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Abstract 
 
A computational study has been performed on a series of 55 compounds having (S)-N-(3-(N-(cyclopen-tyl-
methyl) substituted-phenylsulfonamido)-2-hydroxypropyl) acetamide backbone as HIV-1 protease inhibitors. 
Various combinations of these specific inhibitors fragments were formed by breaking them at central ali-
cyclic single bonds, while retaining the core. Standard Topomer 3D models were automatically constructed 
for each fragment, and a set of steric and electrostatic fields was generated for each set of topomers. The 
models generated showed r2 of 0.811 and crossvalidated r2 (q2) of 0.608. The other method used were Quasar 
and Raptor based on receptor-modelling concept (6D-QSAR) and this explicitly allows for the simulation of 
the induced fit, that yielded r2 of 0.574, cross-validated r2 (q2) of 0.504 and predictive r2 (p2) of 0.895 aver-
aged over 200 models. This study has suggested the various type of substituent that can be attached to the 
core. The information obtained from these 3-D contour maps can be used for the design of amprenavir ana-
logs possessing better protease inhibitory activity. 
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1. Introduction 
 

Replication of the HIV virus requires processing of the 
proteins encoded by the gag and gag-pol genes by a 
virally encoded aspartyl protease (HIV-1 protease) [1-3]. 
As such, inhibition of HIV-1 protease offers an attractive 
target for the treatment of acquired immunodeficiency 
syndrome (AIDS) [4-9]. Inhibition of HIV protease is a 
target for drug design in a number of laboratories which 
has become a strategically important and therapeutically 
viable approach toward the control of HIV infection 
[10,11]. Progress in the treatment of AIDS leading to an 
active therapy has been slow, but recent results with new 
AIDS drugs, notably the HIV-1 protease inhibitors (PI), 
allow for cautious optimism. In 2009, ten protease in-
hibitors have reached the market where one protease 
inhibitor, amprenavir, was withdrawn from the market in 
2004 since fosamprenavir, its prodrug proved superior in 
many aspects [12]. 

With increased frequency and duration of treatment, 
however, the rate of resistance toward antiretroviral ag- 
ents, including PI s, has risen alarmingly, fueling the 
search for next-generation drugs with broad efficacy 
again-st PI-resistant mutants [13]. 

A rational approach in this direction would be to opti-
mize lead structure by using sufficiently rapid automatic 
and general QSAR analysis and application. In our pre-
sent study, we have pooled in fifty five compounds from 
the literature on amprenavir derivatives; to generate a 
database for QSAR studies. This study was taken into 
consideration mainly to improvise on the already proven 
potent amprenavir molecule. The main objective of this 
work is to develop a useful QSAR model for PIs and also 
to compare two softwares—Topomer CoMFA and Bi-
ografx suite. 

Topomer CoMFA—In 2002 Richard D. Cramer intro-
duced the technology called as Topomer CoMFA method 
used for generating an alignment of a structural fragment. 
A structural fragment by definition contains a common 
feature, the open valence or attachment bond. The topo- 
mer methodology overlaps this common feature to pro-
vide an absolute orientation for any fragment. A single 
fragment confirmation is then generated from a standar- 
dize 3D module by rule based adjustments to a cyclic 
single bond torsions and similarities. Previous applica-
tions of topomers then proceed to characterize and com-
pare aligned 3D formats by steric fields and by location 
of pharmacophoric features. Here only 3D topomer 
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structures themselves would be used [14]. 
Quasar—A quasi-atomistic receptor model refers to a 

three-dimensional binding-site surrogate, represented by 
a 3D surface surrounding a series of ligands (superim-
posed in their bioactive conformation) at van der Waals 
distance and populated with atomistic properties (H-bond 
donors, H-bond acceptors, H-bond flip-flop particles, salt 
bridges, neutral and charged hydrophobic particles, vir-
tual solvent, void space) mapped onto it. Quasar is a 6D- 
QSAR tool: the fourth dimension refers to the possibility 
to represent each molecule by an ensemble of conforma-
tions, orientations, protonation states and tautomers— 
thereby reducing the bias associated with the choice of 
the bioactive conformation; the fifth dimension refers to 
the possibility to consider an ensemble of different in-
duced-fit models; the sixth dimension allows for the si-
multaneous evaluation of different solvation models. In 
addition, Quasar allows for the simulation of local in-
duced fit, H-bond flip-flop, and various solvation effects. 
Ligand-receptor interactions are estimated based on a 
directional force field. A family of quasi-atomistic rece- 
ptor models is then generated using a genetic algorithm 
combined with weighted cross-validation. 

Raptor (Receptor as poly tier object representation) 
—is a receptor-modeling approach based on multi- di-
mensional quantitative structure-activity relationships 
(QSA-Rs). It aims to derive an intuitively interpretable 
model of a protein binding site and to accurately predict 
relative free energies of ligand binding. 

 
2. Methodology 

 
Study was performed on fifty five compounds having 
(S)-N-(3-(N-(cyclopentylmethyl) substituted phenylsul-
fonamido)-2-hydroxypropyl)acetamide backbone depic- 
ted in Tables 1-5 [15-19]. 

These were divided into training: test of 49:6. The test 
compounds were selected manually such that the struc-
tural diversity and wide range of activity in the data set 
were included. QSAR analysis was carried out using 
Topo-mer CoMFA (Tripos Inc.) and; Quasar and Raptor 
(Biographic Laboratory 3R). The hardware used was A- 
pple/Macintosh: G4 computer systems, 2GB RAM, 
360GB Hard Disk, Unix operating system. For all the in- 
put structures in Biografx Suite energy minimization was 
performed using MM2 force field and saved as *.mol2 
files. Partial atomic charges were calculated using the 
MOPAC. 

Topomer CoMFA: all the compounds in each publica-
tion were inspected visually and selected for a common 
core. Entry of structures was made by typing SLN repre-
sentations of each topomeric fragment (as a 2D structure) 
into an ASCII file. After entering the structures R1 and 

R2 fragments were defined for the structure cutting them 
by alicyclic bond along the common core. The Ki values 
were converted to the corresponding pKi (-logKi) and 
used as dependent variables in the analysis. The pKi val-
ues span a range of 3-log units providing a broad and ho- 
mogenous data set for 3D-QSAR study. The valence- 
filled structures were modeled by Concord. 

There are two main phases in topomer CoMFA, first 
being the generation of the Topomer 3D model for each 
of the side chain (i.e. R1 and R2), and the second 
CoMFA analysis itself. Procedures for generating the 
topomer conformation have been detailed elsewhere 
[20,21], in brief: 
 Generating the topomer conformation involves- 
o Attachment of structurally distinctive “cap to com-

plete structure. 
o This model is oriented to superimpose the “cap” at-

tachment bond onto a vector fixed in Cartesian space. 
o Proceeding away from this “root” attachment bond, 

only as required to place the most important (typically 
the largest) unprocessed group farthest from the root and 
the next most important counterclockwise relative to the 
largest looking along a vector pointing back to the root, 
stereocenters are inverted and torsion angle adjusted. 

o Removal of the cap completes the topomer confor-
mation.  
 Carrying out the automatic CoMFA analyses-  
o Atomic charges were calculated by the MMFF94. 

The non-bonded interaction calculation was set at cut off 
of 8, and dielectric constant 1. 

o The lattice is a 2 Å grid with its lowest valued cor-
ner at (–4, –12, –8) and its highest valued corner at (+14, 
+6, +10). This “standard topomer” grid is indented as the 
1000 points cube that is best positioned to contain a 
topomer, with its root vector endpoint coordinates of (0, 
0, 0), [1.5,0,0].  

PLS method was used to linearly correlate the CoMFA 
fields to biological activity values. The cross-validation 
was performed using leave-one-out (LOO) method in 
which one compound is removed from the dataset and its 
activity is predicted using the model derived from the 
rest of the molecules in the dataset. Equal weights for 
CoMFA were assigned to steric and electrostatic fields. 
The entire crossvalidated results were analyzed consid-
ering the fact that a value of q2 above 0.2 indicates that 
probability of chance correlation is less than 5%. 

Quasar—is based on 6D-QSAR and explicitly allows 
for the simulation of induced fit. Quasar generates a fam-
ily of quasi-atomistic receptor surrogates that are opti-
mized [22,23]. By means of a genetic algorithm the hy-
pothetical receptor site is characterized by a three- di-
mensional surface which surrounds the ligand molecules 
at van der Waals distance and which is populated with  
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Table 1. Structure and inhibitory potencies of Amprenavir derivatives. 

 

Code R Ki (nM) Code R Ki (nM) Code R Ki (nM) 

A1A 

 
20 B1A 

 
15 C1A 

 
2 × 102 

A2A 

 
29 B2A 

 
50 C2A 

 

38 

A3A 

 
27 B3A 

 
300 C3A 

 
34 × 102 

A4A 

 
220 B4A 

 

1400 C4A 
 

> 10 × 103 

 

A5A 

 
680 B5A 

 

104 C5A 

 
21 × 102 

A6A 

 

66 B7A 

 
125 C6A 

 
> 20 × 103

A7A 
 

 
76 B8A 

 
20 C7A 

 

> 10 × 103

A9A 

 

40 B9A 

 

173 D0A 

 

43 

B0A 

 
65 C0A 

 
17    
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Table 2. Structure and inhibitory potencies of conformationally restricted HIV protease inhibitors as Amprenavir derivatives. 

Code STRUCTURE Ki(nM)

D1A N

O N

O

N

OH

S

OCH3

O O
 

17 

D3A 

 

0.5 

D4A 

 

3 x103 

D7A 

 

15 
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 5S. DUBEY  ET  AL.

Table 3. Structure and inhibitory potencies of non-peptidal P2– ligand incorporating (R)–hydroxy ethylaninosulfonamide 
isoester as protease inhibitor. 

 

Code R X Ki(nM) Code R X Ki(nM)

H5A 

 

OMe 2.5 I1A 

 

NH2 2.1 

H6A 

 

NH2 1.5    I2A 

 

OMe 
1.1 ± 0.4
(n = 4) 

H9A 

 

OMe 1.5 I3A 

 

CH3 1.2 

I0A 

 

NH2 1.6 I4A 

 

OMe 2.2 

 
 
Table 4. Structure and inhibitory potencies Spirocyclic ethers as nonpeptidal P2– ligand incorporating (R)-hydroxyethyl-
aminosulfonamide isoester as protease inhibitor. 

Code  R  X  Ki(nM)  Code  R  X  Ki(nM) 

I5A 

 

OMe 
20 ± 3 
(n = 3) 

I9A 

 

OMe  >1 × 103

I6A 

 

OMe  150  J0A 

 

OMe  480 

I8A 

 

OMe  4 × 102  J1A 

 

OMe  150 
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Table 5. Structure and inhibitory potencies of Non peptidic HIV protease inhibitors containing methyl-2-pyrolidinone and 
methyloxazolidinone as P1'-ligand in Darunavir derivative. 

Cod
e 

STRUCTURE Ki(nM) 

J3A 

 

0.85 ± 0.02 

J4A 

 

0.31 ± 0.03 

J5A 

 

0.28 ± 0.03 

J6A 

 

1.27 ± 0.15 

J7A 

 

0.12 ± 0.003

J8A 

 

0.099 ± 0.003

Copyright © 2011 SciRes.                                                                              OJMC 
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J9A 

 

0.85 ± 0.2 

K0A 

 

0.31 ± 0.03 

K1A 

 

0.28 ± 0.03 

K2A 

 

0.31 ± 0.03 

K3A 

 

0.035 ± 0.01

K4A 

 

0.24 ± 0.03 

Copyright © 2011 SciRes.                                                                              OJMC 
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atomistic properties mapped onto it. The topology of this 
surface mimics the three-dimensional shape of the bind-
ing site; the mapped properties represent other informa-
tion of interest, such as hydrophobicity, electrostatic po-
tential and hydrogen-bonding propensity. The fourth di- 
mension refers to the possibility of representing each 
ligand molecule as an ensemble of conformations, orien-
tations and protonation states, thereby reducing the bias 
in identifying the bioactive conformation and orientation 
(4D-QSAR). Within this ensemble, the contribution of an 
individual entity to the total energy is determined by a 
normalized Boltzmann weight. As manifestation and 
magnitude of induced fit may vary for different molecu- 
les binding to a target protein, the fifth dimension in Qu- 
asar allows for the simultaneous evaluation of up to six 
different induced-fit protocols (5D-QSAR). The six di-
mensions (6D-QSAR) allow the simultaneous considera-
tion of different solvation models. This can either be 
achieved explicitly where parts of the surface area are 
mapped with solvent properties whereby position and 
size are optimized by the genetic algorithm, or implicitly. 
Here, the solvation terms (ligand desolvation and solvent 
stripping) are independently scaled for each different 
model within the surrogate family, reflecting varying 
solvent accessibility of the binding pocket. Like for the 
fourth and fifth dimension, a modest ‘evolutionary pres-
sure’ is applied to achieve convergence. The detailed 
methodology is given elsewhere [24,25], here it is de-
scribed in brief: 
 Receptor surface generated by induced fit may be 

simulated by adapting van der Waals surface, generated 
around all ligands (energy minimized) in training set, to 
the toplology of each ligand molecule of training, test 
and prediction set. The associated energy was calculated 
from the corresponding rms values. 
 The initial family of parent structure was generated 

by randomly populating the domains on the receptor 
surface with atomistic properties. 
 The models then generated were evolved simulating 

cross-over events. At each cross-over step, therer is a 
small probability of (0.01 - 0.02) of a transcription error, 
which is expressed in random mutation. Thereafter, those 
two individuals of the population with the highest 
lack-of-fit value are discarded. This process is repeated 
till a target r2 (0.75 - 0.95) is reached. 
  The binding energy is calculated as follows: 

blinding ligand-receptor ligand desolvation

ligand strain induced fit

 = 

                

E E E

T S E E



 





-

- - -      (1) 

where     
ligand-receptor electrostatic van  der  Waals

hydrogen  bonding polarization

 =   

                      

E E E

E E

+

+ +

The contributions of the individual entities within a 

4D ensemble (conformer, orientiomer, protomer, and/or 
tautomer) are normalized to unity using a Boltzmann 
criterion: 

 
binding, total binding, individual

binding, individual binding, individual,maximal

exp  

                  i

E E

w E E

 


(2) 

The free energy (ΔG) of ligand binding is calculated 
as: 

 pred bindingG E b              (3) 

 The model family is validated by their ability to 
predict relative free energies of ligand binding for an 
external set of test ligand molecules, not used during 
model construction. 
 The model family is subjected to scramble test [26]. 

The experimental binding data of the training set is ran-
domly scrambled, and simulation is repeated. If under 
this condition, the ligands of the test set are still pre-
dicted correctly (r2 > 0.5), the model is worthless, as it 
does not have sensitivity towards the biological data. 

Raptor, an alternative technology [27] that explicitly 
and anisotropically allows for induced fit by a dual-shell 
representation of the receptor surrogate, mapped with 
physicochemical properties (hydrophobic character and 
hydrogen-bonding propensity) onto it. In Raptor, induced 
fit is not limited to steric aspects but includes the simul-
taneous variation of the amino-acid domains which leads 
to different physico-chemical fields along with it. The 
inner layer maps the fields that a substance would feel to 
fit snugly into the binding pocket, using the most potent 
compound; and the outer layer models the field gener-
ated by the altered binding site, the other compounds 
may have portions of matter located in the intrice be-
tween the two shells. The underlying scoring function for 
evaluating ligand-receptor interactions includes direc-
tional terms for hydrogen bonding, hydrophobicity and 
thereby treats solvation effects implicitly. This makes the 
approach independent from a partial-charge model and, 
as a consequence, allows to smoothly model ligand 
molecules binding to the receptor with different net 
charges. In Raptor, the binding energy is determined as 
follows: 

const 

 
HO HO HB HB

IF IF T S T S

G G f G f G

f G f G 

      
   

     (4) 

ΔGconst is a contribution to the binding energy ration-
alizable as an overall loss of translational and rotational 
entropy of the ligand or overall gain of entropy due to 
desolvation of the binding pocket. fHO, fHB, fIF and fTΔS are 
scaling factors which are inherent to a given receptor 
model; they are optimized during the simulation (see 
below) for each specific drug target and typically con-
strained to specific intervals (e.g. f HO. = 0.75 − 1.25). 
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Raptor uses multi-step optimization protocol including 
domain assignment and combining tabu search with local 
protocol. A detailed technical aspect of it is given by Lill 
et al. [28]. 

 
3. Results and Discussion  

 
In search of a good computational model for HIV-1 PIs 
we had used three computational technologies on fifty 
five compounds. For our work we had divided the struc-
tures into 49 training compounds and 6 test compounds.  

In Topomer CoMFA studies, a series of 49 input stru- 
ctures were taken and fragmented along the central 
acyclic single bonds into 2 fragments while removing the 
core fragment structurally common to the entire series. 
Statistical analysis by PLS was done using CoMFA de-
scriptors as independent variables and biological activity 
in the form of pKi values as dependent variable. Stan-
dard topomer 3D maps were automatically constructed 
for each fragment and a set of steric and electrostatic 

fields also known as contour plots and CoMFA columns 
were generated for each set of topomer. Figures 1 and 2 
show these plots for the best R1 and R2 fragment con-
tributions respectively. The Leave-One-Out (LOO) me- 
thod of cross-validation was used for initial assessment 
of the predictive abilities of the models with the training 
sets. The optimal number of components used in the final 
QSAR models was that which gave the smallest standard 
error of prediction. Table 6 shows the cross-validated r2 
values using Topomer CoMFA analyses of protease re-
ceptor where the results depends on the template gener-
ated which gave an r2 of 0.811 and cross-validated r2 (q2) 
of 0.608 with an intercept of 3.15. The graph of predicted 
verses experimental activity is shown in Figure 3, the 
linearity of plots shows good correlations for CoMFA 
models developed in the study for binding affinities of 
protease receptor. Reliability of the models was tested by 
prediction of 6 compounds selected as an external test set 
using factor analysis. The predicted and the actual activi-
ties are given in Table 7. 

 

 

Figure 1. Contour plot of R1 fragment from Topomer CoMFA study. 
 

 

Figure 2. Contour plot of R2 fragment from Topomer CoMFA study. 

Copyright © 2011 SciRes.                                                                              OJMC 
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Table 6. Results of binding affinities at protease receptor. 

Parameters Results

r2 0.811 

r2 standard error 0.62 

q2 0.608 

q2 standard error 0.90 

Intercept 3.15 

 

 

Figure 3. Plot of predicted verses calculated activivity from 
CoMFA. 
 
Table 7. Predicted activity of the test set compounds using 
CoMFA model. 

Activity 
Compound 

Code 
Experimental 

Value 
Calculated 

Value 

A4A 2.3424 2.066 

C1A 2.3044 2.077 

C4A 4.000 2.150 

I6A 2.1769 2.1769 

J4A –0.5086 0.610 

Log Ki value 

K4A –0.6197 0.740 

For Quasar study, the three-dimensional structures of 
all ligand molecules (55 compounds in a series) were 
generated using Macro Model 6.5 and optimized. An ex- 
tensive search was performed for representation of bio-
active conformation(s), orientation(s) and protonation 
state(s). The molecules and their various conformers 
were aligned using Symposar (Figure 4) which serves as 
input for Quasar. In Quasar, the internal strain of a ligand 
is a component of the energy, which hampers the chance 
of “high-energy” conformer to contribute to the Boltz-
mann-weighted ensemble. For each conformer, MNDO / 
ESP charges were then calculated using MOPAC 2009. The 
training set was manually selected from the whole data set 
to obtain a maximal diversity based on the 2D substitution 
pattern. First, all ligands were ranked according to their 
experimental binding affinity. Then, the compounds were 
randomly divided into test and training set (49:6). 

The simulation reached an r2 of 0.574, cross-validated 
r2 (q2) of 0.504 and predictive r2 (p2) of 0.895 averaged 
over 200 models. The ratio of q2 /r2 was 0.877 and p2/q2 
was 1.77 for test set. The receptor surrogate is depicted 
in (Figure 5). The rms deviation of 49 ligand of training 
set of 1.517 kcal/mol corresponds to factor 12.5 off in 
the experimental Ki value. For six test compounds the 
predictive r2 of 0.895 was obtained on an average the 
predictive binding affinity of the test deviates by 0.7 
kcal/mol (2.3 factor off) from the experiment. The ma- 
ximum observed deviation was 1.385 kcal/mol (9.8 fac-
tor off from the experiment). The scramble test (mean r2 

= 0.002 and q2 = –0.348) demonstrated the sensitivity of 
model family towards biological data. Figure 6 experimental 
 

 

Figure 4. Mono view using Symposar (4D alignment) of the 
protease inhibitor series used for the study. 

Copyright © 2011 SciRes.                                                                              OJMC 
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(a) 

 
(b) 

Figure 5. (a) Mono representation of the surrogates for the 
series of protease inhibitors under study. The mapped 
properties are colored as follows: pink, positive charge salt 
bridge; green, H-bond donor; bright yellow, H-bond ac-
ceptor; dark yellow, positively charged hydrophobic; dark 
brown, negatively charged hydrophobic; blue, neutral hy-
drophobic; (b) Mono representation of the surrogates in 
wire meshes and point form. 

 
(a) 

 
(b) 

Figure 6. (a) Comparison of experimental and predicted 
binding affinities for the series of protease inhibitors: cor-
rect simulation; (b) Scramble test. 
 
and predicted Ki value along with scramble test results. 
All the values of ΔGexpt, of ΔGcal and ΔΔG etc. are given 
in Table 8 and the comparison of cross validated r2 with 
the predicted r2 and rms etc. is shown in Figure 7. 

To identify potential sites and functionalities allowing 
a further increase of the binding affinity, the individual 
functional groups of both training and test set were ana-
lyzed for their contributions toward the free energy of 
ligand binding, ΔG, which includes enthalpy (electrostatic, 

Copyright © 2011 SciRes.                                                                              OJMC 
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Table 8. Experimental and Calculated ΔG values for training set under study. 

Ligands 
Confor 
mers 

Ki(nM) 
ΔG 

(exp.) 
ΔG(pred.) 

ΔΔG 
(exp.-pred.)

ΔESD
(pred)

Ki 
(exp.) 

Ki 
(pred.) 

Factor off
in Ki 

A1A 4 20 0000 –8.833 ± 0.148 –8.833 0.148 1.000 2.576 × 10 – 7 (± 6.96 × 10 – 8) 388239
A2A 4 29 10.104 –9.637 ± 0.118  0.467 0.118 2.900 × 10 – 8 6.466 × 10 – 8 (± 1.344 × 10 – 8) 1.2 
A3A 4 27 10.146 –9.565 ± 0.150  0.581 0.150 2.68 × 10 – 8 7.31 × 10 – 8 (± 1.961 × 10 – 8) 1.7 
A5A 4 680 –8.267 –9.331 ± 0.167 –1.064 0.167 6.804 × 10 – 7 1.094 × 10 – 7 (± 3.317 × 10 – 7) 5.2 
A6A 4 66 –9.625 –7.864 ± 0.210  1.761 0.210 6.602 × 10 – 8 1.359 × 10 – 6 (± 5.181 × 10 – 7) 9.6 
A7A 4 76 –9.543 –10.265 ± 0.163 –.0.722 0.163 7.601 × 10 – 8 2.200 × 10 – 8 (± 6.359 × 10 – 9) 2.5 
A9A 2 40 –9.917 –8.962 ± 0.157  0.955 0.157 3.998 × 10 – 8 2.062 – 10 – 7 (± 6.308 × 10 – 8) 4.2 
B0A 4 65 –9.634 –9.915 ± 0.167 –0.281 0.167 6.501 × 10 – 8 4.012 × 10 – 8 (± 1.228 × 10 – 8) 0.6 
B1A 2 15 –10.488 –10.540 ± 0.138 –0.052 0.138 1.499 × 10 – 8 1.371 × 10 – 8 (± 3.453 × 10 – 9) 0.1 
B2A 3 50 –9.787 –8.117 ± 0.180  1.670 0.180 4.999 × 10 – 8 8.804 × 10 – 7(± 2.725 × 10 – 7) 16.6 
B3A 2 300 –8.744 –9.992 ± 0.136 –1.248 0.136 2.999 × 10 – 7 3.513 × 10 – 8 (± 9.525 × 10 – 9) 7.5 
B4A 4 1400 –7.847 –6.402 ± 0.176  1.445 0.176 1.400 × 10 – 6 1.674 × 10 – 5 (± 5.659 × 10 – 6) 11 
B5A 4 104 –9.360 –9.519 ± 0.126 –0.159 0.126 1.041 × 10 – 7 7.915 × 10 – 8 (± 1.749 × 10 – 8) 0.3 
B7A 4 125 –9.253 –9.834 ± 0.130 –0.581 0.130 1.251 × 10 – 7 4.609 × 10 – 8 (± 1.048 × 10 – 8) 1.7 
B8A 4 20 –10.320 –8.943 ± 0.118  1.377 0.118 2.001 × 10 – 8 2.130 × 10 – 7 (± 4.430 × 10 – 8) 9.6 
B9A 4 173 –9.064 –9.018 ± 0.154  0.046 0.154 1.731 × 10 – 7 1.874 × 10 – 7 (± 5.5015 × 10 – 8) 0.1 
C0A 4 17 –10.415 –9.228 ± 0.152  1.187 0.152 1.700 × 10 – 8 1.306 × 10 – 7 (± 3.518 × 10 – 8) 6.7 
C2A 4 38 –9.947 –10.659 ± 0.152 –0.712 0.152 3.797 × 10 – 8 1.117 × 10 – 8 (± 2.921 × 10 – 9) 2.4 
C3A 4 3400 –7.330 –6.964 ± 0.168  0.366 0.168 3.402 × 10 – 6 6.375 × 10 – 6 (± 1.948 × 10 – 6) 0.9 
C5A 5 2100 –7.611 –7.617 ± 0.212 –0.006 0.212 2.100 × 10 – 6 2.080 × 10 – 6 (± 8.952 × 10 – 7) 0.0 
C6A 4 >20000 –6.299 –6.420 ± 0.180 –0.121 0.180 1.999 × 10 – 5 1.624 × 10 – 5 (± 5.626 × 10 – 6) 0.2 
C7A 4 >10000 –6.702 6.977 ± 0.124 –0.275 0.124 1.001 × 10 – 5 6.236 × 10 – 5 (± 1.416 × 10 – 6) 0.6 
D0A 4 43 –9.875 –10.804 ± 0.127 –0.929 0.127 4.297 × 10 – 8 8.720 × 10 – 9 (± 1.941 × 10 – 9) 3.9 
D1A 4 17 –10.415 –8.985 ± 0.195  1.430 0.195 1.700 × 10 – 8 1.981 × 10 – 7 (± 6.842 × 10 – 8) 10.7 
D3A 4 0.5 –12.468 –11.843 ± 0.216  0.625 0.216 4.998 × 10 – 10 1.462 × 10 – 9 (± 6.131 × 10 – 10 1.9 
D4A 4 3000 –7.403 –7.718 ± 0.279 –0.315 0.279 3.001 × 10 – 6 1.746 × 10 – 6 (± 9.990 × 10 – 7 0.7 
D7A 2 15 –10.488 –11.699 ± 0.214 –1.211 0.214 1.499 × 10 – 8 1.873 × 10 – 9 (± 7.925 × 10 – 10) 7.0 
H5A 4 2 –11.531 –10.395 ± 0.206  1.136 0.206 2.499 × 10 – 9 1.759 × 10 – 8 (± 7.269 × 10 – 9) 6 
H6A 3 1.2 –11.958 –12.229 ± 0.212 –0.271 0.212 1.200 × 10 – 9 7.534 × 10 – 10 (± 3.07 × 10 – 10) 0.6 
H9A 4 1.5 –11.828 –11.784 ± 0.130  0.044 0.130 1.501 × 10 – 9 1.617 × 10 – 9 (± 3.641 × 10 – 10) 0.1 
I0A 1 1.6 –11.791 –11.648 ± 0.127  0.143 0.127 1.599 × 10 – 9 2.043 × 10 – 9 (± 4.656 × 10 – 10) 0.3 
I1A 1 2.1 –11.632 –11.647 ± 0.162 –0.015 0.162 2.101 × 10 – 9 2.049 × 10 – 9 (± 6.321 × 10 – 10) 0.0 
I2A 3 1.1 ± 0.4 –12.009 –11936 ± 0.167  0.073 0.167 1.100 × 10 – 9 1.247 × 10 – 9 (± 3.923 × 10 – 10) 0.1 
I3A 2 1.2 –11.958 –11.696 ± 0.153  0.262 0.153 1.200 × 10 – 9 1.883 × 10 – 9 (± 5.323 × 10 – 10) 0.6 
I4A 4 2.2 –11.605 –10.237 ± .266  1.368 0.266 2.201 × 10 – 9 2.306 × 10 – 8 (± 1.437 × 10 – 8) 9.5 
I5A 4 20±3 –10.320 –9.557 ± 0.220  0.763 0.220 2.001 × 10 – 8 7.423 × 10 – 8 (± 2.955 × 10 – 8 2.7 
I8A 2 400 –8.576 –9.866 ± 0.175 –1.290 0.175 4.002 × 10 – 7 4.362 × 10 – 8 (± 1.427 × 10 – 8) 8.2 
I9A 4 >1000 –8.043 –8.287 ± 0.188 –0.244 0.188 9.997 × 10 – 7 6.578 × 10 – 7 (± 2.217 × 10 – 7) 0.5 
J0A 4 480 –8.470 –8.253 ± 0.172  0.217 0.172 4.801 × 10 – 7 6.968 × 10 – 7 (± 2.915 × 10 – 7 0.5 
J1A 4 150 –9.147 –11.041 ± 0.152 –1.894 0.152 1.501 × 10 – 7 5.801 × 10 – 9 (± 1.570 × 10 – 9) 24.9 
J3A 1 0.85 –12.159 –11.504 ± 0.124  0.655 0.124 8.498 × 10 – 10 2.617 × 10 – 9 (± 5.871 × 10 – 10) 2.1 
J5A 1 0.28 –12.805 –12.073 ± 0.121  0.732 0.121 2.802 × 10 – 10 9.855 × 10 – 10 (± 2.18 × 10 – 10) 2.5 
J6A 1 1.27 –11.925 –11.878 ± 0.196  0.047 0.196 1.270 × 10 – 9 1.378 × 10 – 9 (± 5.282 × 10 – 10) 0.1 
J7A 2 0.12 –13.299 –12.398 ± 0.105  0.901 0.105 1.199 × 10 – 10 5.638 × 10 – 10 (± 1.06 × 10 – 10) 3.7 
J9A 2 0.85 –12.159 –12.184 ± 0.141 –0.025 0.141 8.498 × 10 – 9 8.138 × 10 – 10 (± 2.05 × 10 – 10) 0.0 
K0A 4 0.31 –12.746 –12.452 ± 0.210  0.294 0.210 3.100 × 10 – 10 5.140 × 10 – 10 (± 2.07 × 10 – 10) 0.7 
K1A 1 0.28 –12.805 –12460 ± 0.103  0.345 0.103 2.802 × 10 – 10 5.064 × 10 – 10 (± 9.35 × 10 – 11) 0.8 
K2A 2 0.31 –12.746 –12.599 ± 0.111  0.147 0.111 3.100 × 10 – 10 3.989 × 10 – 10 (± 7.874 × 10 – 11) 0.3 
K3A 1 0.035 –14.016 –12.804 ± 0.148  1.212 0.148 3.499 × 10 – 11 2.808 × 10 – 10 (± 7.359 × 10 – 11) 7 

Ligands 
(Test) 

Cofor 
mers 

Ki(nM) 
ΔG 
(exp.) 

ΔG (pred.)  
ΔESD 
(pred.) 

Ki  
(e × p.) 

Ki 
(pred.) 

Factor
off Ki

A4A 4 220 –8.924 –0.9781 0.135 –0.857 0.135 2.201 × 10 – 7 5.052 × 10 – 8 (1.230 × 10 – 8) 3.4 
C1A 4 200 –8.980 –8.907 0.147 0.073 0.147 1.999 × 10 – 7 2.265 × 10 – 7 (5.664 × 10 – 8) 0.1 
C4A 1 >10,000 –6.702 –6.990 0.184 –0.288 0.184 1.001 × 10 – 5 6.101 × 10 – 6 (2.055 × 10 – 6) 0.6 
I6A 4 150 –9.147 –9.393 0.184 –0.246 0.184 1.501 × 10 – 7 9.833 × 10 – 8 (3.188 × 10 – 8) 0.5 
J4A 4 0.31 –12.746 –11.361 0.205 1.385 0.205 3.100 × 10 – 10 3.347 × 10 – 9 (1.320 × 10 – 9) 9.8 
K4A 1 0.24 –12.895 –12.519 0.137 0.376 0.137 2.400 × 10 – 10 4.578 × 10 – 10 (1.136 × 10 – 10) 0.9 
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Figure 7. Scatter plot of the model for the series of protease 
inhibitors under study. 
 
van der Waals, H-bond, and polarization terms), entropic, 
salvation and induced fit contributions towards calcu-
lated binding affinity. 

In Raptor study, the surrogate family included 10 in-
dependent receptor models and was evolved over 1500 
optimization cycles. The simulation converged at cross- 
validated r2 of 0.94 and a predictive r2 of 0.745. A com-
parison between predicted and experimental Ki value is 
given as a graphical representation in Figure 8 and a 
representation of receptor surrogate is depicted in Figure 
9. 

Comparison of the binding site at the true biological 
receptor (3EKV from PDB) Figure 10 with surrogate 
family receptor models obtained by multi dimensional 
QSAR (Figures 5 and 9) showed the similarity in their 
shapes. The characteristic property like hydrogen bond 
acceptor mimicking amino acids and H-bond donor 
mimicking amino acids and hydrophobic pocket etc. are 
well identified by model when compared to the actual 
receptor. The receptor and the models are bean shaped 
which can be best described as a predominantly hydro-
phobic pocket in the upper half of the region with dis-
tinct “V” shape. The hydrophilic regions, on the periph-
ery may be characterized as H-bond acceptor rich area 
and also accommodates a positive salt bridge mainly in 
the form of terminal aromatic ring. A prominent H-bond 
acceptor region lies in the centre depression of the bean 
shaped structures of the inhibitors. The similar substitu-
tion analogy can be considered for Darunavir, sine both 
of them hold structure similarity. 

 

Figure 8. Comparison of experimental and predicted in-
hibitory constant value for the series of protease inhibitors 
under study. 

 

Figure 9. Dual-shell representation of a Raptor model for 
the series of protease inhibitors under study. The inner 
shell is depicted as wireframe and outer shell depicted as 
surface filled model. The color coding of points is same as in 
Figure 5. 

 
Based on the present QSAR studies obtained from 

Topomer CoMFA, Quasar and Raptor hypothetical bind-
ing model of these ligand molecules with HIV protease can 
be proposed (Figure 10). In the anionic/hydrophilic site,  

Copyright © 2011 SciRes.                                                                              OJMC 
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Figure 10. Proposed substitution on Amprenavir molecule based on the study. 
 

ligands may form hydrogen bonds with the active sites of 
the receptor. In the flat hydrophobic linker region, the 
aromatic rings may have π-π interactions with the recep-
tor where the absolute planarity in the ligand structure is 
essential. This is the most important region of ligand 
molecules, which can be explored to design potent pro-
tease inhibitors. The large hydrophobic region/binding 
site may play a significant role in the selectivity of 
ligands over the counterparts of the protease. 

 
4. Conclusions 

 
The generation of contour plots in Topomer CoMFA 
studies provided significant correlation of steric and 
electrostatic fields with biological activity values. The 
good prediction of activity of the test compounds has 
shown that the models are useful and can be utilized for 
prediction of PI activity bearing similar kind of frag-
ments. The new molecules can be designed by taking 
clue from the electrostatic and steric fields around the 
fragments. One of the advantages of topomer CoMFA is 
it represents identically the contributions of fragments 
that are structurally identical throughout a series, like a 
common core and it is much faster in calculations in 
comparison to CoMFA and CoMSIA. 

The receptor modeling by Quasar and Raptor is based 
on 6D QSAR which explicitly allows for the simulation 
of induced fit and dual shell representation. To determine 
the ligand receptor interactions, the scoring function 
makes use of a directional force field. Ligand-binding 
free energies are then derived based on ligand receptor 
interactions, desolvation, entropy, internal strains, induce 
fit and H-bond flip-flop. The QSAR models gave good 
statistical results in terms of q2 and r2 values.  

On comparing the models generated by Topomer 
CoMFA, Quasar and Raptor we can see similarity in r2 

and q2 values. Thus, we can conclude that the models 
generated by these two technologies are similar to each 
other even though they vary highly conceptually. The 
power of the prediction lies with a low rate of false- 
positive prediction. Even though these two technologies 
are conceptually different but they have shown the simi-
larity in predictive powers. Both have certain pros and 
cons which have been described in detail by their devel-
opers in their manuals (available online) and in certain 
publications. The information obtained in this study pro-
vides a methodology for predicting the affinity of am-
prenavir related compounds for guiding structural design 
of novel yet potent PIs. 
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