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Abstract 
In this paper we solve exactly the problem of the spectrum and Feynman 
propagator of a charged particle submitted to both an anharmonic oscillator 
in the plane and a constant and homogeneous magnetic field of arbitrary 
strength aligned with the perpendicular direction to the plane. As we shall see 
in the beginning of the letter, the Hamiltonian, being a quadratic form, is eas-
ily diagonalizable and the Classical Action can be used to construct the exact 
Feynman Propagator using the Stationary Phase Approximation. The result is 
useful for the treatment of quasi two dimensional samples in the field of 
magnetic effects in nano-structures and quantum optics. The presented solu-
tion, after minor extensions, can also be used for motion in three dimensions, 
and in fact it has been used for years in such cases. Also it can be used as a 
good exercise of a Feynman Path Integral that can be calculated easily with 
just the help of the Classical Action. 
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1. Introduction 

The problem of quantum charged particles in the presence of electric and 
magnetic fields has always remained on target of any theoretical physicist who 
wishes to predict the behavior of one or a swarm of such particles imbedded in 
the structure of a solid. The exact solution in three dimensions has eluded these 
attempts for years. However, when the particles remain in a two dimensional 
solid, the problem of the exact solution becomes both feasible and possible. 
Experimentally, the last situation has only been possible to be realized until very 
recently in the laboratory thanks to the technological means that allow the 
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experimentalists to produce quasi dimensional samples of metals and semi- 
metals. One can induce large magnetic behavior combining them with ferromag- 
netic 2D materials such as 0,7 0,3 3 3La Sr MnO SrTiO  and 2 4K CuF . Indeed we 
should also mention the recent discovery of Magnetic Graphene which falls in 
the class of these two dimensional samples when combined with the aforemen- 
tioned substrates. The propagator can also be used in three dimensions with 
some little arrangements. However, I restrict myself to the two dimensional case 
given the importance of two dimensional solids nowadays. 

However, the stationary solution of a bounded Hamiltonian is only of 
academic interest as we would like to know the evolution of the particle inside of 
the two dimensional solid. This goal can only be achieved if we know the 
propagator of the particle(s) along the time and the properties that may or may 
not change in the sample: phase transitions from metal to semimetal or to an 
insulator phase, the behavior of the Anderson localization, the magneto-optics 
properties of the solid and the like. This wealth of physical effects can be studied 
if we know the Feynman propagator of the system and the help of computing 
algebraic calculus. The aim of this paper is to show that these results can be 
attained with little effort and a touch of elegance. 

The problem of the exact solution of the Feynman propagator of the system 
simplifies a great deal with the help of the Stationary Phase Approximation that 
turns to be exact in the case of a quadratic Hamiltonians. In this paper, we use 
the most general two-dimensional Hamiltonian with magnetic effects provided 
by a magnetic field pointing in the perpendicular direction of the plane. The rest 
of the interaction is represented by anisotropic harmonic oscillators lying in the 
plane along perpendicular directions. 

I would like to finish this Introduction with a set of References. The Feynman 
Path Integrals [1] are well known from a historical perspective [2] to an 
encyclopedic account with many examples [3]. Also this Quantum Mechanical 
problem has been partially treated many years ago in References [4] and [5].  

2. Quantum Mechanical Hamiltonian 

The Hamiltonian described in the Introduction has the form:  
2 2

2 2 2 2
1 2

1 1 1 1ˆ ˆˆ ˆ ˆ ˆ ˆ
2 2 2 2x x y y

e eH p A p A x y
m c m c m m

ω ω   = − + − + +   
   

     (1) 

where 1ω  and 2ω  are the first order frequencies on each direction of the 
plane. The set of variables are well known in electromagnetic theory. One can 
select the following gauge for the magnetic vector that produces a constant 
magnetic field of arbitrary strength and perpendicular to the plane:  

2 1
0 0 3

1 2 1 2

; ; 0x yA B y A B x Aω ω
ω ω ω ω
   

= − = + =   
+ +   

        (2) 

and the Hamiltonian reads:  

( ) ( )
( )

22 2 2
2 2 2 20 0 0
1 2 2 12 2

1 21 2 1 2

ˆˆ 1 1ˆ ˆ ˆ ˆ ˆ ˆˆ1 1
2 2 2 2

yx
x y

pp
H m x m y yp xp

m m
ω ω ω

ω ω ω ω
ω ωω ω ω ω

   
= + + + + + + −   

++ +      
 (3) 
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with 

0
0

eB
mc

ω =                            (4) 

Obviously 0B  is the strength of the constant magnetic field. Let us now call:  

( )

1
22

0
2

1 2

1
ω

γ
ω ω

 
= + 

+  
                      (5) 

and we scale the position and momentum operators in a scale free way in the 
form:  

1 1
2 21 2ˆ ˆˆ ˆ,

m mX x Y yγω γω   = =   
   � �

              (6) 

( ) ( )
1 1
2 21 2

ˆ ˆˆ ˆ,x x y yP m p P m pγω γω− −= =� �              (7) 

Again, with this change of variables the Hamiltonian takes the form:  

( ) ( )
( )

( )
1
2

2 2 2 2 02 2
1

21 1 12 2
1 2 0

22 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
x y x yH P X P Y YP XP

ωω ω
ω γ ω ω

ω ω ω

     
= + + + + −     

      + + 
�

 (8) 

that looks as a quadratic form that we can easily diagonalize:  

( )

1 0 0
2

0 1 0
2

0 0
2

0 0
2

c

c

c b

c b

λ

λ
λ

λ

λ

−

− −
=

− −

−

  

where b  and c  are constants:  

( )

( )
( )

1
1 22 2
2 0 1 202

1
21 1 22 2

0 1 2

2
; ;

b
b c

ω ω ωωω
γ

ω ω ω
ω ω ω

 + +   = = =  +   + + 

     (9) 

The non vanishing real roots of the quartic equation take the form:  

( ) ( )
( )

( ) ( )

( )

2
2 0 1 2

1 2 1 2 22
1 0 1 2

22
0 1 21 2

22
1 0 1 2

41
2

1
2

ω ωω
ω ω ω ω

ω ω ω ω

ω ω ωω ω
ω ω ω ω

±

 
 = + ± − + 

 + +   
  + −+   = ± 

 + +   



       (10) 

and multiplying the Hamiltonian by { }12
ω γ�

, one finally obtains the following 

eigenvalues:  
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( ) ( ) { }
1 1

2 22 22 2
0 1 2 0 1 24 4

E ω ω ω ω ω ω± + −

     = + + ± + − = Ω ±Ω      

� �    (11) 

or in a more tractable manner:  

( ) ( )

( ) ( ){ }

1 2, 1 2

1 2 1 2

1 1
4 2 2

1
4

n n n n

n n n n

+ − + −

+ −

    = Ω +Ω + + Ω −Ω +    
    

= Ω + + +Ω −

�

�


       (12) 

If one diagonalizes the isotropic harmonic oscillator in both cartesian and 
angular coordinates the Landau eigenlevels are labeled respectively by the 
quantum numbers ( )1 2,n n  and ( ),rn m . Both eigenlevels take the form:  

( ) ( ) ( )1 2 1 21 2 1 where  rn n n m m n n+ + = + + = −         (13) 

Therefore the Hamiltonian exhibits a complete breaking of the magnetic 
degeneracy. This effect has nothing to do with the spin-orbit coupling as the 
spin degrees of freedom are absent from the Hamiltonian. It is in turn closely 
related to the Landau orbital coupling interacting with the magnetic field. The 
non trivial question of writing down the wave functions has been largely 
discussed in [6] and [7]. The interested reader is invited to address himself to 
these references.  

3. Lagrangian Formalism and Construction  
of the Propagator 

The Lagrangian of the system has the obvious form:  

( ) { } { }2 2 2 2 2 2
1 2

1 1 1,
2 2 2i i x y

ex v m x y xA yA m x m y
c

ω ω= + + + − −� � � �    (14) 

and now select a different gauge, but representing also a constant magnetic field 
in the perpendicular direction to the plane:  

0 0
3; ; 0

2 2x y
B B

A y A x A= − = + =               (15) 

The change of gauge causes no problems in the final solution of the 
propagator as it was pointed out many years ago by Bialynicki-Birula [8]. The 
propagator and quantum amplitudes in general are invariant under a gauge 
transformation. In our case:  

2 1
0 0

1 2 1 2

;x x y yA B y A B xω ω
ω ω ω ω
   

= − − ∂ = + − ∂   
+ +   

Λ Λ       (16) 

It is easy to find out the actual fom of ( ), ,x y zΛ , obviously independent of 
z . One finds:  

( ) ( )
( )

1 20

1 2

,
2
B

x y xy
ω ω
ω ω

−
=

+
Λ                   (17) 

which vanishes for the isotropic limit. For a throughout and recent discussion on 
gauge independence of the propagator see reference [9].  
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The Lagrangian looks now as:  

( ) ( ) ( ){ }2 2 2 2 2 2
1 2 0, , ,

2
mx y x y x y x y xy yxω ω ω= + − + + −� � � � � �       (18) 

and the Equations of Motion are:  
2 2
1 0 2 0;x x y y y xω ω ω ω+ = + = −�� � �� �               (19) 

where where 1ω  and 2ω  are the first order frequencies on each direction of 
the plane due to the potential of the net. The real solutions of these Equations 
are always harmonic functions that we can write of the form:  

( ) ( ) ( )

( ) ( )

1 1cos sin
2 2

1 1 cos sin
2 2

x t t t

t t

+ − + −

+ − + −

= Ω +Ω + Ω +Ω

+ Ω −Ω + Ω −Ω

A B

C D
        (20) 

( ) ( ) ( )

( ) ( )

1

2

1 1sin cos
2 2
1 1 sin cos
2 2

y t t t

t t

+ − + −

+ − + −

 = − Ω +Ω − Ω +Ω 
 
 − Ω −Ω − Ω −Ω 
 

A B

C D

Λ

Λ
      (21) 

where:  

( )
( )

( )
( )

2 22 2
1 1

1 2
0 0

4 4
;

2 2
ω ω

ω ω
+ − + −

+ − + −

Ω +Ω − Ω −Ω −
= =

Ω +Ω Ω −Ω
Λ Λ        (22) 

We shall name: ( ) 10x t x= = , ( ) 10y t y= =  to the points at time equal zero 
and ( ) 2x t T x= = , ( ) 2y t T y= = , those points at an arbitrary evolution time 
T . Thus, one can see trivially that the following relationships hold:  

1 1 1 2;x y= + = +A C B DΛ Λ               (23) 

( ) ( )

( ) ( )

2
1 1cos sin
2 2

1 1  cos sin
2 2

x T T

T T

+ − + −

+ − + −

= Ω +Ω + Ω +Ω

+ Ω −Ω + Ω −Ω

A B

C D
         (24) 

( ) ( )

( ) ( )

2 1

2

1 1sin cos
2 2
1 1  sin cos
2 2

y T T

T T

+ − + −

+ − + −

 = − Ω +Ω − Ω +Ω 
 
 − Ω −Ω − Ω −Ω 
 

A B

C D

Λ

Λ
       (25) 

Next we shall be concerned with the evaluation of the classical action of the 
anisotropic net in the presence of a uniform and constant magnetic field. The 
various steps of the calculation are listed in Section 4 at the end of the paper. For 
the moment we shall be concerned formally with the action derived from this 
Lagrangian AMN

clS  having the form:  

( ) ( ) ( )

( ) ( ){ }

2

1

2

1

AMN
cl

2 2 2 2 2 2
1 2 0

, , , , d

d
2

t

t

t

t

x T y T L x y x y t

m t x y x y xy yxω ω ω

=  

= + − + + −

∫

∫

� �

� � � �

S
 (26) 

where we have used (16). Next we integrate by parts the terms 2x�  and 2y�  
leading easily to:  
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( ) ( ) { } { } { }{ }22

1 1

AMN 2 2
cl 1 0 2 0, d

2 2
tt

t t

m mx T y T xx yy t x x y x y y x yω ω ω ω= + − + − + + +   ∫� � �� � �� �S  (27) 

The integral of the right hand side is trivially zero as it contains only the 
equations of motion (17). This property has been used in other contexts in 
reference [10] for the general case of kinetic energy plus an arbitrary potential 
depending just upon the coordinates. One finally founds:  

( ) ( ) { }AMN
cl 2 2 1 1 2 2 1 1,

2
mx T y T x x x x y y y y= − + −   � � � �S         (28) 

and substituting the values of the coordinates and their derivatives one finally 
obtains the following expression for the action ( ) ( )AMN

cl ,x T y T  S :  

( ) ( ) ( ) ( )( ) ( )( ) ( ){
( ) ( )( ) ( )( )}

AMN 2 2 2 2
cl 1 1 2 2 1 2 1 1 2

2 1 2 1 1 2 2 1 2 2 2 1 1

, 2
2

  2 4

mx T y T T x x T y y T x x
T

T y y T x y x y T x y x y

= + + + −  

− + − + −

S a a b
D

b c c
 (29) 

The Amplitude of the Propagator is now calculated with the help of the 
VanVleck-DeWitt-Morette Determinant. As it is well known the form of the 
Determinant is:  

( )
1

2 AMN 212 2AMN cl2
1 1

2π 2π

d d

i j

T
i i x y

∂   = =   
∂ ∂   

Det Det
� �

S
A M     (30) 

where d  is the number of spatial dimensions of the problem. In our case 
2d = . Furthermore the form of the Determinant is:  

2 AMN 2 AMN
cl 1 2 cl 1 2

2 AMN 2 AMN
cl 1 2 cl 1 2

.
x x y x
x y y y

∂ ∂ ∂ ∂ ∂ ∂
=
∂ ∂ ∂ ∂ ∂ ∂

S S
M

S S
 

The result leads to:  

( )

( ) ( ) ( ) ( )

( )( )
( )

1
2

AMN

2
1 2 1

1 2

2π

4
2π

2π

T
i
m T T T

i T

m
i T

ωω + −

=

= +

Ω Ω
=

Det
�

�

�

M
A

b b c
D

D

         (31) 

Substituting ( )TD  we obtain (with T t⇒ ):  

( )
( ) ( )

1
2

AMN 1 2

2 22 22 2
1 2 1 2

2π sin sin2 2

mt
t ti
ωω

ω ω ω ω

+ −

+ −
− +

 
 Ω Ω

=  Ω Ω + Ω − − Ω  
�

A  (32) 

and the propagator takes the final form:  

( ) ( ) [ ]AMN AMN AMN
1 1 2 2 cl 1 1 2 2, , , , exp , , , ,ix y x y t t x y x y t =  

 �
G A S    (33) 

where  

[ ] ( ) ( )( ) ( ) ( ){
( ) ( )( ) ( )( )}

AMN 2 2 2 2
cl 1 1 2 2 1 1 2 2 1 2 1 1 2

2 1 2 1 1 2 2 1 2 2 2 1 1

, , , , ( ) 2
2
2 2

mx y x y t t t x x t y y t x x

t y y t x y x y t x y x y

= + + + −

− + − + −

S a a b
D
b c c

(34) 
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The expressions for ( ) ( ) ( ) ( ) ( )1 2 1 2 1, , , ,t t t t ta a b b c  and ( )2 tc  can be found 
in Section 4 but now we have substituted everywhere T t⇒  as in the ( )TD  
expression. As a final word one can say that these seemingly tedious calculations 
simplify greatly when one uses any of the available packages of algebraic 
calculations such as MATHEMATICAT or MAPLET. Also limits in the case of 
vanishing magnetic fields or isotropic harmonic oscillator (i.e. 1 2ω ω= ) have 
been discussed in [11]. One of the main goals of this work has been precisely to 
put at work these software applications to the non trivial field of path integrals 
and its use in material science and quantum optics: for instance propagating a 
gaussian wave packet in two dimensional magnetic solids when the gaussian 
represents charged particles or intense femtosecond light pulses. A particular 
case is the one of a “Schrödinger cat” propagating in the net. The wave function 
can be simulated as two widely separated gaussians charged with “-2e-charge” as 
in a Cooper pair [12].  

( ) ( )
( ) ( )

2 2
0

2 2
0 0

1 4 1 2 2 22 8

2 21 1 exp exp
4 48π 1 a

x a x a

e σ σ σσ −

    + −    Ψ = ⊗ − + −    
    +     

 (35) 

where 
2

0 2a
me

=
�  in atomic units containing the electric charge and 2σ  is the  

variance of each packet. Although these projects for Master Thesis or Graduate 
Courses can be considered as a little cumbersome, they might attract the interest 
of the young physicists to the condensed matter field in which much of the 
research is being done nowadays.  

4. The Main Result and Calculations with Useful  
Definitions of Interest 

To obtain { }, , ,A B C D  in Equations (23)-(25) as functions of { }1 1 2 2, , ,x y x y . I 
have used for the calculation of the inverse 4 4⊗  matrix with the help of the 
MATHEMATICAT package:  

111 12 13 14

121 22 23 24

31 32 33 34 2

41 42 43 44 2

xu u u u
yu u u u

u u u u x
u u u u y

   
   
    =    
         

A
B
C
D

               (36) 

where the matrix elements and the determinant ∆  of (24) are listed below:  

( ) ( )

( ) ( )

11 2 1

2 1

1 1cos cos
2 2

1 1  sin sin
2 2

a T T

T T

+ − + −

+ − + −

= Ω +Ω Ω −Ω


+ Ω +Ω Ω −Ω − 


Λ Λ

Λ Λ
 

( ) ( )

( ) ( )

12 1

2

1 1cos sin
2 2

1 1 sin cos
2 2

a T T

T T

+ − + −

+ − + −

= Ω +Ω Ω −Ω

− Ω +Ω Ω −Ω

Λ

Λ
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( ) ( )13 1 2
1 1 1sin sin
2 2 2

a T T+ − + −= Ω +Ω Ω −ΩΛ Λ  

( ) ( )14 2 1
1 1sin sin
2 2

a T T+ − + −= Ω +Ω − Ω −ΩΛ Λ  

( ) ( )

( ) ( )

21 2 1

2

1 1sin cos
2 2

1 1  cos sin
2 2

a T T

T T

+ − + −

+ − + −

= Ω +Ω Ω −Ω


− Ω +Ω Ω −Ω 


Λ Λ

Λ
 

( ) ( )

( ) ( )

22 1

2 2

1 1sin sin
2 2

1 1  cos cos
2 2

a T T

T T

+ − + −

+ − + −

= Ω +Ω Ω −Ω

+ Ω +Ω Ω −Ω −

Λ

Λ Λ
 

( ) ( )23 2 1 2
1 1sin sin
2 2

a T T+ − + −
 = − Ω +Ω + Ω −Ω 
 

Λ Λ Λ  

( ) ( )24 2
1 1 1sin sin
2 2 2

a T T+ − + −= Ω +Ω Ω −ΩΛ  

( ) ( )

( ) ( )

31 1 2

1 2

1 1cos cos
2 2

1 1  sin sin
2 2

a T T

T T

+ − + −

+ − + −

= Ω +Ω Ω −Ω


+ Ω +Ω Ω −Ω − 


Λ Λ

Λ Λ
 

( ) ( )

( ) ( )

32 1

2

1 1cos sin
2 2
1 1  sin cos
2 2

a T T

T T

+ − + −

+ − + −

= − Ω +Ω Ω −Ω

+ Ω +Ω Ω −Ω

Λ

Λ
 

( ) ( )33 1 2
1 1 1sin sin
2 2 2

a T T+ − + −= − Ω +Ω Ω −ΩΛ Λ  

( ) ( )34 2 1
1 1sin sin
2 2

a T T+ − + −= − Ω +Ω + Ω −ΩΛ Λ  

( ) ( )

( ) ( )

41 1 1

2

1 1sin cos
2 2

1 1  cos sin
2 2

a T T

T T

+ − + −

+ − + −

= − Ω +Ω Ω −Ω


+ Ω +Ω Ω −Ω 


Λ Λ

Λ
 

( ) ( )

( ) ( )

42 2

1 1

1 1sin sin
2 2

1 1  cos cos
2 2

a T T

T T

+ − + −

+ − + −

= Ω +Ω Ω −Ω

+ Ω +Ω Ω −Ω −

Λ

Λ Λ
 

( ) ( )43 1 1 2
1 1sin sin
2 2

a T T+ − + −
 = Ω +Ω − Ω −Ω 
 

Λ Λ Λ  

( ) ( )44 1
1 1 1sin sin
2 2 2

a T T+ − + −= − Ω +Ω Ω −ΩΛ  

and the determinant takes the form:  

( ) ( ) ( ) ( )2
1 2 1 2

1 1sin sin 2 1 cos
2 2

T T T+ − + − −= − Ω +Ω Ω −Ω − − Ω∆ Λ Λ Λ Λ  (37) 
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Likewise one can easily calculate { }1 1 2 2, , ,x y x y� � � �   

( ) ( )1
1 1
2 2

x + − + −= Ω +Ω + Ω −Ω� B D               (38) 

( ) ( )1 1 2
1 1
2 2

y + − + −= − Ω +Ω − Ω −Ω� A CΛ Λ            (39) 

( ) ( ) ( )

( ) ( ) ( )

2
1 1 1sin cos
2 2 2
1 1 1  sin cos
2 2 2

x T T

T T

+ − + − + −

+ − + − + −

 = − Ω +Ω Ω +Ω − Ω +Ω 
 
 − Ω −Ω Ω −Ω − Ω −Ω 
 

� A B

C D
  (40) 

( ) ( ) ( )

( ) ( ) ( )

2 1

2

1 1 1cos sin
2 2 2
1 1 1  cos sin
2 2 2

y T T

T T

+ − + − + −

+ − + − + −

 = − Ω +Ω Ω +Ω + Ω +Ω 
 
 − Ω −Ω Ω −Ω + Ω −Ω 
 

� A B

C D

Λ

Λ
 (41) 

The derivatives then take the form:  

( ) ( ) ( ) ( ) ( ){ }1 1 1 1 2 1 2 1 1
1 2x T x T x T y T y

t
= − + − +� a b c f

D
     (42) 

( ) ( ) ( ) ( ) ( ){ }2 1 1 1 2 1 1 1 2
1 2x T x T x T y T y

t
= − + − +� b a c f

D
     (43) 

( ) ( ) ( ) ( ) ( ){ }1 2 1 2 2 1 2 2 1
1 2y T y T y T x T x

t
= − + + +� a b c f

D
     (44) 

( ) ( ) ( ) ( ) ( ){ }2 2 1 2 2 1 1 2 2
1 2y T y T y T x T x

t
= − + + +� b a c f

D
     (45) 

where:  

( ) ( ) ( ){ }1
1 1 2 1 2sin sin

2
T T Tω

ω ω ω ω− + + −= Ω + Ω −Ω − Ωa      (46) 

( ) ( ) ( ){ }2
2 1 2 1 2sin sin

2
T T Tω

ω ω ω ω− + + −= Ω + Ω +Ω − Ωa      (47) 

( ) ( ) ( )1 1 1 2 1 2sin cos cos sin
2 2 2 2
T T T TT ω ω ω ω ω+ − + −

− +

Ω Ω Ω Ω = Ω + −Ω − 
 

b  (48) 

( ) ( ) ( )2 2 1 2 1 2sin cos cos sin
2 2 2 2
T T T TT ω ω ω ω ω+ − + −

− +

Ω Ω Ω Ω = Ω + +Ω − 
 

b (49) 

( )1 0 1 2 sin sin
2 2
T TT ω ωω + −Ω Ω =  

 
c                 (50) 

( ) ( )( ) 2 2
2 0 1 2 1 2 sin sin

2 2
T TT ω ω ω ω ω + − − +

− +

    Ω Ω Ω Ω = + − −    Ω Ω     
c    (51) 

( ) ( ) ( )2 2
1 0 2 1 2 2 1 2sin sin

2 2
T TT ω ω ω ω ω ω ω+ − − +

− +

    Ω Ω Ω Ω = − + +    Ω Ω     
f  (52) 

( ) ( ) ( )2 2
2 0 1 1 2 1 1 2sin sin

2 2
T TT ω ω ω ω ω ω ω+ − − +

− +

    Ω Ω Ω Ω = − − +    Ω Ω     
f  (53) 
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( ) ( ) ( )2 22 2
1 2 1 2sin sin

2 2
T TT ω ω ω ω− + + −

+ −

   Ω Ω Ω Ω
= + − −   Ω Ω   

D     (54) 

Notice the interesting relationship:  

( ) ( ) ( )2 1 2T T T= +c f f                  (55) 

The following constants have been defined in the body of the Paper as:  

( ) ( )2 22 2
0 1 2 0 1 2;ω ω ω ω ω ω+ −Ω = + + Ω = + −       (56) 

( ) ( )1 212 ; 12+ − + −Ω = Ω +Ω Ω = Ω −Ω          (57) 

( )
( )

( )
( )

2 22 2
1 1

1 2
0 0

4 4
;

2 2
ω ω

ω ω
+ − + −

+ − + −

Ω +Ω − Ω −Ω −
= =

Ω +Ω Ω −Ω
Λ Λ      (58) 

With these definitions the following expressions hold:  

( ) ( )1 2 1 2
1 2 1 2

0 2 0 2

;
ω ω ω ω
ω ω ω ω

+ −Ω − Ω +
+ = − − = +Λ Λ Λ Λ     (59) 

( )( ){ }2
1 1 2 2 0 1 2 1 2

0

1 ω ω ω ω ω
ω

Ω + Ω = + − + −Λ Λ        (60) 

1 1 2 2
0ω

+ −Ω Ω
Ω − Ω =Λ Λ                   (61) 

( )( ){ }2
1 2 2 1 0 1 2 1 2

0

1 ω ω ω ω ω
ω

Ω + Ω = − + + −Λ Λ         (62) 

1
1 2 2 1

2 0

ω
ω ω

+ − Ω Ω
Ω − Ω =  

 
Λ Λ                (63) 

5. Conclusion 

We have presented and fully solved the propagator of the anisotropic two 
dimensional harmonic oscillator in the presence of a constant magnetic field in 
the perpendicular direction of the plane. The solution is based on the Stationary 
Phase Approximation that is exact in this case as the Hamiltonian contains 
terms no more than quadratic terms. We believe this solution is most interesting 
today when a large amount of plane samples as grapheme with large mobility 
(large number of electrons per unit of area) are submitted to various both strong 
and constant magnetic fields. 
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