1 .
2ijk ij k ik j jk ir r rγ = + −  

3. Introduction 

The question why gravitational force is so small in comparison to nuclear forces 
has been a major puzzling question in physics for the last hundred years. If one 
accepts that gravitation is a fundamental force one must conclude that there 
must be “particles” (or non trivial physics) with a size of Plank’s length 10−33 cm, 
which is some 20 orders of magnitude smaller than the expected size of a proton 
(nuclei)—which is about the same ratio as the size of a proton to the size of the 
Earth (or even better comparison: as a size of a tennis ball to the size of the Un-
iverse). This disparity in sizes leads to a logical question whether gravitation is 
an independent (fourth) interaction or an emergent phenomenon, that is to say 
that gravitation could be explained by means of atomic interaction and statistical 
analysis of large number of particles. And if the latter is true than the Gravita-
tional constant is not universal constant, but a value of a function at a given 
point. This means that in describing gravitation we have to consider not only 
metric (as it has been done by Einstein in GR), but, in addition, a function (or 
some functions), that could be viewed as the gravitational matter—or as com-
monly referred to as “dark matter”. 

This is not totally new idea. Some 50 years ago Brans-Dicke offered func-
tion-metric theory of gravitation [1] (also see [2]), with a hope to resolve the 
problems of General Relativity, in which the “small gravitational constant” is not 
the only one. Philip D. Mannheim in his “Shortcomings of Einstein Gravity” [3] 
very eloquently describes the issue and the necessity of modification of GR, 
which also expressed in the fact that probably as much as 25% of all papers on 
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gravitation (based on arXiv.org/General Relativity and Quantum Cosmology) 
are written for that purpose in mind: “... we need to ask whether the Einstein 
theory is in fact the only theory which then meets the three classic tests. Beyond 
this, we also note that when Einstein gravity is extended beyond its solar system 
origins, no matter in which way it is extended additional concerns arise. When 
Einstein gravity is extended to galactic distance scales we get the dark matter 
problem. When Einstein gravity is extended to cosmological distance. With re-
gard to singularities, not only are there no data which provide direct evidence 
for the existence in nature of event horizons or trapped surfaces (or even wheth-
er the mass concentrations in galactic centers have radii less than their Schwarz-
schild radii), it is not clear whether the existence of singularities in the fabric of 
spacetime is a property of nature or an indication of the breakdown of the 
theory. Finally, to resolve the renormalizability problem it has been found ne-
cessary to generalize the theory to a superstring theory which introduces two 
further ingredients for which there is also no experimental evidence, namely the 
existence of ten spacetime dimensions and the existence of a supersymmetry 
which gives all known particles as yet undetected superpartners”. 

The necessity of Newton’s gravitational constant being a part of the equations 
of General Relativity and its generalizations [4]-[17] steams from the fact that 
the space-time curvature Ricci tensor ijR  has units 1/(length)2 and the tensor of 
Energy-Momentum expressed in the units c  has units 1/(length)4. In order to 
remove this problem the Ricci tensor must be multiplied by a function with 
units 1/(length)2. The simplest such function is a square of a vector’s magnitude. 
Since i

iG dx  is invariant, then iG  is measured in units 1/(length) and the 
square of its magnitude is measured in units 1/(length)2. With this in mind we 
can modify the Einstein’s equations of General Relativity by replacing gravita-
tional constant with a square of magnitude of the Gravitational field and by adding 
a Lagrangian GL  of dark matter (which we limit to only 3 terms, intentionally 
omitting non-linear with respect to G terms—like 2

; ;
km l n

k l m nG G r G G G ) and 
writing the action integral in the following manner:  

( ) ( )
( )

4 2

2; ;
1 ; 2 ; 3 ;

d detM G GM ij

k l l k kl
G k l k l k l

S x cG R L L L r

L c G G G G G rλ λ λ

= + + + −

 = + +  

∫ 



            (1) 

where ijr  is a space metric, kG  is a vector field, k
kG G G=  and λ ’s are 

some constants. ML  is a Lagrangian of actual physical matter and GML  is the 
term responsible for dark matter interaction with the physical matter, which 
typically is assumed to be zero. This, in a way, is a combination of two— 
Brans-Dicke [1] and Vector-Metric [18]—theories for description of dark mat-
ter. And comparing the above expression with GR we conclude that the value (at 
least in our solar system) of the vector G magnitude is inverse to the Plank’s 
length and given by the following expression:  

3
331 110 .

cmN p

cG
K L

= = ≈


                    (2) 

Even though this Lagrangian contains no Gravitational constant, it—as we 
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will show in this paper—has some major problems in vector description of of 
Dark Matter G—see comment after expr. (40)—and its dark-matter part ( )GL  
must be replaced (which we will do) by a correct one. However, in principle, it 
give a correct physical description of the problem. 

From the expression above follows that the gravitational constant is inverse 
proportional to the square of magnitude of the gravitational vector defined by 
the particles of matter (protons and electrons). In our solar system magnitude of 
the gravitational vector field is mostly defined by the matter outside of solar sys-
tem—Milky Way Galaxy or/and Universe—and thus almost constant within the 
solar system. The presence of solar matter (mostly of course is the mass of Sun) 
gives a small addition to the magnitude of grav-field and, as we will show in this 
paper, could be written in the following manner:  

3

2

2 2 1    

N

s
a

a p

cK
G

N cG G L
L mρ

∞

∞

=

= + =





                    (3) 

where ρ  is a distance from the Sun, sN  is the number of baryons of the Sun 

( )5710sN ≈ , aL —atomic length of a protons 13 110
cmaL − = 

 
 and NK  is the 

Newton’s gravitational constant. 
Using the above formula, we can try to explain the “pioneer anomaly” [19]. 

Based on a measurement of the communication frequency of the Pioneers’ satel-
lites it had been concluded the the Pioneer 10 and 11 on their trajectories out of 
our Solar system were experiencing a slow-down (small fraction of their veloci-
ty) as if they had stronger attraction toward the Sun. This could be explain by 
vector metric theory of gravitation and the formula above that it produces. As 
distance from the Sun increases, the Grav-field ( )2G  decreases, which corres-
ponds to increase Newton’s gravitational constant NK . That in effect corres-
ponds to increase of attraction toward the Sun. Eventually, the velocity of the 
satellite is going to stabilized, but at somewhat smaller value than the expected 
value based on NK  in vicinity of Sun. 

The same mechanism can be used to explain the abnormality of some stars 
rotation in some galaxies [20] [21] [22]. Per Newton theory the square of star’s 
velocity is inverse proportional to the distance of that star to the center of its 
Galaxy. In reality the experimental data shows that the velocity of is almost con-
stant. This could be easily explained by vector-metric theory of gravitation thru 
gravitation constant dependence on distance.  

gal gal2 2 2

3 3

2
gal2

3
gal gal2

star 2
gal

1 1   where  

1

p
a p

N

N

N cM
G G G l

l m c
c cK

cMG G

K M c M
V

G cM

ρ ρ

ρ

ρ ρ

∞ ∞

∞

∞

= + = + =

≡ =
+

= =
+











          (4) 

Unlike in our Solar system where “small” mass of our Sun is responsible for a 
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tiny change of gravitational constant, in some Galaxies, the dependence of gra-
vitational constant on distance could be quite significant. More so, if the value of 
gravitational field at infinity is defined by Universe and its value is much less 
than the Grav-field created by the center of Galaxy, then there is a good possibil-
ity that going from one Galaxy to the other, the gravitational field (and thus the 
gravitational constant) could vary significantly—in large number of per-cent if 
not an order of magnitude. 

As to the origin of the gravitational field it reflects the accumulative effect of 
all the particles in Universe (or at least in our Galaxy). The gravitational field (as 
we will see it later) is an attribute of the particle (proton, electron) just as electric 
field is an attribute of the charge. But unlike the electrical field it is not canceled, 
but is accumulated leading to it’s enormous value 33 110  cmG −≈ ; And it is this 
large value is responsible for the small effect of gravitation on any sub-system 
(even as big as our Sun) of the Universe. 

The idea that “universal” large numbers—such as ration between electric forth 
of two protons and their Gravitational forth, which is about 1036—are somehow 
related to the number of particle in Universe has long been proposed by Weyl, 
Eddington and Dirac [23] [24] [25] [26] [27]. 

There are few immediate mathematical ramification of having large Gravita-
tional field, which comes from the main postulate of Modern physics (and expe-
riment) that law of physics for any isolated system are identical. 

If we consider a “small matter” ( )m  in a vacuum and far away from other 
bodies, then the Lagrangian of the “small matter” should be derived from the 
Lagrangian of the Total-Matter by ignoring all other matters and thus be a func-
tion of only “small matter”, space metric and the total Gravitational field: 

( ) ( ) ( ), ,m mL L= G m r , where G is the total Grav-vector consisting of Grav-vector 
of the “small matter” ( )( )mG  added to the Grav-field of all other “outside” 
Matter ( ): m

∞ ∞= +G G G G . 
If we assume that ( )mL  includes the magnitude of Grav-field G  then, the 

solution for a “small Matter” will include very large parameter 33 110
cm

G∞ ≈   

(in our solar system) and thus would have its property (mass, charge, etc.) de-
pend on this large number—which of course is not the case. 

And if we don’t want the Plank’s length (which is 1 G∞≈ ) enter into the equ-
ations of Matter, we must postulate that the Lagrangian of the Matter ( )mL  can 
not depend on magnitude of G , but only on its direction U  or it’s derivative 
′G  at least in the first order of parameter G :  

( ) ( ) ( ), , , .m mL L ′= G m U r                      (5) 

This physical picture could be compared to the description of body on the top 
of the ocean of water. It too does not include the depth of the ocean. The body 
only “sees” the result of the changing of water, which is comparable (in size) to 
the size of the body. 

We will use this requirement in the following section when we will examining 
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the form of thew Lagrangian of the Total-Matter. 
There is one more consideration—and that is Lawrence invariant—that need 

to be addressed here. Since we use a tensorial apparatus the equations of motions 
and all invariants are independent of coordinate transformation. In that sense 
introduction of additional vector field does not produce any problems. However, 
if we consider the Lawrence invariance in more narrow sense—form of equation 
in the small area where metric tensor might be considered Minkowski—then the 
equations of Matter might (it does not have to, but it might) depend on the Gra-
vitational vector G  or at least on its direction U . From philosophical point of 
view, regardless whether such dependence on Grav-vector G  (or its unit vec-
tor U ) is explicitly present or not in the equations of motion, the existence of 
Grav-vector G  by itself yields the existence one “special” system of coordi-
nates that could be called the “rest” system of coordinates. The coordinates in 
which Grav-vector G  has only time component: ( )1,0,0,0=G . 

V. Fock [28] long time ago argued that such system of coordinate must exist. 
Without it (as it is in case of GR) one cannot say if Earth moves around Sun or 
vise versa. The Newton equations might be invariant in any inertial system of 
coordinate, but we are absolutely sure that the Universe is fixed and it is we that 
move. And not other way around.  

This paper could be called “vector-metric theory of gravitation”, which 
could’ve started with postulating—instead of the Lagrangian (1) above—the 
correct Lagrangian for the grav-vector G . However, it would look totally at hog 
and without any justification. It would also leave an opened question about the 
expression for GML , which—as we will show in this paper—does not have a 
“simple” answer in the phenomenological approach above, but it does have a 
clear answer, if we consider a more general theory of Affine Connections as a 
source for derivation of the vector-metric theory of gravitation. 

By opening the scope of this paper to the level where both Gravitation and 
Electromagnetism can be derived from more general considerations, we are able 
not only to derive the expressions for GML , but to answer some unclear ques-
tions such as a) is the tensor of Energy-Momentum the “source” in description 
of gravitations as Einstein’s GR postulate? b) are Einstein’s equations funda-
mental or phenomenological (approximations); and if the latter is true, what is 
their limits—meaning can they be used for description of Universe c) is there a 
rest system coordinates? 

Also we will derive the expression for a Lagrangian that could be used for de-
scription of any system of particles—as small as atoms or as large as our Sun—as 
long as its Gravitational field can be treated as “small” in comparison to Gravita-
tional field at infinity. And by doing so we will also be able to see dependence 
the Lagrangian ML  has on the gravitational vector. 

For the majority of physicists who undoubtedly reject Eddington’s Unification 
idea strictly on the grounds that true description of matter must be Quantum 
Mechanical, may I suggest two alternative points for considerations. First, one 
can view Eddington’s description as a classical limit of quantum mechanical 
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wave functions, as it is in of electromagnetism, where electromagnetic field is a 
classical representation of quantum photons. And second, one can use Edding-
ton’s formalism as a starting point for quantization as its done for bozon quan-
tum theory, which starts as a classical non-zero mass vector field [29]. 

Here, it would be a proper place to declare author’s point of view that had 
been a main belief and a driving force in the work that is presented in this paper: 
the quantum mechanical theory is our attempt to express rather complicated 
and strictly non linear field description of matter through a linear formalism of 
wave functions. In its essence this is the Einstein point of view in his famous and 
now classical debate with Neil Bohr on the meaning of wave function. 

4. Affine Unification 

Eddington’s idea of Unifications over almost 100 years of its history took differ-
ent forms and modifications [31] geared for different applications and purposes 
[32]-[36]. However, in its original and most general form the Eddington’s theory 
of Unification [30] is characterized as universal attempt to geometrisize all 
physical forces. But this does not have to be the only possible point of view. One 
can view the pure Affine description from axiomatic point of view only as a way 
obtaining the equations of motion without any geometrical considerations what 
so ever. 

We begin by postulating that Total Matter ( )TM  is a set of functions asso-
ciated with a four-dimensional continuum and thus is characterized by means of 
parameters ( )0,1, 2,3ix i = —the coordinates. The description of Matter should 
not depend on the system coordinates and thus it should have some group 
property with respect to transition from one system of coordinate to another. 

The functions of Matter ( )TM  also must have “potential”— Γ , that is to say 
that TM  should be expressed thru a set of functions (we call “potential”) and 
its first partial derivatives:  

T T , .
ix

 ∂
=  ∂ 

ΓM M Γ                        (6) 

An example of such pair ( )T ,M Γ  could be the Eddington’s set of affine 
connections and a generalized curvature tensor built on them:  

T T
, ,;   ;   i i Ti i i i m i m

jkl jk jkl jl k jk l km jl lm jkM M≡ ≡ Γ = Γ −Γ + Γ Γ −Γ ΓM Γ        (7) 

where i
jk≡ ΓΓ  in general are non-symmetrical in low indeces. The above   

expression also could be written thru symmetric part of Γ  connections 
( )1

2

is s i i
jk jk kj≡ = Γ + ΓΓ Γ —which are affine connections—and thru anti-symme- 

tric parts of connections ( )1
2

ia s i i
jk jk kj≡ = Γ −ΓΓ Γ —which are tensors—in the 

following manner:  

,

T
, ,

;  ; ;  
i i i i i i i i s s i ss a s s a a a a s a s a s ai i
jk jk jk kj k ik jk l jk l sl jk jl sk kljk js

i i i m i m i i i m is s s s s s a a a a a ai m
jl k jk l km jl lm jk jl k jk l km jl lmjkl jkM

Γ = + = = − ≡ + − −Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ

= − + − + − + −Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ

 (8) 

where vertical bar ( )|  indicates covariant derivative of the tensor 
a
Γ  with re-
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spect to symmetrical part of Γ . 
The above expression (8) of TM  thru Γ  historically is derived from geo-

metrical considerations. And since we are not bound by any geometrical consid-
erations and because 

ia i i
jk jk kj≡ Γ −ΓΓ  is a tensor, we can consider (keeping the 

same frame-work: linear with respect to i∂ Γ , quadratic with respect Γ  and 
anti-symmetrical with respect to two low indeces “ k l− ” of the tensor Ti

jklM ) 
more generalized expression thru new set of functions, derived from Γ—vector  

a
kΓ  and anti-symmetric traceless (“atl”) in “ j k− ” indeces tensor 

iatl
jkΓ  defined 

below:  

( )
( )T

, ,

1 2 3 4

1;    ;    0
3

                 

 

i i i ia a atl a a a atli i
k ik jk jk k k ikj k

i i i m i ms s s s s si
jl k jk l mk jl ml jkjkl

i i i s s satl atl atl atl atl atli i i
jl k jk l kl j jl s jk s kl sk l j

M

δ δ

µ µ µ δ δ µ δ

= = − − =Γ Γ Γ Γ Γ Γ Γ

= − + −Γ Γ Γ Γ Γ Γ

   + − + + − +Γ Γ Γ Γ Γ Γ   
   

( ) ( ) ( )5 6 7

8 9 10

                

                 

                

a a a a a ai i i i i
j l j k l j k j k l l kk l k l j

i m i m i m s m s matl atl atl atl atl atl atl atl atl atli i
mk jl ml jk mj kl mj sl mj skk l

µ δ δ µ δ δ µ δ

µ µ µ δ δ

+ − + − + −Γ Γ Γ Γ Γ Γ

   + − + + −Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ   
   

( )
11 12 13

14 15

 

                 

m m m ia atl a atl a atl a atli i i
m jl m jk m kl j klk l j

i ia atl a atl a a a ai i
k jl l jk j l j kk l

µ δ δ µ δ µ

µ µ δ δ

 + − + +Γ Γ Γ Γ Γ Γ Γ Γ 
 
 + − + −Γ Γ Γ Γ Γ Γ Γ Γ 
 

 (9) 

where 1µ  thru 15µ  are constants. The choice of these constants is not a strait 
forward procedure. It will eventually be defined by a form of Lagrangian that 
should reflect the physical reality. We will discuss the value of the µ -constants 
mostly in the Section 8—Electromagnetic and Other Vector Fields. 

The equation of motions of the Total Matter is obtained by means of variation 
of the Lagrangian density L  that is a function of tensor TM  only and hence 
is a function of Γ  and its first partial derivatives only.  

( ) ( )T 4 4d , d ;   equations of motions : 0i
SS L x L x δ

δ
= = ∂ =∫ ∫M Γ Γ

Γ
  (10) 

The Eddington’s original idea was to equate L  with determinate of sym-
metric tensor obtain by contracting tentor TM .  

( ) ( )( ) ( ) ( ) ( )( )T T T T T1 ;   det
2

k k

Ri Ri Rijkl lkjjl
M M M L M ≡ = + =  

M     (11) 

More complex Lagrangians could be formed by contracting n-power product 
of the Matter tensor using the inverse tensor to the tensor ( )RiM  (as long as its 
determinant is not zero). This symbolically could be written as:  

( ) ( )( ) ( )( )T T T

1,2 allinv
det

nn

ns Ri Ri
n s

L λ
−

= =

= ∑ ∑ M M M


          (12) 

where index “s” varies over all possible invariants taken for each “n-power 
product” and nsλ  are some constants corresponding to these invariants. 
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It is not difficult to see that maximum power “n” includes all the terms with 
the lower powers. For example, if we choose 4n = , we automatically included 
Lagrangians with the n = 1, 2 and 3.  

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

444 T T T

allinv

T T T

1,2,3,4 allinv

det

det

s Ri Ri
s

nn

ns Ri Ri
n s

L λ

λ

−

=

−

= =

=

≡

∑

∑ ∑

M M M

M M M
          (13) 

The quadratic (n = 2) to TM  Lagrangians were extensively studied pre-
viously, but eventually dropped without much progress. 

Among the reasons for that was an assumption that, as it is in GR, the gravita-
tion is described by metric only. In this paper (as it was mentioned earlier) we 
assume that gravitation is describe by a pair metric tensor and vector field which 
value is much (much) larger than any other field. 

There are two important questions here that need be answered: a) what the 
values of “n” (including the maximum value) should be? and b) what are the 
value of the all λ -constants? 

Regarding the nsλ -constants, the procedure of determining their values is the 
following. We will consider a “small system” (say our Solar system as compared 
to our Galaxy) of Matter and will derive its Lagrangian from the Lagrangian of 
the Total-Matter (12). During this transitioning procedure we will have some 
“unwanted” terms, which—as we will see later in the Section 6—Lagrangian— 
will be of the same form for any value “n” (no matter how large “n” is) except for 
the values of nsλ -constants. And so we will require that the nsλ -constants were 
chosen in a such way that all the “unwanted” terms vanished. 

The quadratic Lagrangian does not provide enough invariants (or enough λ - 
s) to cancel all “unwanted” terms so we ought to increase n to 3. And if that is 
not enough we will increase “n” to 4 and so. With increase of “n” the number  
of invariants increases rather rapidly and it would be reasonable to assume   
that with n = 4 (or 5) all “unwanted” terms could be canceled. This however 
brings another problem: what to do if we have too many λ-s? Let say that 4n =  
is not enough, but 5n =  has too many λ-s. The obvious solution here is to ex-
clude lowest “n” numbers. That is if 2,3,4,5n =  has to many λ-s use only 

3,4,5n =   and so on. Of course we are not guaranteed that 3, 4,5n =  (or 
4,5n = ) would just perfectly enough and we would have to come up with other 

strategy to eliminate the extras λ-s. 
Jumping ahead we can say that the simple estimation of number invariants 

and the number of unwanted terms suggests that the good value for n is 4n = , 
so the Lagrangian has this form:  

( ) ( ) ( )( ) ( )( )444 T T T

allinv
det .s Ri Ri

s
L λ

−

=

= ∑ M M M             (14) 

The 4n =  is also supported by the fact that the Determinant of ( )( )T
RiM  

could be written as the 4th power product:  
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( )( )( ) ( )( )4T T 2det Ri Ri= ∑M M Δ                   (15) 

where Δ  is a Levi-Civita fully antisymmetric (all indeces up) “almost tensor” 
( ( )1 pijkl≡ ∆ = −Δ , where p ia a number of permutations going from “1234” to 
“ijkl”). 

In the end this question cannot be answered without doing actual calculations 
and/or employing some other principals for choosing the general form of the 
Lagrangian. 

So in this section we would like simply to mention some of the interesting op-
tions that we have based on solely “beauty” form. 

Among the Lagrangians of the 4th power we need to mention a particular one:  

( ) ( )( )4T 2 T

inv
dets RiM

s
L λ

=

 =   
∑ M Δ M               (16) 

where MΔ  is a fully antisymmetric Levi-Civita (all indeces up) tensor based on 

the Ricci contraction of the Total-Matter tensor ( ( )( )Tdetijkl
Ri≡ ∆Δ M . 

In this case the Lagrangian density can be also written as:  

( ) ( )

( )( )
( )

4T 2

Tinv

det
det

det
s r

s
Ri

L λ
=

= ∑
r

M Δ r
M

            (17) 

where rΔ  is a Levi-Civita tensor (all indeces up) constructed using metric ten-
sor ijr , what ever a definition of ijr  as a function of Γ  is. This Lagrangian can 
be also written as:  

( ) ( )

( )( )
( )

4T 4

T2,3,4 allinv

det
det .

det
ns

n s
Ri

L λ −

= =

= ∑ ∑
r

M r r
M

         (18) 

The beauty of the above Lagrangian is that it does have a rather attractive and 
esthetically appealing properties: a) it is minimal dependence on the tensor 

( )
T
RiM , b) its elegance and simplicity. Mathematically it almost equate tensor 

( )
T
RiM  with metric tensor r  without actually equating it. 

The above Lagrangian can be generalized to deliver much more parameters 

sλ . It utilizes not two but multiple number of “two-s” Levi-Civita tensors built 
on ( )

T
RiM   

( ) ( )( )4T 2 T

1,2
det

n n
ns RiM

n s
L λ

=

= ∑ ∑ M Δ M


             (19) 

which as before—expr. (17)—could be switched to the metric based invariants:  

( ) ( )
( )( ) ( )

1
2

4T 2

T

det
det .

det

n

n n
s r

n s Ri

L λ

−
 
 =
 
 

∑∑
r

M Δ r
M

         (20) 

Everywhere above we assumed that ( )( )Tdet 0Ri ≠M , thus sub-selecting ( )
T
RiM  

from the tensor of Total-Matter TM . There is however a possibility of Lagran-
gian which avoid this non-zero requirement, and thus putting all terms of the 
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tensor of Total-Matter on equal footing.  

( ) ( ) ( ) ( )

( )

4 41 2T 2 T 2  

where 1 permut n number

s s
s s

p

L

p

λ λ= −

′= − =

∑ ∑M Δ M Δ

Δ
           (21) 

where ( )1
sλ  and ( )2

sλ  are two sets of λ -constants—one for each “square root”. 
For example the set ( )2

sλ  could be chosen in such manner that second square  

root is a ( )( )Tdet Ri+ M . 

With our assumption that Gravitational field accumulates to a very large val-
ue, it can be shown that it is in effect equivalent to the condition that ( )

T
RiM  has 

a very large value and much bigger than any other field—  

( ) ( ) ( )( ) ( )( ) ( )
T T T T T T1 3

i i i
k lRi Ri Ri Rijkl jl jk

δ δ − ≡ − −  
M M M M M M —and thus the 

expression above could be approximately written in a form (14):  

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( ) ( ) ( )( )( )

( ) ( )
( )( ) ( ) ( ) ( )

4 41 2T 2 T 2

4 41 2T T 2 T 2

inv

4 41 2T T 2 T 2
inv

4 41 2T 2 T 2

41 2T T 2

4inv1 1 2 2T T T
0 02,3,4

det

det

det

s s
s s

s M s MRi
s s

s M s MRi s s

s M s Ms s

s s MRi s

ns
s sRi Rn

L λ λ

λ λ

λ λ

λ λ

λ λ

λ λ λ λ

=

=

−=

=

= −

 
= − 

 
 −  =

+

 −  =

+ + +

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑

∑

M Δ M Δ

M M Δ M Δ

M M Δ M Δ

M Δ M Δ

M M Δ

M M M M 

( )( )
( )( )

( ) ( )
( ) ( )( )( )

4inv T
2,3,4

T
41 2 T 2

1 1
0 0

det

s
in

Ri

s s M
s

λ λ
λ λ

−=

=

 ≈ −  +

∑

∑
M

M Δ

 (22) 

where MΔ  is a Levi-Civita tensor based on symmetrical tensor  

( )

( )( )
T

T

1 .
det

MRi

RiM

 
 

≡ 
 
 

M Δ Δ   

The above Lagrangian as we just showed will deliver the same result as the 
(14) for a “small system” of matter for which ( )RiR  locally is very large. How-
ever, it will give significantly different form for the Cosmological problem. In it 
we must assume that the “averaged” value of the Gravitational field is defined by 
all Matter and thus the assumption that ( )

T T
Ri≈M M  may not hold. 

5. Tensor Potential and Metric Definition 

Up to this point we defined the Matter and the equations of motion by means of 
only Γ  functions and without any reference to the space metric. The space me-
tric is of course needed (at lease to calculate the distances between points). For 
any given metric r  one can write the expression for Γ  thru symbols Christof-
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fel in the form (written symbolically) Tγ= +Γ P :  

( ) ( )T
, , ,

1;    
2

ii i i is
jk jk jk sj k sk j jk sjk

P r r r rγ γΓ = + = + −          (23) 

where TP  is a 3-index (1-up and 2-down) tensor, which we label a “Tensor- 
Potential” and bold upper index T refers to the fact that it’s a Tensor-Potential of 
all Matter. 

By choosing different metric tensors r  we will modify the Tensor-Potential 
TP . Our goal here to eliminate some of the component of the tensor TP  and by 

doing so to replace some of the TP  with description by metric r . This of 
course must be done in tensorial manner—certain components of the tensor TP  
should vanish. 

From (23) it’s clear that it will lead to a set of first order partial equations with 
respect to the metric tensor r . The question here is how many component—or 
independent equations on ijr —could we eliminate? There are 10 functions in a 
metric tensor r  and it seems logical that the number first order partial deriva-
tive equations should be 20. But here comes a consideration that the equations 
for r  are written in covariant (tensorial) form. This means that they include 4 
arbitrary functions of transformation from one system coordinate to another. In 
order to account for that the logic here should be modified as following. There 
are 6 independent functions in a metric tensor r . Hence there should be twice 
that many (12) equations of the first order of partial equations for the r . But 
since they are written in covariant way (in any system coordinates with 4 arbi-
trary functions) then the number of equation should increased by 4 to 16. 

In order to identify those 16 functions we will decompose the tensor Ti
jkP  on 

some its components. After lowering upper index with metric tensor r  (to be 
the first low index)— ( )T T m

ijk mijk
P P r= —we can split the tensor T

ijkP  on 4 vectors 

iG , iB , iE , iD  and 3 traceless 3-index tensors—fully symmetrical tensor 

ijkN  and two torsion type (asymmetric in indeces jk ) tensors  

( )ijk ijk ikjK K K= −  and ( )ijk ijk ikjC C C= − . If decomposition of 
Ta

P  is unique, it 

is not so for the symmetrical in low indeces part of 
Tsi

jk
 Γ −  
 

P . Its generic de-

composition form can be written as:  

T T T T T TT T

T
T

1 2 2

T T T

;   

1 π

where    traceless : 0; 0

s a s s a am
ijk ijk ijk ikj ijk ikjijk jk mi

s s tl
ijk ijk j ik k ij i jk i j k j ik k ij i jk

s tl s tl s tlij jk
ijk ijk ijk

P P r P P P P P P

G r G r G r G G G B r B r B rP P
G

r rP P P

π π
−

− − −

≡ = + = = −

= + + + + + + +

= =

 (24) 

where for definition of vectors G  and B  we get these two equations:  
( ) ( )

( ) ( )
( ) ( )

( ) ( )

T 1 T 1

1 2

T 2 T 2

1 2

5 5

2 4 2 4

s s ij
k ijk k k

s s jk
i ijk i i

r G BP P

r G BP P

π π π

π π π

≡ = + + + +

≡ = + + + +

          (25) 
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The above decomposition is reversible if the determinant is not zero in which 
case iG  and iB  are given by this expression thru symmetric part of the Ten-

sor-Potential 
Ts

P :  

( ) ( )1 218 3 1 0π π π π− + − ≠                   (26) 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

T T

1 2

T T

min1 2 1 2

1 2

2 4 5
;

18 3 1

2 4 5
18 3 1

s smn mn
nim imn

i

s smn mn
imn

i

r rP PG

r rP PB

π π
π π π π

π π π π
π π π π

+ − +
=

− + −

− + + + + +
=

− + −

 

Most of this paper we will assume that 0π = , ( )2 13 1π π= − +  and 1π  is 
either root of this this quadratic equation: 2

1 13 3 0π π− − = , so  

( )1 3 21 2 3.8π = + ≈  or ( )1 3 21 2 0.8π = − ≈ − . 
The fully symmetric tensor ijkN  and torsion type tensor ijkK  expressed 

thru symmetric and traceless (“s-tl”) 
Ts tl
ijkP

−
 as:  

T T T

T T

1 0
3

1 ;   0;   0
3

s tl s tl s tl jk
ijk ijk ijkijk ijk

s tl s tl ij ijkl
jik kijijk ikj ijk ijk

N N rP P P

K K K r KP P

− − −

− −

 
= + + =  

 
 

= − = − = ∆ =  
 

       (27) 

For the decomposition of anti-symmetric part of the Tensor-Potential 
Ta
ijkP  

on two vectors iD  and iE  (which is actually fully antisymmetric tensor) and 
torsion type tensor ijk ikjC C= −  we have”:  

( ) ( )
( )

( )

T

T T

det

;   0;   0  where  1   -permutation

1 1 1  and  
3 6 det

a mn
ijk ijk k ij j ik n ijkm ij

pij ijkl ijkl
ijk ikj ijk ijk

s tl aij mnst
ijk nsti i im

pq

C D r D r E r rP

C C C r C p

D r E rP P
r

−

= + − + ∆

= − = ∆ = ∆ = −

= = − ∆

 (28) 

The important fact here is that the vectors G , B , D , E  as well as the 
tensors N , K , C  are fully defined by the tensor potential TP  or its symme-

tric in and anti-symmetrical parts 
Ts

P  and 
Ta

P . 
Because of their “traceless” properties the 3-index tensors N , K  and C  

consists of 16 (exactly as we need) independent functions. We will use this fact 
and will define metric tensor r  in a such way that one of these 3-index tensors 
is eliminated. 

There are two ways of doing it: a) to set the tensor N  to zero, b) set K  to 
be proportional to the tensor ( )0µ=C K C . If 0µ  is zero we effectively elimi-
nate the tensor K . In this paper we choose the case “b” with non-zero 0µ . The 
reason for that is that the case “b” leads to linear system of equations with re-
spect to metric derivatives ( )′r , which is not true for the case “a” due to the 
presence of the i j kG G G  term in expr. (23). This leads to 16 linear first order 
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differential equations for the metric tensor r  thru affine connections Γ . 
Thus we replaced a part (16 components) of the tensor potential TP  with 10 

components of metric tensor, making the latter a dynamic variable along with 
remaining 48 components of the tensor TP : 16 for each tensor N  and C  and 
16 for four vectors G , B , D , E . 

For the sake of being “complete” we need here to mention that the equations 
for metric should also include a term “conjugate” to the tensor r−C Δ C , which 
will not change significantly their form (its linearity, etc.):  

( )
0 0 0 0

1ˆ ˆ or symbolically .
det

P mnp q
ijk ijk im jn kp q

ij

K C r r C
r

µ µ µ µ ∗= + ∆ = +K C C  (29) 

After defining metric r , we can transfer Eddington pure affine formulation 
into a more physically familiar metric-Matter formalism.  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 T T T T T T

1, inv
d with det

nnn n n
s Ri Ri

n s
S x L L λ

−

= =

    = =      ∑ ∑∫ M P M P M P


 

(30) 
where the tensor of Total-Matter TM  is now be written thru metric r , Rie-
mann curvature tensor R  vectors G , B , D , E  and 3-index tensors N , 
C . And the equations of motions for each variable is obtained by variation of 
Lagrangian (30) above by these variables.  

We now attach some physical meaning to the fields. Or to be more accurate 
we try to identify which of 4 vector fields is the Gravitational field. The main 
property of gravitational field—and this is our main postulate—is that it is asso-
ciated with every mass particle (proton, etc.) and does get accumulated and 
reaches very large value, which is much bigger that any other field. Thus in the 
vacuum the Total-Matter consists only of that field. Since in general, the tensor 
of Total-Matter has quadratic form, it clear that the Gravitational field in va-
cuum should be represented by the square of one of the vector fields. 

Between 4 vectors G , B , D  and E  the last three ones should be rejected. 
The reason for that is the requirement—see Equation (12)—that ( )( )Tdet 0Ri ≠M . 
But in a case of constant field and flat space—which is always the case in the in-
finitely small area—the ( )( )Tdet RiM  for either vector field— E , D  or D —is 
zero. 

For example, calculations for the quadratic terms of the vector field D  the 
Total-Matter—see expr. (9)—has this form: ( )15 j l ik j k ilD D r D D rµ − . The tensor 
of Ricci for the Total-Matter for only constant vector D  has this form:  

( ) ( )
( )( ) ( )

( )
( )( )

T T
15 15

T

3 ;   

and  det 0.

D D ik
j l ik j k il ijkl j lRi jl

D
Ri jl

D D r D D r M M r D D

M

µ µ− => ≡ =

  =  

     (31) 

Similarly, is true for the vector E . The tensor of Total-Matter for only E  
field (its quadratic terms) has this expression:  

( ) ( ) ( ) ( ) ( )

( )
( )( ) ( ) ( ) ( )( )

T 2
7 8 9

2T T
7 8 9 det 0

E
ijkl ik jl il jk ik j l il j k jl i k jk i l

E
jl j l RiRi jl jl

M E r r r r r E E r E E r E E r E E

M E r E E M

µ µ µ

µ µ µ

 = + + − − − − − 
  = + + − => =    

 (32) 
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Calculations quadratic terms for the vector field B  produce the following 
result for the tensor ( )

( )( )T B
Ri jl

M :  

( )
( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )
( )
( ) ( ) ( )

( ) ( ) ( ) ( )

T
T T T T T

2 2

T 2 2 2

8 3T 3

;   

  3 3

det 3 3 1 0  for  0

i m i mBs s s s sB B B B B
ijk j ik k ij i jk ijkl

km jl lm jk

ik jl il jk ik j l il j k i k jl i l jk

B
jl j lRi

Ri jl

B r B r B r MP P P P P

B r r r r r B B r B B B B r B B r

M B r B B

M B

π

π π

π π π

π π π π

≡ + + ≈ −

 = − + − + − 
 + + − 

 => = − + + = = 

 (33) 

Instead of 0π = , we could take 3π = − , which also makes the determinant 
zero. The 1π = −  is not allowed, because with requirement 2 13 3π π= − − , the 
presentation (26) is not possible. 

On the other hand similar calculations for the vector G  yield this result:  

( )

( )
( )

( ) ( ) ( ) ( )

( ) ( )( )
( )( )

T
T

1 2 2

T T T T

2
1 2

1 1 2

;

        

        1

            

       

Gs i j k G
ijk j ik k ij i jk ijkl

i m i mG G G Gs s s s

km jl lm jk

ik jl il jk ik j l il j k

i k jl i l jk

G G G
G r G r G r MP

G

P P P P

G r r r r r U U r U U

U U r U U r

π π

π π

π π π

≡ + + +

       
≈ −       
       

= − + + −
+ + − 

( )
( ) ( ) ( )
( )

( )
( )( ) ( )

T 2 2 2
1 1 1 2 2 1 1 2

2 1

T2 2 2 T
1 1 1

 3 3 3

with  3 1   

and  3 3 0 2 det 0

G
jl j lRi jl

g
jl Ri jlRi jl

M G r U U

M G r M

π π π π π π π π

π π

π π π

 => + + + + − − 
= − +

 − − = => = − ≠ 

 (34) 

And so we identify vector G  with gravitational vector. It is associated with 
every mass-particle (electron, proton, etc.) and, as we postulated in the begin-
ning of the paper, its value is accumulated to reach a very large number. So it 
must be a time vector. If it were a space-vector then for closed Universe (3D 
share with respect to spacial coordinates) it would cancel itself out and would 
have the value zero, which would be a contradiction of our postulate. 

For any given “isolated” (non interacting with other particles) system of par-
ticles the value of the gravitational field depends on two things: a) its value at in-
finity—the back-ground value associated with all the particles outside the system 
and b) by the value of the mass-particle that are in consideration (such as Solar 
System). The square magnitude of this vector 2G  as we postulated before de-
fines the value of Newton Gravitational Constant accordingly this expression:  

3

2N
cK
G

=


. 

As far as the Electromagnetic field, its identification is not as straight forward 
as one would hope and as we will discuss it in more details in Section 8—Elec- 
tromagnetic and Other Vectors”, but for now we choose the vector E  to re- 
present Electromagnetic field. 

The 3-index tensors N  and C  should be associated with mass-matter such 
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as electron, protons, etc. We must emphasize the fact that this is a field approach 
to the description of Matter, which requires that these functions were strongly 
localized. 

Jumping ahead we can say that equations of motion for these functions ( N  
and C ) are strictly non linear due to the fact that tensor of Total-Matter is 
proportional to a square of Tensor-Potential TP  and thus square of N  and 
C . The Lagrangian of the mass-matter, as one would expect, will be proportion-
al to the square Total-Matter TM , will contains terms of fourth power with re-
spect to 3-index tensors N  and C . Instead of using two 3-index tensors N  
and C  we—whenever it makes sense and specially in symbolic writing—will 
refer to a generic term H  defined as a “pair” of tensors ( );≡H N C . Or equi-
valently we can introduce one complex 3-index tensor H  (and 

∗
H  for com-

plex conjugate) with its real part to be N  tensor and its imaginary part the 
tensor C .  

2;     1ijkijk ijk ijk ijk ijk ikjH N iC H N iC H i
∗

≡ + ≡ − = = −          (35) 

which gives an alternative way to write the equations for the mass-matter—simi- 
lar to Quantum Mechanics.  

The equations of motions for each variable can be obtained by means of varia-
tion of the Lagrangian density L  with respect to each particular variable— 
metric tensor r , 4 vectors G , B , D , E  and two 3-index tensors N , C . 

In general this equations are linear second order partial derivatives with re-
spect to each variable. But they are non-linear with respect to the first order de-
rivatives since TM  comes in the “n” ( )2n >  power in Lagrangian (30). If we 
are interested to write equations for the Universe, we would have to do an aver-
aging procedure for the matter (all fields), similarly to the way statistical physics 
derives its equations from basic Newton’s laws and equations. 

There are couple issues in above described scheme. The above equations don’t 
look like the “typical” field theory equations of physics today, which are linear 
with respect to both second and first derivatives on unknown variable. There is 
also an issue of unknown parameters “n” (maximum “n”) and nsλ  of expr. 
(30)—or just parameters sλ  if “n” is fixed to one value (say 4n = —which de-
termine the exact expression for the Lagrangian. 

Both of this problems could be rectified if we try to consider a “small” isolated 
system of particles and try to simplify the Lagrangian (30) using a “small” fac-
tor—small number of particle with respect to the number of particle in Galaxy 
or Universe ( )sys galN N . The original Lagrangian presented as a series by 
parameter sys galN N . should lead to a standard Lagrangian of known in physic 
theories: Maxwell theory in case of Electromagnetism (vector field E ) and 
Einstein type equations (may be with the dark matter) for the metric tensor r . 

It is natural to assume that in this procedure—transferring from general La-
grangian to a “small system” Lagrangian—there will be some “unwanted” and/or 
unphysical terms that should be vanishing. This will set some requirements on 
the parameters nsλ , which should lead to a set of equations on these λ ’s that 
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will determine their actual values. 
What important here is that this procedure will also deliver Lagrangians (and 

thus equations) for “other” 4 fields—2 vectors B , D , and two 3-index tensors 
N , C . And that is the benefit of the “Unification” procedure. 

In this scheme (procedure) we are allowed to eliminate some terms (almost at 
will), but we are not allowed to add any terms that we would like to have. The 
Eddington Affine unification is the only basis for all the terms that could be 
available in the final field theory of the Matter. And as we will show it would be 
sufficient enough to generate both Gravitational and Electromagnetic theories. It 
also will generate the field theory (albeit non linear) for the mass-matter (pro-
ton, electron, etc.). 

Per our main postulate that the Gravitational vector G  has much greater 
value than any other field, we can separate the Total-Matter Ricci tensor—

( ) ( )
T T
Ri Ri jlM≡M —on large Gravitational field G  and the “conventional” Matter  

( )RiM  and write it as a series with respect to the parameter ( )ij
i jG G G r=G :  

( ) ( )

( ) ( ) ( ) ( ) ( )

T 2
1 1 2

2
2 1 1 2

3

3 3

jlRi jl

j l jlRi Ri jl

M G r

U U GQ M

π π π

π π π π

= + +

+ + − − + +P P
    (36) 

where jlQ  is a tensor proportional Tensor-Potential P , which represent the 
Matter in a way we understand it—that is all the Matter TM  without the Gra-
vitational vector G . 

So for the “small system” of isolated Matter (or in vacuum, where 0=P ) in 
the first order of approximation the Ricci contraction ( )( )T

RiM  has this expres-
sion:  

( ) ( )
( )

( )

2
2 1 1 2T 2

1 1 2
1 1 2

3 3
3 .

3jl j lRi jlM G r U U
π π π π

π π π
π π π

 + − −
 ≈ + + +

+ +  
     (37) 

It would seem to be logical to choose parameters 1π  and 2π  to be such that 
the term proportional to j lU U  vanishes.  

( )

2
T 21 1

2
1 1

3 6
  and  

3 3 jlRi jlM G rπ π
π

π π
−

= − ≈ −
− −

             (38) 

In this case the Lagrangian and the equations of motion for the Tensor-   
Potential P  in the first order of approximation are governed by metric tensor 
r . If we add to this requirement an other one: ( )2 13 1π π= − + —which as we 
will see in the section “Electromagnetic and Other Vector Fields” is dictated   
by the desire to obtain description for Electromagnetic field in Maxwell form  
(or almost Maxwell form)—we will have this equation for 1π  constant: 

2
1 13 3 0π π− − = . 
As we will see it later, the truly must requirement out above two is the last 

one: ( )2 13 1π π= − + . The first requirement 2
1 3 3 0π π− − =  it’s not that im-

portant, but it makes the presentation a visibly “better looking”. 
In the end of this section we would like to note that if more rigorous analysis 

shows that 16 equations (29) is not enough for complete definition of the metric 



B. Hikin 
 

201 

r , we can always add 4 more linear equations corresponding to setting the vec-
tor B  to zero. 

6. Lagrangian of a “Small System” of Matter 

In this section we will derive the Lagrangian of a “small system” of Matter and by 
doing so try to determine the requirements for determining the λ -parameters of 
the general Lagrangian (30). 

We begin this procedure with setting a small parameter and writing the La-
grangian in the series with respect to it. In our case the small parameter is 

sysN N , where sysN  is the number of particles in the “small system” and N  
is the number of particles outside of our “small system” that create the back-
ground metric. The small parameter can also be expressed in terms of Grav- 
vector G . Our main postulate is that the gravitational field generated by all 
particles accumulates and reaches very high value. “Small” here means that the 
collective gravitational field of the “small” system is much smaller than the value 
of the gravitational field created by all the particle surrounding (outside) our 
“small” test system. In this case gravitational field of the outside (the Galaxy or 
the Universe) particles could be considered constant and equal its value ∞G  at 
infinity of “small system”. The total then Gravitational field G  of our “small 
system” can be written as ∞ +G G  and ∞G G

. 
As the first step of the procedure we should write the tensor of Total-Matter 

( )TM  and Ricci Total-Matter tensor ( )
T
RiM , defined by expr. (9) as a series by 

parameter G —the magnitude of vector G  thus separating out large Gravita-
tional field and the rest of the Matter. For tensor potential TP  we have:  

( ) ( ) ( )T
1 2 2  where  i j kG i G G mi i

jk jk jk ijk jk im j ik k ij i jk

G G G
P P P P P r G r G r G r

G
π π= + ≡ = + + +  (39) 

where ijkP≡P  is a Tensor-Potential of the Matter defined as the Tensor-   
Potential of the Total-Matter without the gravitational field G . Using the above 
and the definition (30) we can produce the expression for the Total-Matter TM  
presented by the components that depend on vector G  and the rest of the 
matter presented by the tensor M :  

( ) ( )

( ) ( )( )
( )( )

( ) ( ) ( )

T 2 T 2

1 2

1 1 2

; ; ; ; 1 ; ;

  or  

with

1

           

ijkl ijkl ijkl ijkl ijklijkl

ijkl ik jl il jk ik j l il j k

jl i k jk i l

ijkl j k jl j l ik i k jl i l ik l k k l ij

G G M M D I DQ M G R

I r r r r r U U r U U

r U U r U U

G G r G r G r G r G G r

π π

π π π

π

′ ′= + + + + = + + + +

≡ = − + + −

+ + −

′ ′≡ = − + − + −

M I Q P G R

I

G

2 2 2
; ;

        i j l i j k

k l

G G G G G G
G G

π
    

+ −    
     

      (40) 

( ),, , , ,
1and   
2 mk j

m
ijkl mi jkl

i i i i m i m i im
jkl jl k jk l mk jl ml jk jk mj k jk m

R r R

R r r r rγ γ γ γ γ γ γ

≡ =

= − + − = + −

R
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where U  is a unit vector of G , i
jklR≡R  is a standard Riemann geometric 

curvature tensor defined by metric of the space ijr≡r  and the tensor of Matter 
M  is defined the same way as the tensor TM  except to the presence of the  

Grav-vector G — ( ) ( )T T

0=
≡

G
M P M P . 

Tensor Q  is a linear function of the tensors P  (or its patrs 
s
P  and 

a
P ) and it is 

formed when we calculate the quadratic terms of expr. (9) 
T T T Ti m i ms s s s
mk jl ml jkP P P P

 − 
 

 as 

well as covariant derivatives for 
Ta

P  associated with parameters 1µ  thru 7µ  

(such as 
T Ti is s
jl k jk lP P− ). The exact expression for Q  is rather lengthy and will be 

given later. The important part is that it linearly depends on the fully symmetric 
tensor N , torsion type tensors C  and depending on the choice of parameters 
µ -s (as well as 1π  and 2π ) it might also include the vectors B , D , E . 

The tensor of Matter is defined the same way as the tensor TM  except 
without the vector G  and depends only on two traceless 3-index tensors N , 
C  and 3 vector field B , D , E . At this point the exact expression for the 
tensor of Matter M  as a function of the 3-index tensors N , C  and the vec-
tor field B , D , E  is not important and and will be considered in more details 
in the following sections. However it needs to be mentioned that they are deter-
mined by (describe by) the “small system”. 

The expression for TM  above seems to imply that values the terms ′G  and 
R  are of the same order of magnitude as the terms of the “small system” Matter 
M . This is actually not the case. According to Einstein’s General Relativity (and 
there is no reason to doubt it as a first order approximation) the metric tensor  

r  is a small deviation from the Minkowski space: 00 21 N p pK N m
r

c ρ
= − , where ρ   

is the distance from the Mass, pm  is a proton’s mass and pN  is the number of 
particles. Metric is defined up to the constant and if we consider 2

ij pr L  instead 
of ijr  (where pL  is a Plank length), we will get this expression for the metric as 
a function of the distance ρ  [36]:  

3
sys sys

00 2

1 where  is atomic lengtha
N a a pp

N Ncr L
K L L cmLρ ρ

= − = − =




   (41) 

This expression gives a good (except for the sign) physical description of the 
metric. It splits it on two part: metric at an infinity and the metric due to the 
presence of the matter only—the form one would expect to see in any linear ap-
proximation. From the expr. (41) follows that written in this form the metric 
tensor r  has units 21 cm , which well with an agreement with the Einstein eq-
uation for the ( ):ij ij ijr r T∂∂ = , where Energy-Momentum tensor is expressed in 
the units c  and thus has units 41 cm ). Another words the correct way to 
write approximate linearizion (with respect to the large parameter 2G ) of me- 

tric is 
2

ij
ij ij

r
r

G
δ= + , where ijr  is the metric defined by the “small system”.  

From this follows that the Riemann tensor 2
ijkl ijklR R G≡ ≈R . So if we intro-
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duce a new tensor 2G G=R R  it will be of the order of magnitude of the Matter 
that created it. So we can write the last term of (40) as:  

2
2 2  where    or  symbolically  .

G G
ijkl G

ijkl ijkl ijkl

R
R R G R

G G
≈ = =

RR       (42) 

We should expect similar situation, if consider a gravitational field G , that is 
extremely large at infinity (created by outside mass—Galaxy or Universe). But if 
we write a similar expression for vector G  (for its time component 0G ),  

which has units of 1
length

, we run into a bit of trouble:  

3
sys

0
1 .    is Plank length.p

p N

N cG L
L Kρ

= + =


           (43) 

Substituting in this formula values for our Solar system—1057 number of par-
ticles of Sun, 108 km for the distance to the Sun—we will get that “an addition” 
due to Solar system is several orders of magnitude higher that the value at infin-
ity: 331 10 1 cmPL =  and ( )57 13 4410 10 1 cm 10N ρ = = . 

This problem can be removed is we assume that the vector that defines the 
“addition” of Grav-field is not the vector G , but its “square” i iS GG= . In this 
case for the total value of the vector S  we have the expression similar to the 
metric tensor component 00r :  

sys
0 2

1,    where   ;    .a
a pp

N
S S S L

L cmLρ∞ ∞= + = =
            (44) 

Taking this into a count we can rewrite ′G  in the form ′S  that reflects its 
proper value with respect to the magnitude of the vector G .  

( )

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

; ;

; ;

; ; ; ; ; 1 ;

       

where  

G
ijk j ik k ij i jk i j k

S
j ik j ik j ik i j k ijk

S S S
ijl ijk ijklG G G

ijkl ijl k ijk l

k l

S
ijkl i k jl i l i jk j k il j l ik l

P G r G r G r GU U U

S r S r S r SU U U P
G G
P P M

M P P
G G G

M S r S r S r S r S

π π

π π

π

′
′

′

≡ + + +

+ + +
= ≡

   
   = − = − =
      

= − + − + ( )
( ) ( ) ( )

( )

;

2 ; ; ; ; ; ;

1 2 ;

1 2

                         [

1                         
4

1                         
4

k k l ij

i k j i l k l j k l j l k i l k k l j j

m
i jl j il l ij i j l m k

i jk j ik k ij i j

S r

S U S U U S U S U U S S U U

U r U r U r U U U S U

U r U r U r U U U

π

π π

π π

−

+ − + − + −

− + + +

+ + + +( ) ;
m

k m lS U

(45) 

In this form the term ( )S
ijklM ′′ ≡S  is defined by the “small system” in consid-

eration and the factor 1 1
G G∞

≈  defines the “scale” as compared to the “small  

system” terms. Taking into considerations expr. (42) and (45), we can write the 
tensor of Total-Matter TM  (expr. (40 line 1) in this symbolic form:  
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T 2
2

1 1 .GG G
G G

′= + + + +M I Q M S R               (46) 

Thoughout this paper we will use square-vector S  when we are dealing with 
′S  variable and we will continue to use scalar ( )2 i

iG G G=G  to indicate the 
scale in the series decomposition. 

The next step in writing the Lagrangian (30) is to calculate the Ricci ( )
T
RiM  for 

TM   

( ) ( )T T T1 .
2

m m
jml lmjRi jl M M= +M                    (47) 

The tensor ( )
T
RiM  can be calculated using expr. (46) and symbolically written 

as:  

( ) ( )
( ) ( ) ( ) ( )T 2

2 3 4

G
Ri Ri Ri Ri

Ri RiG
G G G G

 ′
 = + + + +
  

Q M S R
M I            (48) 

where all “ ( )Ri ” tensors are 2-index symmetrical tensors. For I  and ( )RiI  
tensors we have:  

( ) ( )( )
( ) ( ){

( ) ( ) ( )
( )

2
1 2

1 1 2

2 1 1 2
1 1 1 2

1 1 1 2

1

                       

3 3
3 .

3

ijkl ik jl il jk ik j l il j k

i k jl i l jk

jl j lRi

I G r r r r r U U r U U

U U r U U r

r U U

π π

π π π

π π π π
π π π π

π π π π

≡ = − + + −
+ + − 

 + − +
= + + +     + +  

I

I

     (49) 

And using 
2
1

2
1

3
3

π
π

π
−

= −
−

 we get these expressions for I  and ( )RiI :  

( ) ( )( )
( ) ( ){

( )

2
1 1

1

1

1

1

3 1
                           

3
8 .

ijkl ik jl il jk ik j l il j k

i k jl i l jk

jlRi

I G r r r r r U U r U U

U U r U U r

r

π π

π
π

π

≡ = − + − −
− 

+ − − 
= −

I

I

      (50) 

And finally in order to write the Lagrangian (30) we need to calculate the 

( )( )Tdet RiM . For our purposes it would be enough to have its first two orders of 
approximation: The expression for ( )( )Tdet RiM  can be explicitly calculated us-
ing the above expressions:  

( )( ) ( )
2T 2

2 3

1det Ri

K KK
G K

G G G

+ 
= + + + 

  

MQ Q
IM 

         (51) 

where IK , KQ , 2K
Q

 and KM  are all invariants of appropriate terms of the 

( )
T
RiM  tensor. We note that in the expression above the invariant KI  after of 

being pulled out square root could be simply omitted. This effectively the same 
as setting IK  to 1. Also we need to point here that because in the expr. (48) 
terms containing ′S  come only with a factor 31 G , as it will be shown later, 
could be ignored. 

Using all that we indicated above we can now calculate the Lagrangian density 
for the “small system” as a series by parameter G : 



B. Hikin 
 

205 

( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

T T T

1,2 allinv

4
2 2 3 4 2 3 4

, inv

det

1

nn

ns Ri Ri
n s

nn
Ri Ri Ri Ri

ns
xn s

L

K KG r
G G GG G G G G G G

λ

λ

−

= =

−

=

=

 ′ ′ 
 = + + + + + + + + + +  
      

∑ ∑

∑
GG

Q M

M M M

Q M S RQ M S RI



 (52) 

Opening all the square parentheses we can present the Lagrangian density in 
explicit form of series with respect to parameter G. 

First we need to point out that since I  is a tensor compose of the metric 
tensor ijr  and a pair of unit vectors i jU U , its any power ( nI —any n) also will 
be compose of of the same two tensors r  and UU . Another words, in sym-
bolic writing n =I I . In second, since “ ( )Ri ” is a form contraction, then writing 
in symbolic form we can drop the “ ( )Ri ” identification. It is not difficult to see 
that the final expression (in symbolic writing) has the same form for any “n”. As 
we will see in the next paragraphs there will be some unwanted terms that we 
would require to vanish. By increasing the number “n” we increase the number 

nsλ  of coefficients and thus make it possible to vanish those unwanted terms:  

( ) ( )
[ ]{ } ( ){ }

( ) ( ) ( ) [ ]

4 3 2 2 3

inv

2 2 4 3 2 2

23 2 2 3 2

2 3

1  

]
  

ns
n s

C

F

L G G G G

G

G G

λ
=

 ′≈ + + + + + + 

  ′ ′+ + + + + + + + + +   
   ′ ′+ + + + + +  + + 
  

∑∑
A

G G
B D

G

Q M Q S MQ Q

M MQ Q R S Q Q M QM S Q M QR

M Q M S S QM Q R M Q


 

(53) 

where we labeled some bracket with a sub-script [ ]A
, [ ]B

, etc. for easier 
identification. 

The main experimental fact of the physics today is that the law of nuclear phys-
ics do not depend on the gravitational field. Meaning that if we set a (non moving) 
lab near our Sun or on a satellite at the edge of Solar system we will observe the 
same (or almost the same) physics law and measure the same proton mass and 
charge and the same quantum levels for hydrogen as we see them on Earth. 

That means that the most significant term in the Lagrangian above should be 
the terms with the square of first derivatives of Tensor-Potential ( )′P P  or the 
terms 2M . That also means that all the terms in the square bracket [ ]A

— 
which much higher order of magnitude—must vanish. This can be achieved by 
choosing appropriate constants nsλ  and µ -s of expr. (53). After dropping 

[ ]A

 terms, we get this expression for the Lagrangian density:  

[ ]

( )

( ) ( ) ( ) [ ]

2 2 4

,

3 2 2

23 2 2 3 2

3

 

]
 

ns
n s inv

L

G

G

λ
=

 
  ′≈ + + + +  

 
   ′+ + +     + +  

   ′ ′+ + + + + +  + + 
  

∑ G
B

C GD
E

G
F

2

M MQ Q R S Q

Q M QM S Q M
QR

M Q M S S QM Q R M Q

G


 (54) 

Similarly, the most important terms that contain square ′S  (the quadratic 
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terms) are proportional to the factor 21 G . However, there are ′S  terms that 
exist in the brackets [ ]B

 and [ ]D
, which come into the Lagrangian with  

much higher factor of the parameter 2

1
G

. For that reason all the terms in the  

brackets [ ]B
 and [ ]D

 must vanish. In addition, because the equations of 
motion for the Tensor-Potential P  is defined by the terms 2M , the terms in 
the square bracket [ ]C  and [ ]F

 which come with much smaller factor 
1 G  and 21 G  respectively could be dropped as well as the all terms with the 
factor 31 G  and smaller. And finally, as we will show few paragraphs below, 
the Lagrangian GR  is of order 21 G . However the terms   

GQR  in the 
bracket [ ]E

 come with a factor 1 G  and thus much higher order. This 
means that the terms in the bracket [ ]E

 must vanish. Not all these additional 
requirements are new. For example, it can be shown (as we will see in few para-
graphs later) that using partial integration the the terms ′S Q  could be written 
as a sum of the terms in the brackets [ ]A

 and the terms proportional to 
21 G . 

After dropping the “unwanted” terms and restoring the summations by 
“power n” and by all invariants, we will have this expression for the Lagrangian 
of the Total-Matter of the “small system”:  

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 4

1,2 inv 1,2 inv

2 3 2

2
1,2

  

M R
ns ns

n s n s

S R
ns

n s inv

L

G

λ λ

λ

= = = =

′

= =

≈ + + +

′ ′+ + + +
+

∑ ∑ ∑ ∑

∑ ∑

G

G

M MQ Q R

S S MQ Q R Q M

 



      (55) 

In the expression above we sub-divided the Lagrangian on three groups of 
terms separated by Σ  signs. The first group represents the Lagrangian of the 
Matter, the second one is similar to Einstein Lagrangian and includes the curva-
ture tensor R  (actually 2=GR G R ) by itself and the third group has the terms 

2′S  as well as the curvature terms in a product with “mass-matter” terms. The 
latter comes with a very small factor 21 G . We must remember that all inva-
riants in expr (55) are formed by either metric tensor ijr≡r  or by a pair of 
u n i t  
vectors i jU U  or by both simultaneously (ex. jk i l

ijklR r U U ). The second group 
of terms consists of only two terms: ( ) ( ) 2

1 1
R R jl

jlG R rλ λ≡GR  and  
( ) ( ) 2
2 2

R R i j
ijG R U Uλ λ≡GR . It is not difficult to show that the term i k

jkU UGR  be-
longs to the terms ( )2′S  and thus could be combined with them, or effectively 
dropped. The term, ( )

1
R Rλ , is in fact the Einstein scalar curvature invariant. It is 

important to point out that existence of this term is absolutely essential. With 
out it, as can shown (see section “Gravitation”), the equations of motions for the 
metric r  are incomplete. So before we continue, we need to demonstrate that 
there is at least one invariant in the expr. (30) that yields the Einstein invariant 

2G R . And because we are interested only in terms GR  we can consider it in 
vacuum or effectively drop all other variables (set P  as well ′S  to zero). 
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Let us consider the following second order ( )2n =  invariant with  

( )( ) ( )( ) ( )( )
( )

( ) ( )( ){

2
2 1 1 1

11T T T

T 2 T 2
12 2

2
1 2

3 3   3 3 0 :

) ) det   where

;   2   and

1

                

i l jk mn
jkl mni RiRi Ri

ijkl jlik
ijkl ijkl ijkl jlRi jl

ijkl ik jl il jk ik j l il j k

L

R R
G I M r G r

G G
I G r r r r r U U r U U

π π π π

π

π π

−−

= − − − − =

=

   
= + ≡ = − +   

   
= − + + −

+

M M M M M

M M

( )( )}1 1 2 i k jl i l jkU U r U U rπ π π+ −

   (56) 

Our goal here is to calculate the linear with respect to Riemann curvature R  
terms. Strait forward calculations give this result:  

( )

( ) ( )

1
1 1 2

1

1 1 1 2

22
ˆ

2ˆ ˆ  2[ ]
ˆ

6 ˆˆ      ;    3 ;
3

3 1

i l jk mn i l jk mp nq
jkl mni jkl mni pq

i l i l jk mp nq
l i l mni pq

i i jk i i
l jkl l U l

U

L I R r r I I r R r r

I R I I r R r r where

I I r U Uδ δ

π

π
π

π π δ π π π π π
π

π π π π π

 ≈ −  

= − +

= − ≡ = + = + +
−

= + + +

   (57) 

Continue with calculation of L we get:  

( )

( )( )1 1 2

1 2 1 2
1 1

1 ˆ2
ˆ

2
ˆ

2 1
ˆ

1 1
2 1

ˆ ˆ

i j l i jk
U ij U i jkl

i j l i jkU
U ij i jkl

i j l jkU
U ij i

i k
U jk

L R R U U R U U I R

R U U U U I R

R U U R U U R

R R U U

δ δπ π π π π
π

π
π

π
π

π π π π
π

π π π π
π π π

π π

 ≈ − + + − +  
 = − +  
 = − + + + −  

 + + + +  = − + −  
  

     (58) 

Thus we showed that the terms 2G R  is possible.  
In addition this term has one more “interesting” property. Even though the 

tensor 2G R  is about the same order of magnitude as the Matter of “small sys-
tem” that defines it— 2 1G ≈R —the Lagrangian of scalar curvature— 2G R —is 
of much small order of magnitude 2 21G R G≈  (as it is in General Relativity). 
The reason for that is that the highest values of of 2G R  are in second deriva-
tives of metric, which can be converted (by way of partial integration) to a sur-
face integral, or in a effect dropped. That leave the the Lagrangian 2G R  to be 
proportional to the square of first derivatives of metric and that means to be 
proportional to the ( )221 G , which makes that Lagrangian 2G R  to be of the 
same order of magnitude as the rems ( )2′S  Taking this into a account we can 
write the final expression for the Lagrangian of the Total-Matter as composition 
of the Lagrangian of the Matter and of the Gravitational Lagrangian:  

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 4

inv Matter

22 3
2

inv inv

2

inv Grav

1     

          

M
s

s

R S SM
s s

s s

Mr
s

s

L

G R
G

λ

λ λ λ

λ

=

= =

=

 ≈ + + 
 
 ′ ′+ + + +


+ + 


∑

∑ ∑

∑ G

M MQ Q

S S MQ Q

R Q M

      (59) 
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where ( )M
sλ , ( )R

sλ , ( )S
sλ , ( )SM

sλ  and ( )Mr
sλ  are constants, which are linear 

combinations of ,n sλ  of Lagrangian (30). The above Lagrangian could be writ-
ten in a generic (phenomenological) form subdividing it on two sub-Lagrangians 

ML —and GravL , each associated with the figure bracket of expr. (59) above with 
corresponding sub-indeces.  

( )
( )

( ) ( ) ( ) ( ) ( )
Grav

Grav4
2d ;   ;   where  M S MS Mr rLS r xL L L L L L L L

G
′= − = + = + + +∫  (60) 

where ( )ML  includes the terms associated with all forms of Matter (except the 
Gravitational field S  and the metric curvature r ) and the Lagrangian ( )GravL  
which includes gravitational square-vector ′S  and the curvature tensor R  
built on the metric tensor r . Both sub-Lagrangians are defined by “small sys-
tem” (Matter M ) only. However the sub-Lagrangian ( )GravL  comes with a very  

small factor 66
2 2

1 110
cmG

−≈ . This small factor for a “small system” serves as an 

universal Gravitational constant. 
Such presentation of the Total-Matter Lagrangian L  on ( )ML  and ( )GravL  

parts is not exactly perfect in a sense that there are some interaction terms that 
sort of hidden from obvious view. For example the Lagrangian ( )ML  depends 
on metric r  (albeit with a small factor 21 G∞ ). This dependence is of the same 
order of magnitude as the ( )Grav 2L G . Or dependence of ( )L M  on the unity 
vector U , which produces also terms similar to ( )Grav 2L G .  

The equation of motion are obtained by variation of the Lagrangian density 
( )det ijL r−  with respect to the Tensor-Potential P , Gravitational square- 

vector S  and the space metric r . One can use this Lagrangian written in cova-
riant form to get the system of equations for each variable N , C , B , D  and 

*E . Such equations—that include metric r  and covariant derivatives—might 
be particular beneficial when the “small system” become very large such as our 
Solar system or maybe a Galaxy where number of particles (and thus its Gravita-
tional field) become comparable to the Gravitational field at the infinity. How-
ever, for the description of atomic world—where the 66

sys Gal 10N N −≈ —such 
set of equations is overkill and much simpler Lagrangian form could be derived 
from (59). The new Lagrangian will transfer the curved time-space description 
(or Lagrangian) into the standard physical description of Matter—both atomic 
and Gravitational—as some functions on a flat Minkowski space. 

Even though the Lagrangian (59) above is written in covariant form it is—due to 
the fact that we derived it as a series by parameter ( )31 1 1 NG G G K c∞≈ = 

 
and because we neglected (dropped out) the terms proportional to 31 G  and 
smaller—only correct in its first approximation with regard to 2 21 1G G∞≈ =

3
NK c

. For that reasons we will rewrite the Lagrangian as a series of the para-
meter 21 G∞ , where all functions, marked as “bar” (e.x. iS ), are defined on flat 
space. The system of coordinates could be chosen in such a way that the tensor r  
in the first order of approximation has a Minkowski form 

( )diag 1, 1, 1, 1ij ijr δ≈ = − − −  and where the vector U  has only time coordinate 
( )( )1,0,0,0U ≈ . The indeces of the bar variables are raised by Minkowski me-



B. Hikin 
 

209 

tric. 
For the metric r  and geometric Christoffel symbols we get this approxima-

tion:  

2

, , ,
, , , 2 2

1 ;   ;   ;

1
2 2

ij i j ij im jn
ij ij ij ij U ij mn

ijk ij k ik j jk i
ijk ij k ik j jk i

r r r r r r U U r r
G

r r r
r r r

G G

δ δ δ δ

γ
γ

∞

∞ ∞

≈ + ≡ ≡ =

+ −
≡ + − ≈ ≡

       (61) 

For the vector field U  we have these relations:  

[ ]

2 2

2 4

1;   ;   
2 2

1
12 ;   1

2

ij iU
i i i i j U U i

i U U i
iji

i i i j

r
S G U S S S S r G S S S U

S S r U
S

U U U U r
S G G

∞ ∞

∞ ∞

 = + = ≈ + − ≡ 
 

 + − + 
 ≡ ≈ + ≈ + 

     (62) 

The tensors N  and C  cannot be simply transfer to N  (and C ) due to its 
“traceless” conditions 0ij

ijkN r = , which as we would expect will transfer to 
0jk

ijkN δ = . However, the direct calculations give this expression:  

2

10 0.jk jk jk
ijk ijkN r N r

G
δ

∞

 
= =>≈ − ≠ 

 
              (63) 

These difficulties could be resolved if we introduce the new variables accor-
dingly these expressions:  

( )

( )

( )

12

22

1 2
2

1
6

1
2

1

mn
ijk ijk jk imn ik jmn ij kmn

mn
ijm nk ikm nj jkm ni

jk jk jk ijk jk
ijk ijk ijk ijk

N N N N N r
G

N r N r N r
G

N r N r N N r
G

ν δ δ δ

ν δ

ν ν
δ δ

∞

∞

∞

= + + +

+ + + =>

+ −
≈ − ≈ +

        (64) 

And if 1 2 1ν ν+ = , we get N  satisfies the condition 0ij
ijkN δ = . 

Similarly, the transition from C  to C  goes by these expressions:  

( ) ( ) ( ) ( )

( )
( ) ( )

1 22 2

1 2
2

1 1
3

1

C Cmn mn
ijk ijk ij kmn ik jmn ijm nk ikm nj

C C
ij jk ij ij jk

ijk ijk ijk ijk

C C C C r C r C r
G G

C r C r C C r
G

ν δ δ ν δ

ν ν
δ δ

∞ ∞

∞

= + − + − =>

+ −
≈ − ≈ −

 (65) 

And if ( ) ( )
1 2 1C Cν ν+ = , we get C  satisfies the condition 0ij

ijkC δ = . 
The covariant derivatives of tensor H  (or N  and C ) transition to “bar” 

variables accordingly these expressions:  

; ,2 2

1 1   where    and ijk l ijk lH H
G G∞ ∞

′ ′ ′ ′ ′ ′≡ − − ≡ ≡H H H r Hr H  H      (66) 

It is important here to note that since the fully symmetric tensors N  and 
torsion type tensor C  are defined thru the tensor P  with all indeces down, 
the transition to “bar” variables must be done on the tensor N  and C  (or 
H ) with all indeces being low. So, for example, ijk ijkN N=> , but  
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i mi mi mn li
jk mjk ijk mjk nlN N r N N rδ δ δ= => − . 
Using the expressions (61) thru (66) we can easily get that the Lagrangian of 

the Matter ( )ML  has this linear (in terms of 2

1
G∞

) form:  

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2det   or  
MU Mri ij MU Mr

i ijM M M M
ij

J S F r
L r L L L

G G∞ ∞

+ +
− ≈ + = +

J S F r
(67) 

where ( )MrF  is a symmetrical tensor and ( )MUJ  is a vector, which is derived 
from the fact that Lagrangian ( )ML  contains terms with the unity vector U . 

With regard to the tensor ( )MrF  it is important to point out that because the 
metric tensor r  comes into the tensor of Matter ( )M  and thus Lagrangian 
not only algebraically, but also in covariant derivatives and into flat-space pres-
entations of the tensor H  (see expr. (66)), the symmetrical tensor ( )MrF  in-
cludes (and not equal to) the Energy-Momentum ijT≡T  tensor. As an excep-
tion, it’s not difficult to see that in particular case of Maxwell Lagrangian—due 
to the fact that is contains only a low index vector, contains no unit vector U  
and contains no co-variant derivatives—the ( )Max 0=J  and ( )MaxF  is the ten-
sor of energy-momentum of the Electromagnetic field. Also, it need to be men-
tioned that in vacuum both tensors ( )MrF  and ( )MSS  vanish. 

If we consider the interaction terms of the Gravitational Lagrangian— 

( )3′ +S MQ Q  and ( )2 +GR Q M —we can make this observation: because it  

comes with a factor 2

1
G∞

, the transition to the “bar” variables” are strait for  

ward—simply replace all sub-fields with the “bar” ones— =>H H , =>B B , 
=>D D , =>E E  and the determinate ( )det ijr−  could be set to one. Also 

the geometric Riemann tensor ijklR  in these “curved space”-Matter interaction 
terms ( )2+GR M Q  could be replace by its linear part ( )ijklR , which are 
second derivatives of metric— ( )2′′ +r M Q . 

More care need to be taken for the derivatives of the vector ( )′S S . The cova-
riant derivatives of S  can be written in this form:  

( )
; , ,

, , , ,
1 or
2

m m
i j i j ij m i j ij m

m
i j mi j mj i jk m

S S S S U

S r r r U

γ γ= − ≈ −

′ ′ ′= − + − ≈ +S S r
        (68) 

The most general expression for the 2′S  has only 8 terms with σ -coeffi- 
cient attached to each one.  
( ) ( )

( )( )

2

inv

; ; 1 2 3

4 5 6 7 8

, ,

1 2 3

4 5 6 7

     

  

  

S S
s

s

ik jl il jk ij kl
i j k l

ik j l jl i k jk i l ij k l i j k l

s s
i j ij s k l kl s

ik jl il jk ij kl

ik j l jl i k jk i l

L

S S r r r r r r

r U U r U U r U U r U U U U U U

S U S U

U U U U U U

λ

σ σ σ

σ σ σ σ σ

γ γ

σ δ δ σ δ δ σ δ δ

σ δ σ δ σ δ σ δ

′

=

′≡

= + +
+ + + + + 

≈ − −

 + +

+ + + +

∑ S

8
ij k l i j k lU U U U U Uσ + 

 (69) 
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with σ -s being constants depending on the λ -s constants of the Lagrangian (30). 
This expression contains 3 groups of terms: 2′S , ′ ′S r  and 2′r .  

( ) ( ) ( ) ( )S S S S r r rL L L L′ ′ ′ ′ ′ ′ ′≈ + +                    (70) 

The exact expression for the ( )S rL ′ ′  and ( )r rL ′ ′  can be easily calculated using 
expr. (69) which we will do in the following section. Combining (67) and (70) 
together we get this expression for the GravL :  

( )
( ) ( ) ( ) ( ) ( )

( ) ( )

Grav
2

2 2

2or 

S S S r r r MS Mr

S r

L L L L LL
G

G

′ ′ ′ ′ ′ ′ ′

∞

∞

+ + + +
≈

′ ′ ′ ′+ + + +
≈

S S r r J S J r
            (71) 

The linearized expression for the action integral for just Einstein term ( )2G R  
could be obtained in this manner:  

( ) ( ) ( )

( )
( ) ( )

4 2 4 2

, , , ,4

4

4
2 2 2

d det d det

d det
2

  d det

2d 1 1
2

R ik jl
ij ijkl ij

il jk jk il ik jl jl iknm ik jl
ij m n

nm k m k m jl
ij m n km jl lm jk

U
ik

U ik j
ijkl

S x G R r x G R r r r

r r r r
x r S S r r r

x r S S r r

r
Sr rx R

G G G

γ γ γ γ

δ δ
∞ ∞ ∞

= − = −

+ − −
= −

+ − −

 
−     ≈ + + −   

    
 
 

∫ ∫

∫

∫

∫

( )

( )

( )

2

4
2

4 4
2

4
2

, , , ,

1  d

1 1d d 2
2 2

1  d

where;
1 ;   
2

jl
l

k m k m jl
km jl lm jk

ijU
ijU

k m k m jl
km jl lm jk

ik jl
ijkl il jk jk il ik jl jl ik ij ijkl jl

U i

r
G

x
G

r
xR x S R R r Rr

G

x
G

R r r r r R R R R

S S

γ γ γ γ δ

γ γ γ γ δ

δ δ

∞

∞

∞

∞

 
− 

 

+ −

  
≈ + − − +      

 + − 

= + − − = =

=

∫

∫ ∫

∫

;   ;   i i j ij ij mi nj
U ij ij mnU r r U U r r r rδ δ δ= = =

     (72) 

Both underlined terms vanish thru the means of partial integrations, so the 
final form for the action integral for the Einstein terms has this form:  

( ) ( ) ( )4
2

1 1d ;   where  2
2 2

R R R ijU
U ij

r
S xL L S R R r Rr

G∞

  ≈ = − − +  
  

∫    (73) 

We can see from this that Einstein term 2G R  is of the same form—in terms 
of order of magnitude ( )21 G∞  and in terms of variables ( ′′r  and ′ ′r S ) as the 
linearized form of the Lagrangian ( )SL ′  in expr. (71). 

Combining all sub-Lagrangians together—expression (71) and (73)—we can 

write the final expression for the linear, with respect the factor 2

1
G∞

 approxi-

mation of the Lagrangian of Total-Matter:  
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( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Grav
4 4

2

2

d d ;   

where  , , , ;   ;   ;   

, , ,   , , ,

M

S S S r r r MS Mr
M

M M S S S r r r

S rMS i Mr ij
i ij

LS r xL xL L L
G

L L L L LL
G

L L L L L

L J S L F r

∞

′ ′ ′ ′ ′ ′

∞

′ ′ ′ ′ ′ ′∗

∗ ∗

= − ≈ = +

+ + + +
= +

′ ′ ′ ′ ′ ′= = = =

= =

∫ ∫

H B D E S S S r r r

H B D E H B D E

 (74) 

The Lagrangian above represents exactly the physical phenomenon that we 
postulated at the beginning of this paper. The equations of motion for Matter, 
which includes mass-particle (tensor H ), electromagnetic field (vector field 
E ) as well as two other vector fields ( B  and D ) do not depend on the metric 
r  and/or grav-vector S . Their description is well determined by set of equa-
tions written in flat Minkowski space. 

The description of metric r  and Grav-vector S  could be presented as a 
correction r  and S  to a constant (flat) space and constant grav-field. The eq-
uations for corrections has a traditional flat space field description with each one 
of them having a source defined by mass-matter H  and vector fields B , elec-
tromagnetic field E  and D . 

The terms grouped in the Lagrangian ( )S rL ′ ′  represent a coupling (in-
ter-dependence) of the metric r  and S . In the “Gravitation” section it will be 
shown that these equations could be decoupled using a “gage” requirements for 
the metric r , which is defined up to 4 functions associated with arbitrarily sys-
tem of coordinates. And by doing so we will effectively separate out a “chosen” 
or “rest” system of coordinate from all inertial system of coordinates. 

We will address in greater details the equations of motion for each variable in 
their corresponding sections—“Gravitation” for S  and r , “Electromagnetic 
and Other Fields” for B , D , E  and “Mass-Matter (Elementary Particles)” for 
H . 

Before we proceed writing the equations for each of these fields we would like 
make few general comments: 

1) The Lagrangian (74) is a in effect the Einstein’s Lagrangian where Grav- 
vector S  is a dark matter and the magnitude of the Grav-vector ( )2S G=S  
serving as gravitational constant. 

It worth pointing out that the form of the Lagrangian of the Total-Matter is 
identical to the standard General Relativity written in slightly different manner, 

where we multiply the Lagrangian of General relativity by a constant 
4

N

c
K c

, 

express the Lagrangian and thus the Energy-Momentum tensor in units c  and 

write approximation for metric tensor in a form 4
N

ij ij ij
K c

r r
c

δ= +
 :  

( ) ( ) ( )

( )

3 3
GenRel

4

3Mnkw
2

2

1 12   where  .
2

M MN

N N

ij ij ijM
ij ij ij

N

K cc cL L R L R
K Kc

cT r R r Rr GL KG
δ ∞

∞

 = + = +  

 ≈ + − + ≡  



 



    (75) 
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2) According to this theoretical derivations using Affine Unification this La-
grangian is a linear approximation for a system of masses (like our Solar system 
and smaller), where Grav-field created by the system is a small addition to the 
already existing Grav-field created by the masses outside of our system—such as 
our Galaxy, or group of Galaxies, or the entire Universe. It is for that reasons, 
the considerations of Universe models taken Einstein equations as a starting 
point (with or without Dark Matter) might not be a justified approach. We will 
address the issue again in the section “Cosmology”. 

3) We derive this Lagrangian from the Unified Affine description by imposing 
certain requirements on parameters sλ —see expr. (30)—in order for this 
theory to be non contradicting to the common experimental facts and to com-
mon sense. But as we continue investigating the equations of motions for each 
unknown variable ( ), , , , ,H S B D E r  we might (and more likely will) need to 
impose more requirements on sλ . What is important here is that these re-
quirements simply outlaw some terms in the final Lagrangian. However, we are 
totally controlled by the “affine derivation” to the degree what type of terms is 
allowed to be present as a part of the Lagrangian. 

4) Regarding vanishing of “unwanted” by means of setting some requirements 
on the λ -constants we would like to point out to the fact that there is of course 
much easier way of removing unwanted terms in the general Lagrangian. In 
stead doing of the calculation and finding the right λ -s, thru solving all the eq-
uation-conditions that one places on λ -s, we can simple postulate that this 
term in the Lagrangian of the Total-Matter is zero. For example, in stead of 
searching for λ -s such that ( ){ }2 2 2

allinv 0ssG λ
=

 + = ∑ I Q M , we could take a 
Lagrangian almost at will and then place a requirement that the terms of the La-
grangian proportional to 2G  is zero. Express in the “Lagrange coefficients” this 
would effectively add one more unknown function (call it ( )2G

Λ ) as a dynamic 
variable. Between removing all terms proportional to nG  (n = 4, 3, 2, 1, and 
−1) and some unacceptable terms inside the Lagrangian M  for the Matter and 
Lagrangian for the gravitational field S  and r  there will be somewhere 
around dozen or so such new unknown functions. 

The problem with such approach is its universality. This method could be ap-
ply to any Lagrangian and thus totally leaving unanswered the question how this 
Lagrangian actually looks. Another words, we have no idea which Lagrangian 
(out of thousand or so) we should really choose. The approach that we took in 
this paper (defining the λ -s) is much more complex precisely because it actual-
ly defines (selects) the right Lagrangian. However, if we outrun number of 
available constants or get a contradiction in the constants’ values, it is much 
more realistic to envision a mid-point situation that most requirements (such for 
example that involve the vector fields B , D  and E ) for vanishing “un-
wanted” terms can be met thru the form of Lagrangian ( λ -s) and thru the form 
of Total-Matter ( µ -s). The remaining non-vanishing terms would be related to 
only one group of functions ( H  or N  and C ) could be vanished by intro-
duction of Lagrange-coefficients. 



B. Hikin 
 

214 

7. Equations for Gravitational Field and Metric 

This section deals with equations of motion for the square-vector S  and the 
metric r  Let us again write the flat-space Lagrangian of the Total-Matter L :  

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

Grav
4

2 2

allinv allinv allinv

d   

where  , , , ;   , , , ;

            , , ,

            ;   ;   ;

S S S r r r MS Mr
M M

M M MS S i
i

rMr ij
ij

S S S S r Sr r r

L L L L L LS L x L L L
G G

L L L J S

L J r

L L Lσ σ σ

′ ′ ′ ′ ′ ′

∞ ∞

′ ′ ′ ′

+ + + +
≈ = + = +

= =

=

′ ′ ′ ′ ′ ′= = =

∫

∑ ∑ ∑

H B D E H B D E

H B D E

S S S r r r

  (76) 

where ( )Sσ  are set of constants linearly depending on the σ -s constants of 
expr. (69), which by themselves are functions of the λ -constants of the Lagran-
gian, and where ( ) ( ) ( )( ), ,S S S r r rL L L′ ′ ′ ′ ′ ′  are the terms that all came from decompo-
sition (writing) of covariant derivatives 2′S  of the Lagrangian—see expr. 
(59)—on three groups: a) square of partial derivatives of ( )′S S ; b) square if 
partial derivatives of ( )′r r  and c) the product of ′ ′S r . 

The first group with some simple manipulations (like partial integration) 
could be written in this form:  

( ) ( )
( )

, , 1 2 3 4

5 6 7 8                        .

S ik jl ij kl k l ik
i j k l

jl i k ij k l i j k l

L S S U U

U U U U U U U U

σ δ δ σ σ δ δ σ δ

σ δ σ σ δ σ

= + + +
+ + + + 

   (77) 

Since in Minkowski space the unit vector ( )1,0,0,0iU = , the equations above 
could be written in somewhat more explicit (if not simpler) form where we use 
“0” as time coordinate.  

( ) ( )

( ) ( )
1 , , 2 3 , , 4 ,0 ,0

2

5 0, 0, 6 7 , 0,0 8 0,0         

S ik jl ij kl ik
i j k l i j k l i k

jl ij
j l i j

L S S S S S S

S S S S S

σ δ δ σ σ δ δ σ δ

σ δ σ σ δ σ

= + + +

+ + + +
      (78) 

Although for derivation of equations for iS  by variation of S  is better to 
use expr. (76) and switch to Minkowski coordinate at the very end. Thus varia-
tion of the term ( )2

8 0,0Sσ  we get 8 , 8 0,002 2 .j k l
j kl i iS U U U U S Uσ σ− = −  The 

same form of writing (zero instead of time coordinate) can be applied to the 
others sub-Lagrangians of the GravL . For, example the ( )6 7 ; ;

ij k l
i j k lS r S U Uσ σ+  

term can be written as this:  

( ) ( )
( )

( ) ( )
( )

( )
( )

; ; , ,

, 0 , 0 , ,0 0,0 00,0

, 0,0 , 0,0 0,0 0 , ,0

0 , ,0 0,0

1 1
2 2

1 1 2
2 2

1  2
4

ij k l s ij s k l
i j k l i j ij s k l kl s

ij
i j i j j i ij

S r
S Sij ij ij

i j i j i j ij

r r
ij

i j ij

S r S U U S U S U U U

S r r r S r

S S S r S r r

r r r

γ δ γ

δ

δ δ δ

δ

′ ′
′ ′

′ ′

≈ − −

   = − + − −     

  = + − − −    

 + −  

 (79) 

where by square bracket with appropriate label (in parentheses) we indicated to 
which sub-Lagrangian which terms belong. The “interaction” part of the La-
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grangian— ′ ′S r  terms—could also be written (thru partial integrations) in the 
form ′′Sr . Using this form of writing the Gravitational sub-Lagrangians ( )S SL ′ ′ , 

( )S rL ′ ′  and ( )r rL ′ ′  can be written in this form:  
( ) ( )

( ) ( )
1 , , 2 3 , , 4 ,0 ,0

2
5 0, 0, 6 7 , 0,0 8 0,0            

S S ik jl ij kl ik
i j k l i j k l i k

jl ij
j l i j

L S S S S S S

S S S S S

σ δ δ σ σ δ δ σ δ

σ δ σ σ δ σ

′ ′ = + + +

+ + + +
     (80) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 2 0 , 1 2 3 0 ,

6 7
1 2 , 0 3 ,0 7 0 ,00 4 00,0

6
5 00,

ln
7 ,00 8 00,00 0 , ,

2

  
2

  
2

1  
2

S r i kl kl
i kl k li

kl
ik l i i i

kl
i kl

km kl
i i i kl mn kl

L S r r

r r r r

U r

U r U r U r r

σ σ δ σ σ σ δ

σ σ
σ σ δ σ σ σ

σ
σ δ

σ σ σ δ δ δ

′ ′ = + + + +
+ − + − + + + 

 
 + + 
 

− + + − 

 (81) 

(
)

( )

( )

1 2
0 0 , ,0 ,0

0 0 , 0 , 0

3
0 , 0 , 0 , ,0 ,0 ,0

4 5 6 7
00, 00, 0 , 00,0 ,0 00,0

2
4

         2 4

        4 2
4

        
4 4

     

r r ij mn ik jl
i j mn ij kl

ij mn ij mn
i m nj i jm n

ij mn ij
i j m n i j

ij ij
i j i j

L r r r r

r r r r

r r r r r r

r r r r r r

σ σ
δ δ δ δ

δ δ δ δ

σ
δ δ δ

σ σ σ σ
δ δ

′ ′ +
= − +

+ −

+ − +

+ +
+ + +

( )

( )

28
00,00 0 0 00 0

, , , ,

   
4

1where  ;   
2

ik jl
ij kl

ik ik jl
jl ij kl il kj jl jl ik jl

r rR r R r R

R r r r r R R

σ
σ σ σ δ δ

δ δ δ

+ − +

 = + − − = 

      (82) 

In the expr above we for the sake of uniformity replaced ( )Rλ  with 
( )

0 0: .Rσ σ λ≡  The above Lagrangian is a quadratic with respect to the first de-
rivative of either metric r  or grav-field S , which will produce linear system of 
equations for each variable. However due to their interactions—Lagrangian 

( )S rL ′ ′ —the equations of motion will have “interactive” form, meaning that equa-
tions for grav-vector S  will include metric r  and vice-versa. In symbolic form 
these equations could be written as:  

( ) ( );   .SM rM′′ ′′ ′′ ′′= + = +S r J r S J                  (83) 

This “interaction” could be removed is we request that metric tensor r  satis-
fies some conditions—the gage. It is not difficult to see that ( )S rL ′ ′  contains 12 
terms:  

0 , 0 , , 0 ,0 0 ,00 00,0

00, 0 , 0 ,00 00,00 , ,

          

          

kl kl kl
i kl k li ik l i i i

kl kl mk jl kl
i kl i k l i i i mj kl i kl

r r r r r r

U r U r U r U r U r U r

δ δ δ

δ δ δ δ δ
      (84) 

The number of terms can be reduced to 8, if we consider a “gage” procedure, 
which comes form the following considerations. Variation of the gravitational 
Lagrangian gravL  (expr. (74)) by ijr  produce a sets of 10 equations for space 
metric r  in Minkowski space. However this system has 4 more functions than 
needed. Metric has only 6 independent functions as in equations above have all 
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10. This can be fixed by imposing 4 additional conditions on the metric r  
functions—so call “gage”—which takes a form of first order partial derivatives of 
the metric tensor r . In Landau [36] for example the gage has this form 

, 0km
ik mr δ = . This gage condition reflects the fact that the Minkowski space—as 

asymptotic at infinity—is not uniquely defined, and the linear equations of 
“gage” removes this uncertainty. 

Imposing such a gage we select one particular system of coordinates (or one 
group of systems of coordinates—like inertial one) as prefer one, compared to all 
others. One would hope that such selection is governed by a some general phys-
ical principle—like, for example, a system in which the laws of conservation have 
simple form. In our case we choose the gage in order to simplify the expr. (76) 
for the gravitational Lagrangian, which could be phrased in the physical manner: 
“the system of coordinates where Grav-vector and metric do not interact”. 

The most general form linear first order expression for the gage has this ex-
pression:  

, 1 , 2 0 ,0 3 00, 4 00,0 5 ,0   where  .km ij
ik m i i i i i ijr r r r r U r U r rδ α α α α α δ= + + + + =    (85) 

If we apply “gage” relation to the underlined terms in expr. (84) we will re-
duce ( )S rL ′ ′  to only 8 terms:  

0 , ,0 0 ,00 00,0 0 00, 0 ,00 0 00,00 0            .i kl i i i kl
i kl i i i klS r S r S r S r S r S r S r S rδ δ       (86) 

This “interaction” terms could be vanished, if we add to the 5 gage α -con- 
stants 3 more constants ( )1 2 3, ,β β β  associated with transitioning to new 
(“shifted”) iG  variable accordingly to the following linear expressions:  

1 0 2 00 3   where  .ij
i i i i i ijG G r r U rU r rβ β β δ= + + + =           (87) 

Applying the gage (85) and the “shift” (87) we will transfer the expr. (81) into 
a expression where S rL ′ ′  has this form:  

( ) ( ){ }
( )( ) ( ) ( ){

( ) ( )}
( ) ( ){ }

( )

0 , 1 2 1 1

,0 2 2 3 3 2 5 7 1 4

1 2 3 1 2 1 3 1 1 2

0 ,00 7 1 5 2 1 2

6 7
00,0 4 3 2 3

2

           2

                         2 2

           2

           2
2

S r i km
i km

i
i

i
i

i
i

L S r

S r

S r

S r

δ σ σ β σ

β σ σ σ β σ σ α α

σ σ σ β σ β σ α σ σ

σ β σ α σ σ
σ σ

σ β σ σ β

′ ′ = + +

+ − + + + + +

+ + + + − +

+ + − +

+
+ + + + + ( )( )

( )( ) ( )}
( )

( ) ( )( )( ){

1 3 6 7

2 3 5 1 2 3 1 2 1 3 3 1 2

6
00, 5 3 1 4 1 3

,00 2 5 6 7 8 1 6 7 1 4

                             2 2

           2 2
2

           2 2

                     

i km
i km

i
i

U S r

U S ir

β σ σ

α α α σ σ σ β σ β σ α σ σ
σ

δ σ β σ σ β β

β σ σ σ σ β σ σ α α

 + +

+ + + + + + + − +

 + + + + + 
 

+ + + + + + +

( )

( ) ( ){
( )( )}

7
1 2 4

00,00 8 3 5 6 7 8 1 8 5 1 2

1 6 7 2 3 5

          
2

           2 2 2

                           
iU r

σ
σ σ α

σ β σ σ σ σ β σ α σ σ

β σ σ α α α

− − + 


+ + + + + + − +

+ + + +

(88) 

Demanding that S rL ′ ′  vanishes—each figure bracket should be zero—pro- 
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duces 8 equations for 8 unknown constants ( 1α  thru 5α  and 1β , 2β , 3β ), 
which yield this solutions for the gage α ’s and for the “shift” β ’s thru the 
constants σ ’s. From eq. for 0 ,

i km
i kmS r δ  (line 1) we get explicit value for the 

1β . From eq. for the 0 ,00
i

iS r  (line 4) we get an explicit value for 2α . The other 
6 equations splits on 2 groups of 3 each—one for 2β , 1α , 4α  and the other 
for 3β , 3α , 4α   

( ) ( )
( )

( )
( )

( ) ( ) ( )( ){
( )}

( ) ( )( ) ( )

( )

1 2
1 2

1

4 1 2 1 5 6 1 7 5 1 2
3 2

1 4 1 1 1 2

3 2 2 3 2 5 7 1 4 1 2 3 1 2 1 3

1 1 2

7
2 5 6 7 8 1 6 7 1 4 1 2

6 7
4 3 2 3 1

  0
2

2
  

2
2 2 2

0

2 2 0
2

2
2

σ σ
β β

σ
σ σ σ σ σ σ σ σ σ σ σ

β α
σ σ σ σ σ σ

σ β σ σ β σ σ α α σ σ σ β σ β σ

α σ σ

σ
β σ σ σ σ β σ σ α α σ σ

σ σ
σ β σ σ β β

+
= =

+ + + + +
= − =

+ +

− + + + + + + + + + +

− + =

  + + + + + + − − + =  
  

+
+ + + + +( )( )

( )( ) ( )}
( ) ( ) ( )( ){ }

3 6 7

2 3 5 1 2 3 1 2 1 3 3 1 2

8 3 5 6 7 8 1 8 5 1 2 1 6 7 2 3 5

  2 2 0

2 2 2 0

σ σ

α α α σ σ σ β σ β σ α σ σ

σ β σ σ σ σ β σ α σ σ β σ σ α α α

 +

+ + + + + + + − + =

+ + + + + − + + + + + =

(89) 

What important here is that these constants 1α  thru 5α  and 1β  thru 3β  
are uniquely defined by the constants σ -s of the Lagrangian SL . After remov-
ing the interaction Lagrangian S rL ′ ′  of metric r  and grav-field S  the gravita-
tional Lagrangian can be written as:  

( ) ( ) ( ) ( )grav S rS i r ij i
ij ij iL L J S L F r   ′ ′ ′ ′ ′= + + + +    

S S r r V r         (90) 

The “double dash” in the ( )r
ijF  reflects the fact that ( )r

ijF  get additional 
terms due to the transition from S  to S  accordingly. The i ′iV r  terms repre- 
sent the gage—see expr. (85). The equations of motion for the Grav-vector S  
and r  are “standard” non-interactive vector equations with its source ( )SJ  
and “Einstein-like” equations for the metric field r  with its source ( )rF .  

( ) ( ) ( );   ;  0 gage equationsS r
i′′ ′′ ′= = =S J r F  r             (91) 

For the gravitational vector S  we have:  

( )

( ) ( ) ( )

1 , 2 3 , 4 ,00 5 0,

6 7 , 0 6 7 0,0 8 0,00
1 1 1 .
2 2 2

km km km
i km k mi i km i

SMkm
k m i i i i

S S S S U

S U S S U J

σ δ σ σ δ σ σ δ

σ σ δ σ σ σ

+ + + +

+ + + + + = −
   (92) 

I vacuum, written in components (t, x, y, z) or ( )0,α , these interconnected 
equations in the “rest” system coordinates will have this form:  

( )

( )

1 0,00 2 0, 3 , 0

4 ,00 1 , 5 , 3 0,0

1 1 2 3 4 5 6 7 8

2 1 5 3 2 3 6 7 4 1 5

0   0

   0

where  diag 1, 1, 1 ;   
1;   ;   .
2

i S S S

i S S S S

α β α β
αβ α β

µν µν
α α µν µ να α

αβ

σ σ δ σ δ

α σ σ δ σ δ σ

δ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ

= + + =

= + + + =

= − − − ≡ + + + + + + +

≡ + ≡ + + + ≡ +

 (93) 
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The equation for r  obtained by variation of the Lagrangian ( )rL  (90) by ijr  
leads to the equations:  

( )

( )

( )

( )

2
1 ,00 0 , 0 , 3 ,

5
4 00, 0 ,0 0 ,0

8
6 00,00 7 ,00 , 00,

ˆ
ˆ ˆ0

2
ˆ

ˆ                     
2

ˆ
ˆ ˆ                     

2

        

r
kl kl

ij i kl j j kl i kl ij
ij

kl
kl i j i j j i

kl kl
i j ij kl i j kl ij

L r r U r U r
r

r U U r U r U

r U U r r U U r

σδ σ δ σ δ δ
δ

σ
σ δ

σ
σ σ δ δ δ δ

= => + + +

+ + +

+ + + +

( )

( )
( )

9
,00 00,00

, , 1 2
, ,0 ,0

3 54
, 0,0 0,0

ˆ
             

2

                     
4 2 4

1                     .
2 2 2 2

i j ij

i j j i kl
k l ij i j j i

rkl
k l i j i j ij ij

r U U r

V V
V V U V U

V U U V U U V F

σ
δ

α α
δ δ

α αα
δ δ

+ +

+
+ − − +

− − − = −

   (94) 

And the “gage” equation is obtained by variation of ( )rL  with respect to La-
grange multiplier iV .  

( )

( ), 1 , 2 0 ,0 3 00, 4 00,0 5 ,00 0
r

jk
ij k i i i i i

i

L r r r r r U r U
V

δ δ α α α α α
δ

 = => − + + + + =    (95) 

All constants in the above equations (93) and (94) are the linear combinations 
of the nsλ  constants associated with the choice of the Lagrangian of the Total- 
Matter—see expr. (30)—and the α -constants of “gage”. 

Let us emphasize that the equations (93) and (94) are the first order approxi-
mation with respect to parameter p aNL L  ( pL —Plank length and aL — 
atomic length) for the system with N number of particles. The functions r  and 
S , which are small addition to Minkowski metric and constant time vector cor-
respondingly, are defined by only number of particles N and by parameters of 
atomic scale: speed of light “c”, Plank’s constant  , and particle mass pm  (for 
proton). 

In non-static case the equations of motions (93) for the S  could be, depend-
ing on the value of the σ -constants, either hyperbolic (when 1 2ˆ ˆ 0σ σ >  and 

4 1ˆ 0σ σ > ) or elliptic (when 1 2ˆ ˆ 0σ σ <  and 4 1ˆ 0σ σ < ). The hyperbolic equations 

( )t t x x∂ ∂ − ∂ ∂ , like for Electromagnetic field, allow the field to exist (and propa-
gate) on itself. On the other hand, the field governed he elliptic equations 

( )t t x x∂ ∂ + ∂ ∂  is not allowed independent existence of the time-oscillating field 
in vacuum. In elliptic equations the field will modify itself (thus will have time 
depending behavior), but it will quickly decay to zero any king of oscillating 
harmonics that it produces. 

It is important to note that the possibility of elliptic equations are only due to 
the existence of unit vector U  or to existence of Gravitational vector G  (or 
S ). 

It is always assumed that all equations of Nature are hyperbolic due to the fact 
that they are governed by Minkowski metric. That also means that equations for 
metric (as it is in General Relativity) must be hyperbolic. And thus must allow 
Gravitational waves (metric waves) similar to Electromagnetic waves [37] [38]. 
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However, the fact that the LIGO project that ran for almost 50 years had not be 
able to detect the Grav-waves, might indicate that they don’t exist. In other 
words, the equations for both Grav-vector G  (or S ) and metric r  are not 
hyperbolic, but rather elliptical. If we consider a rotation of the Earth around the 
Sun (or Sun around the center of Galaxy), then from point of view of hyperbolic 
equations (even if we consider only General Relativity), the change of the metric 
(as the Earth moves so does the metric created by it) must produce waves (just 
like moving charge make Electromagnetic waves), which due to the “hyperbolic-
ity” of equations runs away or “radiate” out taking with it some energy and thus 
forcing the orbit to decay and in the end for Earth (or Sun) to fall on the center 
of mass against which it rotates. However, if we assume that the equations for 
the Earth metric is governed by elliptical equations, we get totally different pic-
ture. The law of conservation of Energy-Momentum would state that flux on the 
surface due to the exponential decay in time is zero (no radiation). That means 
that the change of Total-Energy of Earth-Sun interaction is constant. And that 
means no degradation of the Earth orbit. The “radiation” from the star (or in 
our case from the Earth) is possible, but not by metric radiation”, but by emit-
ting some Matter. If we choose our λ -constants based on the requirements to 
vanish “unwanted” terms—see expr. (53) and on—there is “50-50” chance that 
the equations for S  or r  turns out to be hyperbolically or elliptical. That 
means that we would need to impose additional requirement on them to be one 
way or the other. And if we choose it to be elliptical, the question is: should it be 
both or only one. The simple answer is both. It would seem to be logical that the 
pair S  and r  are tide together and thus have similar form of description— 
both elliptical. 

Let us now discuss the fluxes ( )SJ  and ( )rF  that defines the Grav-vector S  
(or S ) and the metric r  accordingly. As we mentioned before the gravitational 
vector S  is a square-vector and thus has units 21 cm . Its second derivative and 
thus the flux ( )SJ  will have units 41 cm , which is the same as ener-
gy-momentum tensor ijT  (measured in units c ). And it seems to be logical 
for the macroscopic system—with large number of particles to equate the flux 

( )( )S

i
J  with ( )0i  component of the tensor energy-momentum ijT   

( )
0    const.S j

i S ij G i SJ k T U k T k= = =                 (96) 

The constant GK  is unit-less constant with the value about 1≈  (by order of 
magnitude) and of course might depend on the form of matter under considera-
tion (like gas, liquid, etc.) and its parameters (like pressure and temperature). 
Similarly, we can use this approach (justification) for the treatment of metric 
flux ( )rF . Per our definition of metric-correction 2

ij ij ijr r Gδ− = +r  the r  
has the units 21 cm . Its second derivative ( )′′r  has units 41 cm , which is the 
same as Energy-Momentum tensor measured in units c . With this justifica-
tion we can write:  

( )r
ij r ijF k T=                          (97) 

which transfer the equation for r  into “Einstein form”. Of course, only sym-
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bolic sense. The ′′r  are quite different from Einstein’s 1
2ij ij ijGR R Rr T − = 

 
. 

We need to point out that because we transformed the description of Gravita-
tional field and metric into Minkowski flat space, we automatically obtain the 
law of conservations that are the consequences of Lagrangianian description. 
These laws are of “approximate” nature as the flat Minkowski approximation of 
the space. 

Accepting the expr. (96) and (97) we will acquire 2 more laws of conservations 
that are the consequence of the of the law of conservation of Energy-Momen- 
tum:  

( ) ( )
, , ,0;    0.r Sjk jk jk i jk

ijk r ij k j k S ij kF k T J k T Uδ δ δ δ= = = =          (98) 

In case of static (independent of time) spherical symmetry the Equation (94) 
for the metric r , defines as ( )2 2 2 2

0d d d d d di j
ijs r x x r t r rρ ρ ρΩ= = − − Ω , in va-

cuum reduce themselves to only two obvious equations as a function of distance 
ρ :  

( )

2 2 2
00 00 00 00

00, 00 002 2 2

2 2 2

, 2 2 2

0

0   or   0   const.

0 where   or  0

const.  or  2

ij
ij

ij ij
ij ij

r r
r

r r r K
r r K

x y z
r r rr r r

x y z
K Kr K r r rρ

δ
ρ

δ δ

ρ ρΩ

∂ ∂ ∂
= + + = => = −

∂ ∂ ∂

∂ ∂ ∂
= = + + = =>

∂ ∂ ∂

= − − − =

   (99) 

where the constants 0K  and rK  are defined by the tensor ( )rF  (i.e. 
( )2

0 00d rK Fρρ= ∫ ). These are exactly the equations and solutions of Einstein Gen-
eral relativity, where 0rK =  and 0rΩ = . The only difference we have is that in 
our derivation we also have selected a special “preferred” system coordinates de-
fined by the gage Equation (95), which reduces to this relation:  

( ) ( ) 0
1 3

d 2d d
2 .

d d d

r rr r
r r ρρ
ρρ α ρ α ρ

ρ ρ ρ
Ω

Ω

+
+ − = −           (100) 

From which follows that r Kρ ρ ρ=  and r K ρΩ Ω= , which also leads to 
the linear relation between 0K , Kρ  and KΩ . And if we want that this “rest” 
system of coordinates were the conformely-euclidian we need to request that 

.r rρΩ =  
It worth mentioning that the Landau gage , 0jk

ij kr δ =  applied to spheri-
cal-symmetrical metric ( )2 2 2d d dr s r rρ ρ ρΩ= + Ω  yields this relation:  

2 2 2 2 2 2 2
2 2 2

2 2 2

, ,

d d d d

         2 d d 2 d d 2 d d

10
2

jk
ij k

r r r r r r
s x r x y r y z r z

r r r r r r
xy x y xz x z yz y z

r r r r

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

δ ρ

Ω Ω Ω
Ω Ω Ω

Ω Ω Ω

Ω

− − −     
= + + + + +     
     

− − −     
+ + +     

     

= => = +
 

which is neither Schwardchild ( )0rΩ =  nor conformely-euclidian r rρΩ =  re-
presentation (to be precise the deviation from Minkowski metric). The later of 



B. Hikin 
 

221 

course is used in the calculation of two standard GR tests—bending of light and 
drift of Mercury orbit. 

The solution for the grav-vector S  has also an obvious form:  
( )

( )

0, 0, 0, 0

2
0 00

0;   

;   where  d .

S
x y z xx yy zz

SS
S

S S S S S S J

K
S K J ρ ρ

ρ
∞

= = = + + =

= = ∫
            (101) 

Combining expr. (99) and (100) we get the final form solution for the “single 
bar” Grav-vector S :  

( )0 1 2;   where  .S
S r S

K
S K K Kβ β

ρ
= = + +             (102) 

Per our assumption that all particle have gravitational field which is accumu-
lated to a very large magnitude, the constant SK  must be positive. Or more 
appropriate it should be the same sign for all baryons. It is a condition on the 
functions H  that are the core of the “source” flux ( )GJ , which we will address 
in Section 9—Mass-Matter. Or it could be viewed as one more condition on 
unknown constants λ -s—see expr. (12)—as well as µ -s, expr. (30). 

One of the most important subject that we have not addressed yet is the sub-
ject of motion of the point-mass in gravitational field. Accordingly Einstein’s GR 
this is governed by the Einstein’s “geodesic” postulate which states the point- 
mass body moves along geodesic line of the curved metric. 

It need to be pointed out that this postulate cannot be taken as one of funda-
mental principles of Physics, but only as an approximation for two reasons. 
First, the motion of the body should be derived from the Lagrangian of the 
physical description. In other words, this postulate is not necessary. In second, it 
by its nature applies to the “point-mass” physical configuration. It is totally 
looses its meaning when we consider a field description of some physical enti-
ty—like quantum mechanical description of the electron or as in our case a field 
description of the Matter (Tensor-Potential P ). 

In our case the correct approach is to derive the movement of point-mass 
from the Lagrangian—expr. (74)—of the Matter, which includes the interaction 
between Matter and Gravitational fields ( S  and r ). And based on the results of 
this derivations we might have a situation that mass-point depends on both the 
metric r  and the Grav-vector S  and thus on both the metric r  and the 
Grav-vector S . If we assume that Einstein’s geodesic postulate is true we must 
impose an additional requirements on λ -constant to vanish the dependence of 
mass-point trajectory on the vector S . 

In this regard it is worthwhile to point out that described above procedure of 
“decoupling” the Grav-vector S  and the metric r —where we “shifted” the 
Grav-vector S  and left metric unchanged per expr. (87)—is not unique. One 
can consider the “decoupling” of S  and r  by “shifting” only the metric r :  

( )1 0 2 0 3
ˆ ˆ ˆ

ij ij i j ij i j j ir r S U U S S U S Uβ β δ β= + + + +           (103) 

which in coordinate ( )0 α−  form has this form:  
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( )00 00 1 2 3 0 0

2 0

ˆ ˆ ˆ2 ;   

ˆ;   .

r r S S

r r r r Gα β α β αα αα

β β β

α β α β β

= + + +

≠ => = = => = −
         (104) 

If in the expression (87) the Grav-vector G  is “shifted” while the metric r  
is unchanged, in the expression above the metric r  is “shifted” by three para-
meters β̂  while Grav-vector G  is unchanged. This means that if we require 
that Einstein’s geodesic postulate holds, we get different conditions on λ -con- 
stants. 

In fact both approaches—“shifting G  or “shifting r —could be combined 
in more general “decoupling” approach if we consider transitioning to new va-
riables iS  and ijr  accordingly to the following linear expressions:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 0 1 0 2 00 3

2 0 3 0 4

4 0 0 5 00 6 00 7 8

0 0 00

  and

where  ;   ;   ;   

S r r r
i i i i i i

S S S
ij ij i j ij i j j i

r r r r r
i j j i i j ij i j ij

ij i k i j
ij i i ki ij

S S S U r r U rU

r r S U U S S U S U

r U r U r U U r rU U r

r r S S U r r U r r U U

β β β β

β β δ β

β β β δ β β δ

δ

= + + + +

= + + + +

+ + + + + +

= = = =

   (105) 

with total 12 ( )Sβ -s and ( )rβ -s constants. These expressions, of course, must 
be reversible—that is we should be able to express iS  and ijr  thru the variables 

iS  and ijr . This can always be done as long as the β -constants satisfy some 
(“non-equal zero” type) conditions. 

Writing the expr. (105) above for the spacial components of the metric tensor 

( ) ( ), , , , ,r x y z x y zα βα β= =  and α β≠  we get , ,r rα β α β= . 
Writing expr. (105) for the metric components “ 0 α− ” and Sα  we get this 

system of equations:  
( )( ) ( ) ( ) ( ) ( ) ( )

0 4 0 4 1 0 4 1 41 ;   1 0.r S r r r Sr r S S S rα α α α α αβ β β β β β= + + = + => + − ≠  (106) 

The second “non-equal zero” condition of reversibility comes from contract-
ing the the first line expr. (105) by iU  and the second line of expr. (105) by 

i jU U  and separately by ijδ :  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 1 00 1 2 3

00 0 2 3 4 00 4 5 6 7 8

0 2 3 4 00 4 5 6 7 8

1

2 1 2

4 2 2 4 1 4 .

S r r r

S S S r r r r r

S S S r r r r r

S S r r

r S r r

r S r r

β β β β

β β β β β β β β

β β β β β β β β

   = + + + +   
     = + + + + + + + +     
     = + + + + + + + +     

 (107) 

In order to reverse the relations the determinant of it should not be zero— 
0∆ ≠ —where:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 3

2 3 4 4 5 6 7 8

2 3 4 4 5 6 7 8

 1

 

2 1 2

 

 4 2 2 4 1 4

S r r r

S S S r r r r r

S S S r r r r r

β β β β

β β β β β β β β

β β β β β β β β

+ +

∆ = + + + + + +

+ + + + + +

    (108) 

If we substitute the expressions (105) and expr. (85) into the expr. (76) we 
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again get quadratic with respect to iS  and ijr  Lagrangian. The part that con-
tains quadratic with respect to ′S  terms will have only four constants 

( ) 1,2,3,4S
i iβ = . The last part of the Lagrangian that is quadratic with respect to 
′r  will depend on 8 ( )rβ  constants. And the middle part— ′ ′S r —will include 

all 12 β -s constants. 
If we add to this the 5 α -constants of the gage (85), we will have total 17 con-

stants that we can choose to vanish ( )SrL  and to simplify ( )SL  and ( )rL  La-
grangians. With 7 constants needed for vanishing ( )SrL  and 4 possible constant 
available to simplify ( )SL  we have 6 constants available for us to simplify ( )rL . 
We can use these constants to yield the dependence mass-point movement along 
geodesic lines only.  

When written in the form (90) the equations for r  are independent of the 
Grav-vector S  and thus have exactly the Einstein’s form and do not contain 
“dark matter”, not even a gravitational constant (as it is in linearized Einstein’s 
equations). 

There are however the differences between this set of equations for the correc-
tion of metric ( )r  and Einstein’s one. 

a) The Lagrangian for the metric correction ( )r  even though quadratic with 
respect to ′r  in form has different constants as compared to GR. 

b) It most likely will have a second derivative of 00r  by time ( )00,00r  which it 
does not have in the GR. 

c) It is only true in the “special” Minkowski flat system coordinates, that is de-
fined by the gage (85) and associated with it equations on the functions ( )r . 

d) We know that it cannot be used for the “large” systems where its own gra-
vitational field is compared to the outside Grav-field. And any attempts to use 
these equations for the description of Universe, probably Galaxies or near event 
horizon should be considered as unjustified. 

In our approach of description, we started from the curved space and by a way 
of linearizion came up to a flat Minkowski space and description. If we knew the 
procedure how to do it, we could at this step derive the point-mass approxima-
tion directly from the form of Lagrangian of the Matter and thus the trajectory 
of the “point mass” test particle. 

We now can make one more step further (sort of step in reverse direction) 
and ask ourselves a question: could all the description of point-mass particle be-
havior can be absorbed into 10 functions that would represent the curvature of 
the space. In other words, can we replace partial derivatives inside the Lagran-
gian ( )ML  with a covariant derivatives associated with some metric effr  and 
add the Einstein equations to complete the description? Or phrase it differently, 
can we “hide” GravL  Lagrangian (including Grav-vector G ) in the some effec-
tive metric effr  and Einstein’s equations of GR? 

If this program is possible, it would lead us directly to the Berkenstein [39] 
idea of effective space metric, which is the basis of his TeVeS theory. 

In this case, we being in flat Minkowski space, would be in no way able to dis-
tinguish whether such curved space ( )eff

ijr  is real—that is equal to ijr —or not. 
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Such determination could only be possible, if we consider a larger system where 
linear approximation of a weak gravitation is not applicable or where mass-point 
approximation is clearly is not the case. 

In principal one can ask even a more general question: can not only for 
point-mass but for any Matter describe by the Lagrangian ( )ML  of this theory 
(expr. (1)) be equally replaced by a Einstein Lagrangian density  

( ) ( ) ( ) ( )eff eff eff
2 detMN

ij
K

L R r L r r
c

= +  with some effective curved metric  

space effr . It’s quite possible that due to the “linear” description of the gravita-
tion, such replacement is always exist. In such case the Einstein equations are 
always right for any weak gravitational field, except for the fact the it produces 
not real ( )r , but “effective” curvature ( )effr  of the space. 

8. Electromagnetic and Other Vector Fields 

In this section we deal with the Lagrangian of the Matter and particular with the 
Lagrangians for the three vector fields B , D  and *E . The Lagrangian of the 
Matter ( )ML  which as we showed earlier can be written as—see expr. (59):  

( ) ( ) 22 4

allinv

M M
ns

n s
L λ

=

 ≈ + +  ∑ ∑ M MQ Q              (109) 

where Q  is a linear function of the tensor H  (or N  and C ) and the vec-
tors B , D  and E . 

The tensor M  is a tensor of Matter, which is Total-Matter without the Gra-
vitational field—no ′S  and no curvature tensor ijklR . In the expr. above we 
consider all variables (tensors) as a “bar” tensors—or tensors on top of Min-
kowski space. This means that all its derivatives as just partial derivatives and 
manipulation of indeces is done with Minkowski metric ( )1, 1, 1, 1ijδ = − − − . 

The identification of the Electromagnetic field is not a straight forward pro-
cedure. Potentially any of the three vector fields B , E  and D  could be cho-
sen as one. The problem here is not only to choose the vector field that leads to 
Maxwell equations (or to equations the closest to Maxwell’s), but also to be sure 
that the remaining two vectors fields are in some sense unique and not just a re-
petition of the vector field that we had identified with Electromagnetic one. The 
major difference between the vector fields comes from the fact that today in 
physics there is only one (apart from gravitation) long-distance field—the Elec-
tromagnetic field. That means that the other 2 vector fields—out of total 3 B , 
E  and D —must be short-distance. The short-distance here means that the 
“time-component” of that vector does not have 1 ρ  asymptotic at infinity, but 
rather 1 , 2n nρ ≥ . 

We begin with defining the expression for Total-Matter tensor TM  by 
choosing µ -constants as:  

1 2 10 11 12 13 14 15 6 5 9 80;   ;   .µ µ µ µ µ µ µ µ µ µ µ µ= = = = = = = = = − = −    (110) 

The tensor of Total-Matter ( )TM  as a function of Γ—or its symmetrical 
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i is s s
jk jkΓ ≡ Γ = Γ  and its anti-symmetrical 

i is a a
jk jkΓ ≡ Γ = −Γ  parts—has this expres-

sion: 

( ) , ,

3 4

5 7

                 

                 

                

i i m i ms s s s siT
jl k jk l jl ml jk

jkl

s s satl atl atl
i i i

jl s v kl sk l j

a a a a a a
i i i

j l l j j k k j k l l kk l j

M

µ δ δ µ δ

µ δ δ µ δ

= Γ −Γ + Γ −Γ Γ

 
+ Γ − Γ + Γ 

 
      + Γ −Γ − Γ −Γ + Γ −Γ            

8 

1where  ;   ;   0
3

i m i m i matl atl atl atl atl atl
km jl lm jk v kl

i i i ia a atl a a a atl
i i

k ik jk jk k k ikj k

µ

δ δ

 
+ Γ Γ − Γ Γ − Γ Γ 

 

 Γ = Γ Γ = Γ − Γ − Γ Γ = 
 

  (111) 

and “ | ” represents a covariant derivative “using” 
s
Γ . Our next step is to rewrite 

the expression above in a form where instead of i
jkΓ  we use the tensor Potential 

( )T Ti i
jk jkPΓ →P :  

( )
T T T T T T

T
; ;

T T

3 4

5 7

                 

                 

s

i i i m i ms s s s s si i
jl k jk l mk jl ml jkjkljkl

s satl atl atl
i i i

jl s jk s kl sk l j

a a a a a a
i i i i

j l l j j k k j k lk l l j

M R P P P P P P

P P P

P P P P P P

µ δ δ µ δ

µ δ δ δ µ δ

= + − + −

 
+ − + 

 
    + − − − + −        

8                 

l k

i m i m i matl atl atl atl atl atl
km jl lm jk jm klP P P P P Pµ

 
 
 

 
+ − − 

 

  (112) 

T T T T

; :where  ;   .
i i m i ii m m matl atl s atl s atl s atl a a s a

jl k jl k km jl kj ml kl jm j k j k jk mP P P P P P P P P P P P= + − − = − (113) 

In the expression above we kept the TP  label on the symmetrical part of the 
Tensor-Potential so to remind us that it includes the vector G  inside, which is 
not a part of the anti-symmetrical part of the Tensor-Potential. And in the final 
step we need to write the tensor of Total-Matter TM  as a function of sub-fields 
H  (or N  and C ), B , D , and *E  (we added a symbol ∗  to indicate that 
the vector E  always comes as anti-symmetric tensor n

ijkl E∆ ). 
The symmetrical part of the Tensor-Potential we has this form:  

( ) ( ) ( ) ( )

( )

( ) ( )
( )

( ) ( )

0

1 2 ;

; fully symmetrical and 0
contorsion; ; 0;

s G i B i N i KTi
jk jk jk jk
G i im

jk k mj m jk j mk j k m
B i i i i

jk j k k j jk
N i im ij

jk mjk ijk ijk
K i im ij i

jk jmk kmj ijk ikj ijk ijk

P P P PP
P r G U r U r U r U U U

P B B B r

P r N N r N
P r C C C C r C C

µ
π π

δ δ π

= + + +

 = + + + 
+ + +

= − =

= + − = − = ∆ 0jkl =

(114) 

and for anti-symmetrical part of of the Tensor-Potential we have:  

( )

( )
,; .

det

im ns
a alt a mjkn sC E ii i

i i jk jk kj

pq

r E r
D CP P P

r

∆
≡ ≡ = +              (115) 
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The tensor I  that comes with a factor 2G  comes from quadratic expression 
for ( )GP :  

( ) ( ) ( ) ( )( )
( ) ( )( )

( )( )

2 2

2
1 2

1 1 2

1

 .

G G G G mn
ijkl imk njl iml njk

ik jl il jk ik j l il j k

i k jl i l jk

G G I P P P P r

G r r r r r U U r U U

U U r U U r

π π

π π π

≡ = −

= − + + −
+ + − 

I

     (116) 

The tensor Q  is linear with respect to any sub-field ( ), , , , *N C B D E . Thus 
for example ( )BQ  for the field B  is defined by this expression:  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( )( )
( )( )
( )

1 2

1 2

1 2

      

      

B B G B B G G B B G
ijkl imk mjl imk mjl iml mjk iml mjk

m m m
m ik k im i mk i m k ik k i i k

m m m m
m ik k im i mk j l l j jl j l

m
m ik l im i mk i m l ik

G GQ P P P P P P P P

G U r U r U r U U U B r B r B r

B r B r B r U r U r U r U U U

U r U r U r U U U B r B

π π π

π π π

π π

≡ = + − +

= + + + + +

+ + + + + +

− + + + +

Q

( )
( )( )1 2      .

m m
k i i k

m m m m
m ik k im i mk j l l j jl j l

r B r

B r B r B r U r U r U r U U U

π

π π π

+

− + + + + + 

 (117) 

The above expressions can be somewhat simplified. This could be beneficial 
(and in fact mandatory) if we would be caring out the exact calculations. But for 
our purposes what is important is the fact that ( )BQ  is a function of sub-field 
B . Similarly we can calculate the expression for the tensor ( )NQ . 

However, if we are to write the expression for ( )CQ , we must point out that 
unlike for the sub-fields N  and B  where it is defined by symmetrical part of 
the Tensor-Potential, the ( )CQ  will be defined by both symmetric and anti- 
symmetrical part of the Tensor-Potential. The anti-symmetric dependence  

comes from term representing covariant ( )" | "  derivatives. The term 
Tsatl
jl sP  

(that come with factor ( )3
i
kµ δ  in open form has this expr. (*need bar*):  

( )
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

T T T T T T T T

;

ln ln
det det

;

ln
det

1 1

1  

s s s m m s m satl atl s atl s atl s atl
jl s jl s sm jl sj ml sl jm

G s N s C s B ss s n m m n
jl j sm sm sm sm jl j

r rij ij
s

G m N m C m B m s s n
sj sj sj sj ml m

rij

P P P P P P P P

C E P P P P C E

P P P P C E

= + − −
   
   = + ∆ + + + + + ∆   
   
   


− + + + + ∆



( ) ( ) ( ) ( )( ) ( )det

1  .G m N m C m B m s s n
sl sl sl sl jm jmn

rij

P P P P C E







 
 − + + + + ∆ 
 
 

 (118) 

Using (112) and (116) we get this expression for the tensor ( )CQ :  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )( )

0 ln
1

           

  

C G Gnm nm
ijkl ikm jnl j mjl nik kin

G Gnm nm
ilm jnk knj mjk nil lin sym

G s G m G mm m s
sm jl sj jl sl jm

a sym

P C C r P C C r
G

P C C r P C C r

P C P C P C

µ

−

= + + +

− + + + 

 + − − 

Q

     (119) 
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where we added square brackets with the labels “sym” and “a-sym” to indicate 
where those terms came from. The exact expression of ( )CQ  thru C  is not 
that important at this point, except for the fact it is linear with respect to C  
and it does not depend on value of Grav-vector G, but only on its unit vector U . 

For the other two vector fields— D  and E —the ( )DQ  and ( )DQ  are de-
fined only by anti-symmetrical part of the Tensor-Potential and will depend on 
the values of µ -constants. It is not difficult to see that for our choice of µ - 
constants—expr. (112) and (112)— ( ) 0D ≡Q . 

However for the ( )EQ  in general it’s not the case. From (112) the expression 
for ( )EQ  has this form:  

( ) ( ) ( )( ) ( )

( ) ( )

( )
( )

( )
( )

( )

3 4

ln ln

det det det

where

1 .

E E E E
ijkl ik jl il jk ij kl

m n s ns n
j jmnE G s G m G mm

jl sm sj sl
r r rij ij ij

Q r W r W r W

E EE
W P P P

G

µ µ= − +

 
∆ ∆∆ = − − 

 
 

     (120) 

If we substitute in the expr. above the exact form of ( )GP , we get this result 
for the tensor ( )E

jlW :  

( ) ( ) ( ) ( )( )
( ) ( ) ( )
( )

ln ln

1 2 ln 1 ln 1 ln

1 2 ln

1

5 1 1

3 3 .

E G s G m G mm n s n s n
jl sm j sj m sl jmn

n m m s m s
mj l sm l sm

n m
mj

W P E P E P E
G
E U U r U r

E U

π π π π

π π

= ∆ − ∆ − ∆

 = + + ∆ − − ∆ − − ∆ 
= + + ∆

 (121) 

And if we choose the constants ( )2 13 1π π= − +  the ( ) 0E ≡Q . This is exactly 
the reason why we made this choice of 2π —so the Q  contains no vectro field 
E . 

Our next step is to write the tensor of Matter M  as a function of all sub- 
fields. Because the tensor of Matter M  is quadratic function with respect to the 
Tensor-Potential P  when written thru sub-fields ( ), , ,H B D E  it can be split on 
two groups: sum of sub-fields’ Matters and their interaction (labeled Y ):  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )          .

H B D E
ijkl ijkl ijkl ijkl ijkl

HB HD HE BD BE DE
ijkl ijkl ijkl ijkl ijkl ijkl

M M M M M

Y Y Y Y Y Y

= + + +

+ + + + + +
       (122) 

First we note that because of our choice of 15 0µ = , the tensor of Matter for 
D  has no quadratic 2D  terms and because ( )5 6µ µ= −  it contains the first 
derivatives ( )′D  only in “Maxwellian” form:  

( ) Max Max Max Max

5 7 , ,whereD
jl jkijkl ik il ij kl kl k l l kD DM r r r D D D Dµ µ

 
′ ′ ′ ′= − + ≡ −  

 
    (123) 

and because 11µ  thru 14 0µ =  all interaction tensors ( ) ( ) ( )( ), ,DB DE DHY Y Y are 
not present. 

The situation is somewhat different for the sub-field *E  (we use *-symbol to 
indicate the fact that vector field E  always comes with a fully-anti-symmetrical 

tensor 
( )

1

det
ijkl

ijr
∆ . 
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Because of our choice of the constants 1 2 0µ µ= = , the tensor of Matter for 
the vector ( )( )E∗E M  contains the first derivatives only in Maxwellian form:  

( )

( )
( )

Max Max Max

3 4

Max

, ,
det

where .
ij

E
ijkl ik il ijjl jk kl

pqst

p q q p sk tlkl r

M r r rE E E

E E r rE

µ µ∗ ∗ ∗

∗

 
′ ′  ′= − +

 
 

∆
′ ≡ −

             (124) 

And because per our choice of 8 9µ µ= −  and 10 0µ =  all quadratic terms for 
E∗ ( )2E  vanish. 

We can now calculate the “interaction” terms ( )ENY , ( )EBY  and ( )ECY . 
The interaction term ( )ENY  comes only from the terms proportional to 3µ  

and 4µ  of the expr. (112):  

( ) ( )

( ) ( )

3 4

ln ln,

ln

where

          .

s s satl atl atli i i
jl s jk s kl sk l j

s satl ss s n m m n
jl s smjl j jl js

m ms ss s n s s n
sj slml m jm jmn

P P P

C E C EP P

C E C EP P

µ δ δ µ δ − + 
 

= + ∆ + + ∆

− + ∆ − + ∆

         (125) 

Form which follows this expression for ( )ENY  
( )

ln ln 0EN s m n m s n m s n
jl sm j sj m sl jmnY N E N E N E= ∆ − ∆ − ∆ ≡          (126) 

due to the fact that ijkN  is fully symmetrical and traceless 0ij
ijkN r = . 

Unlike for N  the interaction of vector field ,*E  with the vector ( )( )EBB Y  
or ( )( )EBC Y  do not vanish. 

For interaction terms of vector B  and ( )( )EB∗E Y  come from the same ex-

pression (112). However now instead of ( )s G i
jkP  we need to use ( )s B i

jkP . Form this 

follows this expression for ( )EBY :  

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

3 4

ln ln

ln

where

;

3 3

EB EB EB EB
ijkl ik jl il jk ij kl

EB B s B m B mm n s n s n
jl sm j sj m sl jmn

B
ijk j ik j ik j ik

EB n m
jl mj

Y r Y r Y r Y

Y P E P E P E

P B r B r B r

Y E B

µ µ

π

π

= − +

= ∆ − ∆ − ∆

= + +

=> = + ∆

        (127) 

and for any choice of π , except for 1π = − , the interaction terms ( )EB ∗=Y E B  
do exist. Unfortunately, we cannot use 1π = −  due to the fact that expr, (25) 
would not be reversible and thus the determination of vectors B  and G  
from the Tensor-Potential P  would not be uniquely determined. 

For interaction terms for vector *E  and ( )( )ECC Y  come from two places. 
First, from the “ | ” covariant derivatives (112), which would be proportional to 
the constant 0µ  where tensor C  comes thru its con-torsion form. And se-
condly, from the quadratic terms associated with constants 8µ —see expr. (1)— 
which is due to relation 9 8µ µ= −  is fully anti-symmetrical. Using (12) and 
(124) we have:  
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( )
( ) ( ){

( )
( )}

0

3 ln ln

4 ln ln

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ             

ˆ ˆ ˆ             

        

ijk ikj jik kij

EC s m n m s n m s n
ijkl ik sm j js m sl jmn

s m n m s n m s n
il sm jkn js mkn sk jmn

s m n m s n m s n
il sm k ks m sl kmn

C C C C

Y r C E C E C E

r C E C E C E

r C E C E C E

µ

µ

µ

= ≡ + =>

= ∆ − ∆ − ∆

− ∆ − ∆ − ∆ 

+ ∆ − ∆ − ∆

( )8   .mn p
imk njlp imkp njl iml njkp imlp mjk imj nklp imjp nklr E C C C C C Cµ  + ∆ + ∆ − ∆ −∆ − ∆ −∆ 

 (128) 

The expr. above could be simplified: some terms vanish, some could be com-
bined together. The actual expression of (128) is not that important (at this mo-
ment), but what is important here is that the interaction of ∗E  vector and C  
tensor does exist for all parameters 3µ , 4µ  and 8µ . Combining the results of 
(124), (127) and (128) we get these expressions for the tensors ( )EM  written in 
symbolic form:  

( ) Max
.E ∗ ∗∗= + +′M E B E CE                    (129) 

If we now calculate the expression for the tensor of Matter associated with the 
vector B  we get all possible terms, which symbolically can be written as:  

( ) ( )2 ; 0.B B∗′= + + + + = ≠M B B BN BC BE Q UB         (130) 

Important to note that ′B  in expr. above does not have “Max” lable attache 
to it, implying that derivatives of B  include all possible terms of ;i jB —for 
example, ;

kl
k l ijB r r  or ;

m
i m jB U U . Combining the results of (123), (129) and 

(130) we get these expressions for the tensors M , Q  and the Lagrangian of 
the Matter L:  

( )

MaxMax2 2

2 2 4

inv

;
H B

E

ns
n s

E

L λ

∗

=

 
   ′ ′= + + + + + + + +′′     

 
= + +

= + +∑∑

* *M H H B B BH E B CD E

Q N C B

M MQ Q

  (131) 

where we used square brackets with index “H”, “B” and “E” to indicate the sub- 
fields’ Lagrangians. 

At this point we can transition to the “bar”—variables and to flat Minkowski 

space— ij ijr δ=>  and ( )det 1ijr => , so the expr. (131) above takes this form:  

MaxMax2 2

2 2 4

inv

;

.

H B
E

ns
n s

L λ

∗

=

 
   ′ ′= + + + + + + + +′    

 
= + +

= + +∑∑

* *M H H B B BH E B E CD E

Q N C B
M MQ Q

  (132) 

Let us first consider Lagrangian for the vector D . It is not difficult to see that 
in this case the Lagrangian (132) for just the vector D  takes this form:  

( ) ( )
2 MaxMax Max

, ,;D D
ij i j j iL D D  ′= + = −′ ′ 

 
DFD D             (133) 



B. Hikin 
 

230 

where ( )DF  is an anti-symmetric 2-index tensor and is a function of the tensors 
H , B  and E . The antisymmetry of ( )DF  is due to the antisymmetry of ten-
sor 

Max
′D . Or reinstating “summation” and the λ -s:  

( ) ( ) ( )
2

Max Max

allinv
.D D D

s
s

L λ
=

  
= + ′ ′ 

   
∑ FD D                (134) 

In the index representation ( )DL  has only 3 invariants and can be written in 
the following manner:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Max MaxMaxMax Max

1 2 3

Max MaxMax Max

1 2 3

or by means of partial integration

D D D DD ik jl ik j l ik jl
ijij ij klkl kl

D D D DD ik jl ik j l ij
ij ij i jkl kl

DD DL U U FD D

D DL U U D JD D

λ δ δ λ δ λ δ δ

λ δ δ λ δδ λ δ

′′ ′′ ′= + +

′ ′′ ′= + +

    (135) 

where ( )DJ  is a 1-index (vector) flux of the field D . 
The constants ( )

1
Dλ  thru ( )

3
Dλ  are linear combinations of the λ -constants 

of expr. (132) and µ -constants of (132). If we impose one more requirement on 
the these constants such that ( )

2 0Dλ = , the Lagrangian for the sub-field D  
takes Maxwellian form—and thus could be a basis for equating the sub-field D  
with electromagnetic field. However, there is a problem. This Maxwellian (in 
form) Lagrangian has one peculiar property, which has to do with the form of 
the flux ( )DJ . Because this flux is the “diversion” of the anti-symmetrical tensor 

( ) ( ) ( )( ),
D D D kl

i jk lJ F δ=F  it cannot represent the electrically charged particle. That  

is, it can not have a solution where vector potential D  has 0
eQ

D
ρ

≈  behavior  

with respect to distance from the source. Indeed, if such solution existed, then 
the constant eQ  should be found as an integral of the source written in spheri-
cal coordinates:  

3 2 2
0 0all space

d 4π d .D D
eQ J x J ρ ρ= =∫ ∫                (136) 

But since the flux is has the property 1 this integral is zero as it follows from 
these calculations.  

( ) ( )

2
0 ,2

2 2 2 2
0 20 0, 0

d
4π

1d d 0

D kme
k m

D D

Q
J

J J Jρ ρ ρρ

δ ρ ρ

ρ ρ ρ ρ ρ
ρ

∞∞ ∞

=

   = = − = =    

∫

∫ ∫
   (137) 

This will be true for any “well” localized behavior of the flux ( )DJ —that is the 
flux that has asymptotics faster that 21 ρ . In other words, the static solution for 
D  may not have a distance asymptotic 1 ρ≈ , but it can have the asymptotic of 
higher order—like 1 2n nρ≈ ≥ , corresponding to a short range interaction 
similar to a dipole (thus the letter “D” for this vector field). 

It needs to be mentioned here that the idea of representing the flux of a 
charged particle as a diversions of anti-symmetrical tensor had been put froward 
by Gustav Mie some 100 years ago. W. Pauli in his “Theory of Relativity” [40] 
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has analyze it in some detailed and as an end result showed that it has significant 
problems—albeit for the different reasons. 

In vacuum the Lagrangian ( )DL  is identical to Maxwell one and the D-field 
has the same property as electromagnetic field. So in a language of quantum 
mechanics we can call it D-photon. 

Everything that we said above about the sub-field D  is in fact true even if we 
remove the requirement ( )

2 0Dλ = . Since Lagrangian (135) (with ( )
2 0Dλ ≠ ) de-

pends on anti-symmetrical tensor 
Max
D  only, the law of conservation of of the 

flux ( ) ( )( )0D D i
iJ =J  still holds. 

Also, we can “eliminate” the whole factor ( )( )21 Dλ=  if we introduce “scaled time” 

( )1 Dtτ λ≡ +  and a new vector ( )( )0
ˆ ˆ 1 ,D

iD D Dαλ≡ = +D . In these new va-

riables the Lagrangian of the sub-field D  (or now D̂ ) has this Maxwell form:  

( ) ( ) ( )
Max MaxMax

1 , ,
ˆ ˆ ˆ ˆ ˆˆ ˆˆ where .D D Dik jl ij

i j i j j iij ijklL D J D DD DDλ δ δ δ
 

′ ′= + = −′ 
  

    (138) 

This can be easily seen if we introduce instead 4-dimensional tensor 
MaxMax

, ,ij i j j iD D D≡ ≡ −D  two 3-dimensional vectors—“electrical”  
( ) ( ){ } ( )elec elec

0 , , ,D x y zα α α≡ ≡ =D D  and “magnetic” ( ) ( )magn
23 13 12, , .D D D≡D  

This allows us to rewrite the Lagrangian in this form:  

( ) ( ) ( )( ) ( )( ) ( )
( )

( )

2

2

2 2elec magn1 where .
D

D D D
D

L λλ λ
λ

 = + − =  D D      (139) 

And if we introduce new vector ( )( )0
ˆ 1 ,D D Dαλ≡ +D  and “scaled time” 

( )1 Dt tτ λ≡ + , we can rewrite the Lagrangian in Maxwell form:  

( ) ( )( ) ( )( )2 2elec magn .DL = −D D                   (140) 

It needs to be mentioned that the static solution of equations for sub-field D  
that come for the Lagrangian (132) (where ( )

2 0Dλ ≠ ) is identical to the Maxwell 
static equations. This might make the requirement ( )

2 0Dλ =  not needed.  
We now consider Lagrangian for the vector E —or m

ijkm E∗ ≡ ∆E —since it 
always comes with fully-antisymmetric Levi-Chivita tensor ijkl∆  (in flat Min-
kowski space). It is not difficult to see (see expr. (124)) that the Lagrangian for 
the sub-field ∗E  has this form:  

( ) ( ) ( ) ( )

( )( ) ( ) ( )

( )
( )

2
Max Max2 2

allinv

Max

Max Max

, ,

2 2

        

where

and .

E E
ns

n s

HB

pqmn
ij p q q p m nji

HB

L

E E

λ

δ δ

′
∗∗∗ ∗

=

′
∗ ∗∗

′ ′
∗ ∗

 ′   = + + +      
 

+ + + +  
  

≡ = − ∆

′ ′= + + + +

∑ ∑ E B C FE E

E B C E B C AE

E E
A H B H B HB

      (141) 

The square of fully anti-symmetric tensor ijkl∆  (in flat Minkowski space) can 
be expressed thru Minkowski metric mnδ  and thus in terms with “double star”, 
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the ∗∗  could be dropped. So the final expression for the Lagrangian of the 
sub-field E  has this form:  

( ) ( ) ( ) ( ) ( ) ( )2
Max Max22

allinv

E E AE E
s

n s
L λ

∗ ∗′

=

  
= + + + + + + ′ ′ 

   
∑ ∑ E B C E B C EJ EJE E  (142) 

This Lagrangian differs from the Maxwell’s one by a) having an extra inva-

riant 
Max Max

ik j l
ij klE U UE δ  in the first 

2
Max 
′ 

 
E  symbolic term and b) by the presence  

of the underlined symbolic terms. As in the case of the sub-field D  we require 
that the (although as we will discuss it in few paragraphs later it might not be an 
absolute must) the λ -constants (and the constants 3µ , 4µ  and 8µ ) must sa-
tisfy a condition so that the extra term ik j l

ij klE E U Uδ  vanishes. In addition we 
also must require that the λ -constants (and still undefined constants 3µ , 

4 8µ µ ) must satisfy a condition so that all invariants of double underlined sym- 

bolic term 
Max 
′ 

 
EBE , which consist of only three invariants, and 

Max 
′ 

 
ECE , 

which consist of only x invariants, vanish.  

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

Max MaxMax

1 2
inv

Max

3

Max MaxMax

1 2
inv

Max

3

***

E E EB E EBi j m j n
ij mjs n

n s

E EB m j n
mj n

E E EC E EBi j m j n
ij mjs n

n s

E EB m j n
mj n

E EE B U E B U

E U B E U

E EE C U E B U

E U B E U

λ λ λ

λ

λ λ λ

λ

′ ′

=

′

′ ′

=

′

′ ′≡ +′

′+

′ ′≡ +′

′+

∑∑

∑∑

EBE

ECE

    (143) 

This requirement steams from the necessity to avoid non-physical situation in 
the equations for the vector B . Indeed, if such term exists, then in equations for 
B  (or C ) it will correspond to the “source” that is only function of Electro-
magnetic field E . And since B  (or C ) is localized (has asymptotics faster 
than 21 ρ ) it would require that E  should be localized as well, which of 
course is not the case because it contradicts to the long-distance property of 
Electromagnetic filed. Strictly speaking, the underlined terms don’t have to va-
nish, but they must not contradict to the “short” distance of either B  or C  at 
least in static solution. But for now we assume double underlined terms must 
vanished. 

In order for the ( )EL  Lagrangianin—expr. (142)—to have the Maxwell’s 
form and (thus to represent Electromagnetic field), we must demand that the 
single underlined term vanishes as well, although as we will discuss it in few pa-
ragraphs below this might not be an absolute must—and in fact it might better 
represent the physical reality. 

If we drop all the unwanted terms we get this expression for the ( )EL :  

( ) ( ) ( ) ( ) ( )
,where .

E E E AE Eik jl ij kl
ij kl i j j jk l jkL E E E J J F Fδ δ δ δ

∗ ∗ ∗′
= + = −    (144) 
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In the expression above we split the Electromagnetic flux on two components:  

first, ( )Max E∗
′ 

 
 

FE , that was derived from the term proportional to 
Max
′E  and the  

second, that was derived from the term ( )HB∗E BA . There is a significant differ-
ence between these two fluxes. The first (see discussion for sub-field D ) always 
corresponds to the zero total charge while the second can have non-zero total 
charge. 

If we extend this description to a elementary particles such as electron or pro-
ton—which in our case are represented by short-distance (or localized) func-
tions H  (or N  and C ), we must satisfy one more condition, which reflects 
an experimental fact that the electric charge of a such particles is always 1± . 
This requirement must be treated as a condition on the constants of integrations 
for either field E  or mass-matter tensors N  and C  (or H ). 

In order to reduce the Lagrangian (132) to Maxwell’s we requested that the 

( )22 +E B C  terms vanish. However what we try to show is that because of 
“Normalization” procedure such requirement is not necessary. Even with the 

( )2 2+B B C E  terms present this Lagrangian could serve as generalized Lagran-
gian for the Electromagnetic field. 

In standard Maxwell equations the total electrical charge eQ  of the system is 
an integral of the flux ( )

0
EJ  over all 3D-space:  

( )3
0d 1.E

eQ x J ±= =∫                      (145) 

Now if we consider Lagrangian (132) with ( )22 +E B C , then due to the fact 
that ( )C  (and as we will show few paragraphs below B  too) is highly loca-
lized it might not influence much on description of the sub-field E  outside the 
mass-matter, except for adding some constant to a total charge value:  

( ) ( ) ( ) ( )23 3 2
0d where dECB E ECB

eQ Q x J Q x  = + = +  ∫ ∫ E C B       (146) 

which could be scaled down or totally absorbed by the scaling procedure. 
To illustrate this point let us consider a toy model that corresponds to a case 

where Electromagnetic field has only zero (time) component and functions H  
(or C  and N ) depend only on the distance (—spherical symmetry) and could 
be expressed by a piece-meal functions: that is a constant for the distances 
smaller than the size of the particle pρ — pρ ρ<  and zero for the distances 

pρ ρ> . 
In that case the equations for 0E  (which we will labeled as φ ) will have this 

form:  
2 2

2 2

d 2 d d 2 dfor 0 and 0 for
d dd dJ p pV Vϕ

φ φ φ φφ ρ ρ ρ ρ
ρ ρ ρ ρρ ρ

+ − = < < + = >  (147) 

where Vφ  and JV  are constants, which approximate terms 2EC  and ( )EJ  
correspondingly, and pρ  is the size of the particle. The solution for φ —which 
is regular everywhere inside the “particle”—as a function of distance ρ  has this 
form:  
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( )

( )

1 0 and for

thus 1

J e
p p

pJ
e p

p

sh VV Q
K

V V

sh VV
Q K

V V

φ

φ
φ φ

φ

φ
φ φ

ρ
φ ρ ρ φ ρ ρ

ρρ

ρ
ρ

ρ

 
 = + < < = >
 
 

 
 = +
 
 

  (148) 

where Kφ  is an arbitrary constant of integration. In our “toy model” we must 
choose the constant Kφ  in such a way that the charge of particle 1eQ =  (or 
−1). The presence of 2 2E B  term in the Lagrangian for E  field will modify the 
behavior of the E  inside the mass-matter (particle) but—due to the Normaliza-
tion procedure—will not change its asymptotics. In other words, the “Normali-
zation” procedure guarantees that the asymptotic of Electromagnetic potential 
(in our toy model—φ ) outside the particle is always 1 ρ . And as long as the 
asymptotics at infinity is still 1 ρ , the Maxwell description of the Electromag-
netic field of a macro system (in statistical sense) could be recovered by intro-
ducing Dirac’s δ -function as a single particle’s flux.  

( )
Max Max

, ,for a single particle or for a continuum systemjk jk
e iij k ij kQ JE Eδ δ ρ δ∗ ∗= =  (149) 

Such δ -function approximation is possible if the “single” particles are far 
enough from each other (as compared to their size) so we can use the 1 ρ  ap-
proximation, which might be harder and harder to achieve as the speed of “sin-
gle” particles increases toward the speed of light. 

By maintaining the term 2 2+E B C  in Lagrangian for the vector E  we in 
fact postulating that the standard Maxwell equations for the Electromagnetic 
field is an approximation of more complex equations (132) derived thru Affine 
Unification. 

The other point that needs to be made is related to the law of charge conserva-
tion that is part of the Maxwell equation. However, by itself the law of conserva-
tion is not enough, simply because it does not forbid for example for electron to 
be split on two halves—each with a charge −1/2 as long as the total charge is still 
−1. What makes this impossible is the statement that electron is not splittable. 
On the other hand if electron is not splittable, the law of conservation of its 
charge is automatically holds. So we come to the conclusion that the law of 
charge conservation is more a property of electron localization and it “normali-
zation” procedure than the outcome of equations of motion for the Electromag-
netic field. 

We can now consider the Lagrangian for the vector B . In symbolic writing it 
has quite different form all due to the fact that Q  is a function of the vector 
B  (we will ignore for now vectors E  and D ):  

( ) ( )

2 2 2 2 4

2 2 4 2 3 2 2 3

allinv

; ;
B

ns
n s

L λ
=

′ ′= + = + + + = + + =>

 ′ ′ ′ ′ ′= + + + + + + + +  ∑ ∑

Q UB UH M B B H H L M MQ Q

B B B B B H H BH B BH B H HB
 (150) 

where the first 3 terms in expression for ( )BL  correspond to the vacuum 

( )0=H , the single-underlined terms could be written as a flux ( )( )BBJ  and the 
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double-underlined terms represent non-linear interaction between vector B  
and the mass-matter H . 

We need to be reminded that the invariants are formed not only with Min-
kowski metric ijδ , but also with a pair of unit vectors i jU U . 

In vacuum the Lagrangian ( )BL  represented by the first three terms of (150) 
consists of 10 invariants—3 for 4B  invariants and 7 for 2′B B :  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 4Bvac Bvac Bvac4 4 2
1 2 3

2Bvac Bvac Bvac Bvac2 2 2
4 , 5 , 6 , 7 ,

2Bvac Bvac Bvac
8 , 9 , 10 ,

2

            

where and 1,0

i i
i i

i j ij ij m i j
i j i j i j m i j

i j m i j m m j i m
i j m i j i j m

i
i i

B B BU BU

B B B B B B B U B U U B

B U U B U B U B B U B U B B U

B B B U

λ λ λ

λ λ δ λ δ λ

λ λ λ

≡ + +

′ ≡ + + +

+ + +

≡ =

B

B B

( ),0,0

 (151) 

It is important to point out that in expr. above the terms ′B  are not of 
“Minkowski type”, i.e. anti-symmetric, but of general type—that is includes both 
anti-symmetrical and symmetrical parts of the tensor ,i jB′ =B . This will lead a 
situation when the Lagrangian for vector B  in its square derivatives will con-
tain all 6 possible terms, very much similar to the gravitation vector S —see 
expr. (83). One of the problems here is that unlike for Electromagnetic field 
(which had been thoroughly studied over last 100 year), we don’t have similar 
knowledge about non-linear fields, like B . So we can only limit ourselves to 
more or less general statements. 

Since the Electromagnetic vector E  is the only (apart from Gravitational 
vector) long-distance filed, the sub-field B  must be (in vacuum) a short dis-
tance field as well. 

The vacuum equation of motion ( )0Lδ δ =B  has this form:  
3 0s

s
λ  ′′ ′+ + = ∑ B B B B                   (152) 

It is not difficult to see that if we are to look for the long-distance solution 
( ( )

0
BB K ρ= , ( )BK -constant), we get a quadratic equation for the constant 

( )BK . If we assume that this equation has no roots, we will automatically have 
the property that vector B  cannot be a long-distance vector. 

But even if such solution did exit its value ( )( )BK  is of order magnitude of 
the λ -constants that define the equation (152)—or magnitude of atomic size. 
The non-linearity prevent the value of vector B  to grow. 

If we consider the question of propagation thru vacuum, we will have two 
possibilities, that reflect the structure of equation (152) for B . The first possi-
bility is when the equation (152) are of hyperbolic type—that is to say that the 
second derivative by time and the second derivative by spacial coordinates are of 
apposite sign, ( )t t x x∂ ∂ − ∂ ∂ B . In this case the propagation of B -vector in va-
cuum should be possible, because for small amplitudes of B  the non-linear 
terms could be ignored. The non-linearity, however, would be much pro-
nounced for low frequency/high amplitude waves ( cω < B —in units 1/cm). 

That means that once emitted this B-particle will split on several smaller (in 
terms of magnitude) but higher frequency (harmonics) particle that would travel 
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thru the space as the zero mass particle, very much similar to the regular pho-
tons. And because the ′B  contains terms that include the unit vector U  (just 
like in case the Gravitational vector S ) the vacuum speed for such particles 
might differ from speed of light by some factor around 1 (from 0.1 to 10)—and 
thus be even larger than the speed of light—but probably not by several factors 
of magnitude. 

In the second possibility that corresponds to the situation when equation 
(152) are of elliptical type—that is to say that the second derivative by time and 
the second derivative by spacial coordinates are of the same sign, ( )t t x x∂ ∂ − ∂ ∂ B . 
In this case the propagation is not possible at all. 

It seems to be contradictory that in the Minkowski space the equations for the 
some form of Matter ( B  in this case) were not hyperbolic. However, this is 
quite possible due to the existence of unit vector U . In addition to contractions 
(in forming the invariants) using metric ijδ , there will be terms where contrac-
tion is done using a pair of unit vectors i jU U . It is these terms will create some 
terms i j

i j t tU U∂ ∂ = ∂ ∂B B  that will change the sign in front of t t∂ ∂ B  from +1 
to −1 and thus change the type of equations from hyperbolic to elliptic. 

It is interesting to point out that in vacuum there is some interactions between 
Electromagnetic field E  and either field D  or B . But because in vacuum 
′E  comes only in the form of Maxwell (anti-symmetric) tensor 

Max
∗′E , the inte-

raction for the vector E  will have a scattering effect (although with some ener-
gy loss). However, for the vector B , the Electromagnetic field will have an ef-
fect of a source, and thus dragging some B  along with it. 

9. Mass-Matter 

One the advantages of the theory based on Affine Unification is that it allows us 
to view the equations for tensor C  and N  (or for complex H  and its com-
plex conjugate) as equations for the atomic matter (mass-matter)—such as elec-
tron, proton, etc.—or at least their classical description or/and approximation. 
First we need to emphasize that in weak gravitational field (as in our Solar sys-
tem) these equations are the 3-index equations (with appropriate symmetry). on 
top of flat Minkowski space with all covariant derivatives replaced by partial de-
rivatives. 

Also important to point out that without any specific requirements it would 
be too unrealistic to expect that the Lagrangian of the Matter does not contain 
unity vector ( )1,0,0,0=U . 

And because the equations are derived by means of variation of a Lagrangian, 
they will contained all the “law of conservations”, such as conservation of ener-
gy-momentum tensor—associated with it. Those “laws” are not totally universal, 
but only true as approximation in the “weak” gravitational fields. But for an 
atomic particles, the “correction” associated with non-Minkowski space (or with 
curvature of space) is about 36

plank 10aL L −≈  for 2 protons. 
Besides tensor H  these equations will (or may) contain also vector fields E , 

D  and B , equations for which we have already considered in the previous sec-
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tions. We know for instance that if we consider a charged particle (like electron 
or proton) the electromagnetic field E  must be present. It is not quite clear 
what role the other fields serve and in which case their presence in the equations 
could be ignore. Or may be never. 

In addition to the fact that these equations—when we consider elementary 
mass-particles—are written in flat Minkowski space they (the equations) contain 
no functions associated with the space curvature ( )r  or grav-vector G . 

They also are highly non-linear—that is the Lagrangian contains terms pro-
portional to third and even forth power of tensor H , such as 2′H H  and 4H . 
This non-linearity, serves exactly the same purpose as a postulate of quantum 
mechanics, which states that no two fermion particles can occupy the same 
space. Or in other words, the super-position of solutions is not a solution. The 
non-linearity also produces the “localization” of the mass-particle. If the locali-
zation is unstable, the mass-particle will eventually disappear passing its energy 
to other fields, such as vector fields E , D  and B . 

There are two type of “stable” solutions that should be consider. The first 
one—the obvious one—is a stationary solution, which does not contain time 
coordinate. The second is the oscillating type of solution, in which the time is 
present only under some periodic function—like ( )sin tω  or ( )cos tω ) along 
with associated with it frequency ω . The second is of course more general solu-
tion and does include the first type as a particular case corresponding to 0ω = . 
It is not clear—since we can not simply switch to a Fourier representation—if 
such solutions (with 0ω ≠ ) do in fact exist for a highly non-linear equations. 
And if they do, do they produce the discreet states (or quantization) similar to 
Quantum Mechanics. 

It is not the goal of this paper to give a full investigation of the non-linear so-
lutions for the mass-matter tensor H . But instead to look at some simple fea-
tures of such solutions. 

First we need to point that the equations of H  must be properly symmetri-
sized accordingly the symmetry of the tensor N  or C . For example, if we 
consider in the Lagrangian for Mass-Matter a term:  

( ), , ; diag 1, 1, 1, 1 .im jn kq lp ij
ijk l mnp qL N N δ δ δ δ δ= = − − −        (153) 

The equations of motion for the tensor N  will have this form:  

, 0.ijk im lm
ijl mk

ijk

Lq N
N
δ δ δ
δ

≡ = =                 (154) 

But since N  has the following linear symmetries— ijkN  is fully symmetric 
and 0jk

ijkN δ = —so should the equations ijkq . This lead to the Equation (154) 
to take this form:  

( )
( )

, , ,

, , ,
1 0.
6

mn
ijk ijm nk ikm nj jkm ni

mn pq
ipm nq jk jpm nq ik kpm nq ij

q N N N

N N N

δ

δ δ δ δ δ

≡ + +

− + + =
     (155) 

Likewise if we take a Lagrangian term that contains unit vector ( )1,0,0,0U =  
it too must be properly symmetrisized:  
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( )
( )

,

, , ,

, , ,

symm 0

1             0
6

H i m lp kq ijk
ijk l mnpq

ijk

nm l l l l
ijl mn k ikl mn j kjl mn i

l p
ilp mn jk jlp mn ik klp mn ij

LL N N U U q
N

U N U U N U U N U U

U U N r N N

δδ δ
δ

δ

δ δ

  = ≡ = => 
  

 + +

− + + =

    (156) 

or in Minkowski flat coordinates ( ) ( )0,1,2,3 , , ,t x y z≡ :  

( ) ( )0, 0, 0, 00, 00, 00,
1 0.
6

nm mn
ij mn k ik mn j kj mn i i mn jk j mn ik k mn ijN U N U N U N N Nδ δ δ δ δ + + − + + =  

 (157) 

9.1. Localization 

One of the questions that we would like to consider in this section is asymptotic 
behavior of the H  (or N  and C ) on large distances ρ  or possibility of lo-
calized solutions. We must postulate that to be truly localized these solutions (or 
dependence H  vs. distance ρ ) must decay with the distance faster than 1 ρ . 
More realistically like 21 ρ  or even faster. It is not difficult to see that at infin-
ity ( )ρ → ∞  the nonlinear terms in the equations for H  will vanish (for 
example, if 21 ρ≈H , then 41 ρ′′ ≈H , while 2 71 ρ′ ≈H H  and 4 81 ρ≈H ) 
transferring the equations of motion for the tensor H  to a linear system of eq-
uations similar to the equations of QM. This in its turn may produce the “basis” 
for transitioning (or coupling) this Affine Unification description to linear QM 
description of elementary particles. 

Typically, the equations of motion of second order (second derivatives)—such 
as for vector potential for electromagnetic field—produce static solutions with 
an asymptotic 1 ρ≈ . But because the large number of independent functions 
that describe the tensor H , there is a possibility for a static solution with much 
stronger than 1 ρ  behavior at infinity. We can demonstrate it on a particular 
case, where 0=C . We don’t know for certain if such assumption is physical—it 
might be that every mass-matter must have both tensors N  and C  present— 
in which case this considerations should be viewed as a toy model. However the 
conclusion that large number of independent functions in H  can lead to very 
much localized solutions is still holds. 

In case of spherical symmetry N  is described by 6 independent functions— 

2 2, , , , ,t t t tN N N N N Nρ ρ ρ ρΩ Ω —from which the components of the tensor can be 
easily deduced using the invariant form: d d di j k

ijkN x x x , which in case spherical 
symmetry could be written as:  

( ) ( ) ( ) ( )3 2 2 3

2 2 2 2

2 2 2 2

d d d d 3 d d 3 d d d
                           3 d d 3 d d
where   d d sin d .

i j k
ijk ttt tt t

t

N x x x N t N t N t N
N t N

ρ ρρ ρρρ

ρ

ρ ρ ρ
ρ ρ ρ

θ θ φ
Ω Ω

= + + +
+ Ω+ Ω

Ω = +
  (158) 

From this immediate follows expressions for the 8 non-zero components of 
the tensor N  

2 2
2 2 2 2 2 2

; ; ;
; sin ; ; sin

0

ttt t tt t t t

t t t t t t

tt tt t t t

N N N N N N N N
N V N N N N N N N
N N N N N N N N N N N

ρ ρ ρρ ρ ρρρ ρ

θθ φφ ρθθ ρφφ

θ φ ρθ ρφ θφ ρρθ ρθφ θθθ θθφ θφφ φθφ

ρ ρ θ ρ ρ θΩ Ω Ω Ω

≡ ≡ ≡ ≡
≡ ≡ ≡

= = = = = = = = = = =
 (159) 
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The condition (in Minkowski flat space) 0jk
ijkN δ =  in curve-linear coordi-

nates lead to these equations:  

2 2

2 0;

2 0 2 ; 2

t t ttt

tt t t t t

N N N

N N N N N N N N N

ρρ

ρρρ ρ ρ ρ ρ ρ ρ

Ω

Ω Ω Ω

+ − =

+ − = => = − = +
   (160) 

In general the equations 0′′ =N  written in spherical coordinates has a form 
of linear system of 4 equations for 4 functions— tN , Nρ , tN Ω , NρΩ :  

1,1 1,2 1,3 1,4 1,5 1,6 1,72 2

1,8 1,9 1,10 1,11 1,122 2

4,1 4,2 4,3 4,4 4,5 4,6 4,72 2

ˆˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

t t
t t

t t

t t
t v t

N NN N
N N N

N NN N
N

N NN N
N N N

ρ ρ
ρ

ρ ρ
ρ

ρ ρ

α α α α α α α
ρ ρρ ρ

α α α α α
ρ ρρ ρ

α α α α α α α
ρ ρρ ρ

Ω

Ω ΩΩ Ω
Ω

′′
′′ ′′ ′′+ + + + + +

′′
′′+ + + + + =

′′
′′ ′′ ′′+ + + + + +



4,8 4,9 4,10 4,11 4,122 2
ˆ ˆ ˆ ˆ ˆ 0t t

v

N NN N
N ρ ρα α α α α

ρ ρρ ρ

Ω

Ω ΩΩ Ω
′′

′′+ + + + + =

   (161) 

where the symbol ( )'  represent a derivative by distance ( ) ( )=ρ ρ′− ∂ ∂ — 
and ,ˆ p qα  are constants with indeces “p” corresponding to the row and “q” cor-
responding to the the term within the row. The α̂ -s constants are linear com-
binations of the constants α -s of the expr. (1), which in their turn depend on 
the constants λ -s of the Lagrangian 1. 

Asymptotically at large distances the functions tN , Nρ , tN Ω  and NρΩ  
should have behavior nK ρ≈ , where K is a constant. Assuming that all of then 
have the same “n” (but different K— tK , Kρ , tK Ω  and KρΩ ) and substituting 
it in the set of above we get a system of 4 linear equations for tK , Kρ , tK Ω , 
KρΩ .  

( ) ( )
( ) ( )

( ) ( )
( )

1,1 1,2 1,3 1,4 1,5 1,6

1,7 1,8 1,9 1,10 1,11 1,12

4,1 4,2 4,3 4,4 4,5 4,6

4,7 4,8 4,9 4

ˆ ˆ ˆ ˆ1 1

1 1 0

ˆ1 1

1

t

t

t

t

K n n n K n n n

K n n n K n n n

K n n n K n n n

K n n n K

ρ

ρ

ρ

ρ

α α α α α α

α α α α α α

α α α α α α

α α α α

Ω Ω

Ω Ω

   − + + + − + +   

   + − + + + − + + =   

   − + + + − + +   

 + − + + + 



( ),10 4,11 4,121 0n n nα α − + + = 

 (162) 

The system of equations for the constants K s−  has a non-zero solution(s) 
if the determinant of the eq. (162) is zero. This will lead to a 8-power equations 
for the parameter “n”, which solely depends on the set of constants ˆ sα −  or ul-
timately on the set of constants λ -s. Our postulate of “localization” thus re-
quires that the constants ˆ sα −  (and thus the constants λ -s) were such that the 
solution of (162) had a root 2n ≥ . We can look at this problem in slightly dif-
ferent way. We can set n to 2 (n = 2) and view the Equation (162) as requirement 
for the ˆ sα −  (and thus the constants λ -s). Similarly, we could choose 3n =  
(or any other value greater that 1). Another word, by adding one (or more) con-
dition on parameters λ -s (or by choosing different forms of Lagrangians) we 



B. Hikin 
 

240 

can set the of “n” to any number. The problem here is that we really don’t know 
what number(s) we should pick. So we are left with 2 options: a) set no condi-
tions for “n” and hope that λ -s themselves will provide a proper value, or b) 
derive “n” from other mathematical (or physical) considerations and use it to 
impose additional conditions on parameters λ -s. 

9.2. Normalization 

There are some requirements that can not be achieved by proper choice of pa-
rameters λ -s and do relay on the constant of integration of each solution for 
H . Among such requirements are the “normalization” requirements. 

In the previous section we have discuss the normalization procedure asso-
ciated with the law of “fixed minimum charge”—such as proton charge to be + 1 
and never less or more. This means that for any solution H  that we identify 
with a proton, we must get its charge or asymptotic at infinity as a function of 
distance ρ  equal to 1 4πρ . 

The other requirement could be called “Einstein law” which states that energy 
of particle is 2mc . 

It is not difficult to see that because all equations are derived from unified Af-
fine description, one of the constant of integration is a scale of coordinate. The 
units of H  is 1/cm. If H  is a solution, then for any constant al  the  

1ˆ
a a

x
l l

 
=  

 
H H  is a solution too. The tensor energy-momentum derived for  

function H  using corresponding Lagrangian and bring expressed in the units 
c  has the same units 41 al . The Einstein law that total energy of a particle (say 

proton) is 2
pm c  can be written as:  

( )
32

00allspace3
004allspace

d1d or .p pH
a p

a a a pa

xTm c Kxx T l K
c l l l m cl

 
= = = = 

 

∫
∫





  (163) 

Another words, the Einstein law 2E mc=  is a one particular normalization 
procedure. From physics point of view this normalization does not explain why 
electron’s mass is 1800 times less than proton’s one. Or—using electron charac-
teristic length—it is 1800 times greater than of proton’s. It simply assign a prop-
er value. In order to get the factor 1800 we need one more condition that would 
effectively compared the length between themselves. Perhaps some common 
asymptotic at infinity. For example if we postulate that at infinity H  has the 
same asymptotic 2K ρ≈ , where K is a fixed constant. That will produce a rela-
tion between the characteristic length ( protonl  and electronl , which of course must be 
1836, which is additional condition for the λ -s constants of the right Lagrangian. 

9.3. Particle, Anti-Particle 

It seems logical, considering the frame work of the Eddington Affine derivation, 
to assume that if a some form of the tensor potential P  represents a particle, 
then −P  (minus P ) represents an anti-particle. However, if we consider (in 
symbolic writing) the Lagrangian for tensor potential P  (see expr. (109)) 
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( ) ( )2 2 4 2 2 2 4

inv inv

M P
s s

s s
λ λ

= =

   ′ ′ ′= + = + + = + +   ∑ ∑M P P L M Q MQ P P P P  (164) 

we can see that because of the term 2′P P , if P  is a solution −P  is (in gener-
al) not. So the more accurate definition of anti-particle should be: P  transfers 
to −P  and the coordinate x  transfers to ( )x x x− => − . And since 0=P  is 
also a solution then annihilation of particles is possible, assuming of course that 
all other laws of conservations (energy, etc) are preserved. 

This immediately could be apply to any mass-matter (particle) H  (ignoring 
for now all the vector field D , E , D ). If particle is described by some solution 
H  then the solution ( )x− −H  describes anti-particle. 

From that point of view both linear photons ( ),D E  that we discussed in Sec-
tion 8 in vacuum are identical to their anti-photons due to the fact that Lagran-
gian of these particles is quadratic with respect to their first derivatives. 

It is not difficult to see—see expr. (142) that such procedure correspond to the 
rule: if particle is changed to anti-particle, the electrical charge (current) changes 
its sign. 

However, if we switch from matter (particle) to anti-matter (anti-particle) ex-
pression for Energy-Momentum for the Matter  

, ,
1
2

n i i m
m jk n jk m nT L P P Lδ  ≡ = ∂ ∂ −   

T  does not change. Similarly, the unit vec- 

tor ( )1,0,0,0U =  does not change. This is a consequence of the fact that the 
gravitation vector S  is a square-vector: i iS G G= , where G  is deduced di-
rectly from the tensor potential TP . With the change of P P→ −  and the 
coordinates x x→ −  the vector G  changes sign, but the square-vector S  
remains unchanged. 

In conclusion it needs to be pointed out that we take H  as a description of a 
particle (mass-matter) based primarily on its form of 3-index tensor. It is a pos-
sibility that this tensor could be “reduced” to simpler forms—such for example 
as 6 spinors. In that case one might want to associate the simple forms with the 
“basic particles” and construct the atomic particles from them. 

9.4. Elliptic vs. Hyperbolic Equations 

We have pointed out before (see Section 7 and Section 8) that existence of   
Unit vector U  allows for the equations of Gravitational field S  and metric r  
to be elliptical. This possibility even more important for the mass-matter fields 
H . 

The difficulties of establishing gravitational waves (which in fact should have 
been an easy task taking into account the sophistication of measuring technolo-
gies) might be taken as a proof of the fact that Gravitational field and/or metric 
described by elliptical equations. 

However we almost certain that the mass-matter H  should be described by 
elliptical equations. The reason behind it is its localization and its stability. If the 
equations were elliptic, then any statistical fluctuation or any collision of 2 
mass-particles would create deviation in the form of the localized particle which 
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would in time degrade to zero. But if the equations are hyperbolic, the deviations 
are the composition of “running waves” that can live on its own and “run” away 
(propagate in space) from the particle, taking with it some energy. This, of 
course would make the particle to degrade and eventually disappear. But some 
particles—like electron and proton do not disappear. And the only way to assure 
it is to postulate that the equations that describe mass-field are elliptical. 

9.5. Moving System of Coordinates 

Since equations for mass-matter (proton, electron, etc) are written in tensorial 
form, the solution in “rest” system coordinate ( )( )0v=H , where Minkowski me-
tric is ( )diag 1, 1, 1, 1− − −  and ( )1,0,0,0i =U , could be used to obtain a solution 

( )( )vH  in any moving with a constant speed v  system coordinate. 
The equations that describe the mass-matter (electron, proton, etc.) particle 

H  contain unity vector ( )1,0,0,0U =  and thus in general are not Lorentz in-
variant. That is to say that in “rest” system coordinate, where Minkowski metric 
is ( )diag 1, 1, 1, 1− − −  and ( )1,0,0,0iU = , we have one form of Lagrangian (and 
thus equations), while writing it in moving—say in z direction (even with con-
stant speed v ) we get different form simply because the unit vector U  in 
moving coordinate is going to have non-zero “z” component:  

( ),0,0, ;  1iU coh sih v cφ φ φ= ≈ 

. 
Another words, the moving system of coordinate are not identical to the 

“rest” one. The solution for H  will be different and will depend on the speed 
v c  factor both in amplitude and direction sense. This change might be im-
perceptible for small v , but if we accelerate say ion of helium ( )He+  to the 
speed compared to the speed of light, we might expect that its atomic levels 
change or it might simply loose the last electron transferring itself into al-
pha-particle. 

Interesting, that beta decay (weak interaction) of large atoms, has the value 
about 1e 4≈ −  which is comparable to the speed of our Sun moving around the 
Milky-Way Galaxy ( )47.6710 c− . So, we might suggest that Sun’s speed (or 
“non-rest” system of coordinates) is sufficient large (even though it’s only 310−  
of speed of light) to cause large atoms (nuclei) to change its shape enough to 
cause the decay of those atoms. 

This forces us to ask a following question: how does the localized solution for 
H  look if the “particle” moves with a constant speed v . Let us consider a sim-
ple 2 dimensional ( ),t x  Minkowski flat space toy model, which as we will show 
has all the elements that are associated with moving mass-matter. We will con-
sider the following Lagrangian of function φ  

( )

2
, , , ,

where const  field 1; diag 1, 1

ij ik jl
i j i j k l

ij
i i j ij

L U U

U U U

φ φ δ λφ φ δ δ µ φ

δ δ

= + −

= = = −
     (165) 

which leads to the equation  
2

, , 0.ij ik jl
ij ij k lL U Uφ δ λφ δ δ µ φ= + + =               (166) 

In the “rest” system coordinate where ( )1,0iU =  the equation has this form:  
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( ) 2
, ,1 0tt xxλ φ φ µ φ+ − + =                   (167) 

which has static (time independent) solution  

.xe µφ −=                          (168) 

If 2λ = −  the Equation (1) take elliptical form, with no “running wave” solu-
tions—the solution in the form t kxeω +  has real ω  

2 2 2 2 2;  0;  .t kxe k kωφ ω µ ω µ+= => − + + = => = − +         (169) 

Our next step is to find the solution for a mass-matter that moves with a con-
stant speed v, which of course is a rotation in t x−  space that leaves metric 
unchanged. For that we need to switch to moving system coordinate associated 
with moving particle and write the Lagrangian and equations and find the static 
solution in that system coordinate. Since (169) written in tensorial form, 
switching to moving system coordinate is simple to rename coordinates t x−  
to yτ − . There is though an exception—the vector U  which in moving system 
has both components depending on velocity v:  

2
, , 2 2

2 2 2
, , , , ,

10 ;
1 1

2 0

ij ik jl
ij ij k l y

yy y y yy y

vL U U U U
v v

U U U U

τ

ττ ττ τ τ τ

φ δ λφ δ δ µ φ

φ φ λ φ φ φ µ φ

= + + = = =
− −

 − + − + + = 

  (170) 

with the static solution:  

( )2

2

1
e ; .

1
V

V

y v

v
µ µ

φ µ
λ

− −
= =

−
                  (171) 

And with 2λ = −  (our case), we can see that the localization is remained on 
all velocity’s values. However as v approaches to speed of light ( )1c =  the “par-
ticle” get stretched in spacial dimension ( )0

V
µ → . 

In order to see the particle in the rest system coordinate all we need to do is 

replace y  with 
21

y y
vtx U t y x U t x

vλ

 
− = − = −  − 

, which would describe a  

static solution of the particle moving with a constant speed with respect to “rest” 
system coordinate. If we consider now the possibility of “running waves” solu-
tions—that is the solutions in a form i ikye ωτ + —we get this equation:  

( ) ( ) ( )
( )

( ) ( )
( )

2 2 2 2 2 2 2

2 2 2 2 2

2

2 2 2

2

2 0

1 1

1

1 1
   

1

y y

y y y

y

k U kU U k U

k U U k U U k U U

U

k U U U k

U

τ τ

τ τ τ

τ

τ τ

τ

ω λ ω ω µ

λ λ µ λ λ
ω

λ

λ µ λ λ

λ

 − + + − + − + = => 

 ± + + − + =
+

± + + +
=

+

    (172) 

from which it’s easy to see that in our case ( )2λ = −  for all v  the the expr. 
under the square root is negative implying that no “running waves” are possible. 
In other words, the particle moving with any speed will deform itself, but it will 
mountain it ellipticity of its equations. Of course this is a toy model and we 
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should not put to much into it. It is quite possible that for complex nuclear as-
semblies (large number of baryons) the deformation due to the high speed could 
be “too much” for the assembly to stay together and we might expect that at 
some high velocity such assembly fall apart (decays). 

10. Cosmology 

A cosmological description of the Universe with a vector field as gravitational 
matter is both difficult and simple. The simplicity comes from its “statistical” 
uniformity. If we assume that Universe is uniform closed 3D-sphere with oscil-
lating (or static) radius—and this is the only physical and philosophical right 
assumptions—then the physical point of view, the presence of Gravitational field 
G  allows this interpretation of Universe’ behavior. As Universe expands the 
average gravitational field decreases, the effective value of Newton’s gravitational 
constant increases, which increases gravitational pull of masses. Eventually, this 
pull will be strong enough to stop the expansion and reverse it to compression of 
the Universe. At the other end the shrinking of the size of Universe increases the 
average value of the gravitational field G , effectively decreasing the Newton’s 
gravitational constant and thus decreasing gravitational pull of masses. The 
mass’ kinetic energy (the temperature of Universe) would be large enough to 
stop contraction of the Universe and reverse it back to expansion, thus leading 
to the eternal oscillation of the Universe. 

The difficulties, on the other hand, lie in its mathematical model. First, since 
in cosmology we have to assume that gravitational field defined by all the par-
ticles of Universe is comparable to the Matter, we cannot use perturbation series 
(by parameter G), but must consider the exact Lagrangian. However, we don’t 
know what the exact Lagrangian is until we actually do the analysis that we de-
scribed in Section 6—Lagrangian. That is we need to find what is the parameter 
“n” in expr. (12) and then to derive the actual values of all λ -s constants asso-
ciated with that Lagrangian. Also we would need to resolve the issue with extra 
undetermined parameters of some extra invariants. In other words, we would 
need to show that all λ -s are uniquely defined. Second, even if we assume that 
Lagrangian is known, we would be required to perform “averaging” procedure 
over the functions describing the Matter ( )T 2,′M P P . The assumptions that 
matter is uniformly distributed in the Universe, and the assumption that Un-
iverse’s metric could be approximated with closed Universe 3-dimensional 
sphere should significantly simplify the mathematical side of the problem. The 
averaging procedure might require of (or lead to) introduction, in addition to a 
“density”, some statistical functions as “pressure” and “temperature”, which in 
its turn would demand the laws of “state” for those functions, similar to statistic-
al theory of gas. It is not clear what those “laws” are. Could we equate Universe 
with ideal “gas” or the interaction between Galaxies are strong enough that one 
must postulate (or derive) more realistic “laws” of non-ideal gas. Third, the La-
grangian GL  for the vector field G  would contain not only square of the first 
derivatives of the Grav-field G , but also higher powers of it. If we assume that 
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in expr. (12) n = 4, then we will have 4G′ . Perhaps it could be shown that these 
equations yield the results (or reduce to) similar to the ones obtained in the 
phenomenological theories of Berkenstein’s TeVeS [39] and and Milgrom’s 
MOND [41]. 

The development of Physics—whether we realize it or not—is in large driven 
by it’s mathematical representation. It is based on Einstein General Relativity, 
that we arrive to such constructions as: Event Horizon, Black Holes, Open and 
Close Universe, Big Bang, Black Energy, etc. If this Eddington Unification theory 
with accumulating Gravitational field G  is correct, it is not clear which of 
these phenomena survive. Or what their mathematical description would be if 
they still exist. For example, we might learn that “black holes” that don’t allow 
light to escape do exist (which would not be a big surprise to Astronomers), but 
those “black hole” have no event horizon. In fact, if the “event horizon” did ex-
ist, would we see a ring of a bright glow around each black hole, due to the 
“stacked” light (from outsider point of view) of all the stars that fell into that 
“hole” over millions and millions year of its history? 

There are more questions than answers. For example, we don’t know what the 
value of Gravitational field ∞G  is as compared to the value of the field created 
by a Galaxy. Can it be that the Gravitational field between Milky Way (our Ga-
laxy) and the Galaxy next to it is much smaller than the Grav-field in our Solar 
System ( )3310  1 cmG ≈  created by our Galaxy. And if that is the case, then 
may be—even with hyperbolic equations for G  and r —that is the reason why 
we cannot detect the gravitational waves that should come from other Galaxies. 
Perhaps they get reflected back just like water waves when they reach the area 
where level of water is very low. Or perhaps the waves don’t come to us because 
of the non-linearity effects in description of Grav-vector G —both in terms of 
′G  and G . However, if proposed in this paper theory based on accumulative 

large Grav-field G  reflects the physical reality, it is quite realistic to assume 
that Einstein’s equations (with or without dark matter) can not be used for de-
scription of Universe (or Galaxies) and must be viewed only as a linear approx-
imation applicable only for calculating correction of metric and/or Gravitational 
field (Dark Matter) in a system of week gravitational interactions. 

In the end we would like to emphasize that in proposed theory the Gravitation 
is described only thru atomic parameters—i.e.   as a measure of energy and 
mass, c  being the speed of light and aL  being the atomic length—and the 
number of particle in the Universe. And because of that it is not difficult to see 
that the scale of the basic parameters of the Universe—the radius of Universe 

UL  (measures in atomic length UL La ) and the Time-Scale of the Universe 

UT —are given by a simple relation with respect to the number of particles in the 
Universe N, where both of basic Universe parameters are proportional to a 
square root of the number of particles: U a U aL L T c L N= = , with 8310N ≈ . 
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