
Advances in Chemical Engineering and Science, 2017, 7, 154-174 
http://www.scirp.org/journal/aces 

ISSN Online: 2160-0406 
ISSN Print: 2160-0392 

DOI: 10.4236/aces.2017.72012  March 13, 2017 

 
 
 

A Neural Based Modeling Approach for Drying 
Kinetics Analysis of Mint Branches and Their 
Fractions (Leaves and Stems) 

Aline de Holanda Rosanova1, Gustavo Dias Maia2, Fábio Bentes Freire2,  
Maria do Carmo Ferreira2  

1Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, Brazil 
2Chemical Engineering Department, Federal University of São Carlos, São Carlos, Brazil 

 
 
 

Abstract 
This work is aimed at investigating regular mint (Mentha × villosa) drying 
behavior and assessing how the heterogeneous composition of plants affects 
their drying kinetics. Drying kinetics and sorption isotherms were evaluated 
for whole branches and their fractions (leaves and stems). Stems and leaves 
were characterized by measurement of dimensions, apparent density and ini-
tial moisture content. The moisture sorption isotherms were obtained under 
temperatures of 30˚C, 40˚C and 50˚C for branches, stems and leaves and the 
data were fitted to the GAB model. Mint branches and their fractions were 
oven dried at temperatures from 40˚C to 70˚C and were obtained kinetic 
curves for each part. Water sorption patterns were similar for leaves and 
stems and the GAB model described well the sorption behavior of both mate-
rials. At a constant temperature, the drying rates were higher for leaves in 
comparison to stems and the differences increased as the temperature was 
raised. Therefore, depending on drying conditions, the moisture distribution 
in dried branches might be significantly different. Since the leaves constitute 
the major fraction in branches, the drying rates of branches were closer to 
those of leaves. The kinetic curves were fitted to a diffusion model based on an 
analytical solution of Fick’s second diffusion law and to an empirical model 
based on artificial neural network (ANN). The results showed that the model 
based on the ANN predicted the drying kinetics of the different parts better 
than the diffusive model. A single network was built to describe the kinetic 
behavior of branches and fractions in the whole range of temperatures inves-
tigated. The diffusive model based on fitting effective diffusivity did not pro-
vide good predictions of moisture content, probably because neither the de-
pendence of effective diffusivity on the moisture content nor the heterogenei-
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ty and shrinking of static beds were considered. 
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1. Introduction 

Fresh aromatic herbs have a significant amount of water, on average up to 80% 
in wet basis [1] [2]. The properties and stability features of plants are affected by 
the amount and state of water present in the material [3] and dehydration is a 
widely used method to preserve their quality for long times aiming at processing 
and storage. A considerable amount of research on hot air drying for different 
plant species is available in the literature, for a broad variety of equipment that 
include oven-dryers, conveyor belt and convective tunnel-dryers [4]. In these 
dryers, the herbs are arranged as one-layer samples and exposed to either free or 
forced convective air flow, and dried up to a suitable moisture content for sto-
rage. It is known that the drying rate is affected by numerous factors, including 
the dryer configuration, the process conditions, the herb physical-chemical 
properties and also the part of the plant to be dried [5]. 

The heterogeneity in the herbs’ composition is an aspect often neglected in the 
analysis of their drying and is the focus of this research. The aerial part of aro-
matic plants is composed by two main fractions, which are the leaves and the 
stems. Bioactive compounds may be found in both, therefore, for trading pur-
poses, it is usual drying the whole branches [6]. Because every fraction has a par-
ticular shape and size with different physical properties, moisture content and 
chemical composition, the drying rates may be quite different under similar 
process conditions. This may lead to non-uniformly dehydrated products when 
the parts are dried together [7]. The adequate equilibrium conditions for storage 
may also differ for leaves and stems because the state of water is established by 
complex interactions between the solid matrix and the water [3].  

Although the prediction of drying kinetics is an important issue that reflects 
the accuracy of a drying process simulation, difficulties arise in the use of either 
purely mechanistic or empirical approaches. The significant shrinkage observed 
in dehydration of aromatic herbs and heterogeneity in their composition are 
major drawbacks to the use of phenomenological models. A lumped model 
based on the analytical solution of Fick’s diffusion second law is often applied to 
describe drying kinetics [8] [9] [10], but although these complex processes can 
be mathematically described based on this approach, the fitted equations tend to 
be particular, making generalizations difficult.  

Artificial neural networks may be an effective alternative to the mechanistic 
approach, since they can represent highly nonlinear processes. Furthermore, 
they are quite flexible and robust against input noise and, once developed and 
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their coefficients determined, they can provide a rapid response for a new input 
[11] [12]. This technique has been successfully applied in different applications, 
such as to estimate the higher heating values of biomass fuels [13] or to predict 
air quality parameters [14], its use in drying applications is still incipient. Freire 
et al. [15] discuss various applications involving control and sensing techniques 
for spouted bed drying including adaptive and neural based algorithms. Hybrid 
neural network and first principle models, also known as grey-box models as 
opposed to black box where no model form is assumed or white box models that 
are purely theoretical, can likewise be found in the literature [16] [17] [18] [19]. 
ANNs are a computation method of programming that mimics the human 
brain, i.e. they are formed by various units, called artificial neurons, which may 
correlate databases between themselves [20] [21]. Figure 1 shows a typical 
structure of a three layers neural network. 

The computational capability of ANNs results from their ability to learn from 
examples through iteration, without requiring a prior knowledge of relationships 
between the variables under investigation [21] [22]. This technique is based on a 
trial and error fitting procedure until reaching a good agreement to the output 
parameters in a specified accuracy range [20] [21]. The network design may be 
adapted or modified to meet the specific requirements of each particular case by 
varying the number of neurons and neuron layers, which results in many differ-
ent possible structures that allow the construction of very flexible models [19]. 

The aims of this work were to evaluate the sorption behavior and to present 
an analysis of both neural networks and mechanistic models focused on showing 
their suitability to fit and predict drying kinetics of mint (Mentha x villosa) 
leaves, stems and branches containing a mixture of both, leaves and stems. The 
sorption data were obtained under temperatures of 30˚C, 40˚C and 50˚C and 
fitted to the GAB model, whose fitted parameters were analyzed to assess the 
water properties and energy requirements associated to their desorption beha-
vior. With regards to drying behavior, simulations were carried out in MatLab® 
(R2013a, Mathworks) with a database from experiments in a drying chamber at 
four different temperatures: 40˚C, 50˚C, 60˚C and 70˚C. Results of  
 

 
Figure 1. Three layers neural network. 
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model verification showed that both approaches may be used to predict drying 
kinetics outside the database, however, the artificial neural network was superior 
in all instances. 

2. Materials and Methods 
2.1. Material 

Fresh regular mint (Mentha × villosa) branches were purchased from a local 
market located in the city of São Carlos-Brazil. Uniform branches based on col-
or, growth stage and absence of injuries were selected. The material was washed 
in water and the water excess was removed using a soft paper. Finally, the 
branches were cut into 2 to 3 length pieces to be used in the experiments (cha-
racterization, drying or sorption isotherm). 

2.2. Regular Mint Characterization 

The leaves and stems of fresh mint were characterized by measuring their mois-
ture content, apparent density and dimensions. The moisture content was de-
termined by the standard gravimetric method (105˚C ± 3˚C during 24 h) [23], 
and the apparent density by liquid picnometry using toluene as immersion liq-
uid [23]. These properties were measured in triplicate for each material. 

Samples containing 90 leaves or 90 stems were selected and their length, 
thickness, diameter, width and projected area were measured using the software 
Image-Pro Plus 6. The measured dimensions were used to calculate the leaves' 
and stems’ superficial area, volume and sphericity. The sphericity of leaves and 
stems were calculated as the ratio of the three perpendicular axes average di-
mension over the major axis dimension [24]. 

2.3. Drying Experiments  

Drying experiments were conducted separately, for samples of leaves, stems and 
whole branches, in a natural convection oven dryer under temperatures of 40˚C, 
50˚C, 60˚C and 70˚C. Samples containing 15 g of fresh leaves, stems or branches 
were uniformly distributed over perforated trays in a 1 cm high layer. The trays 
were placed into an oven (Tecnal model TE-394) with controlled temperature at 
an accuracy of ±1˚C, under free convective air flow. 

The moisture loss was recorded periodically by weighing the trays on a digital 
balance with 0.001 g accuracy (Gehaka model BG 440), until reaching a constant 
mass. The moisture content of leaves, stems and branches were determined by 
the gravimetric method [23]. The experiments were carried out in replicates. 
Kinetic curves were obtained by plotting the dimensionless moisture ratio (MR), 
defined by Equation (1) as a function of time. 

( )
( )

t e

i e

M M
MR

M M
−

=
−

                      (1) 

where, Mt is the moisture content at a specific time, Mi is the initial moisture 
content and Me is the equilibrium moisture content, given in kg of moisture/kg 
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of dry matter and estimated from GAB equation with fitted parameters. 

2.4. Desorption Isotherms Experiments 

The desorption isotherms of leaves, stems and branches were determined by the 
standard static gravimetric method. This technique is based on using some satu-
rated solutions to maintain the samples in an environment with constant tem-
perature and relative humidity [3]. In this study, the experiments were con-
ducted with 2 g of leaves, stems or branches, which were held in small glass ves-
sels of 8.5 cm of diameter and 13.5 cm of height with insulated lid. Each vessel 
contained a different saturated solution corresponding to a range of water activ-
ity from 0.057 to 0.834 (Table 1). The samples were inserted in perforated plas-
tic cups and were attached to the top of the vessels to avoid any contact with the 
saturated solutions. 

The vessels were stored in a climatic chamber (Binder), at temperatures of 
30˚C, 40˚C or 50˚C during 20 days. After this time, the samples were weighted 
in a balance with accuracy of 0.001 g (AND model HR-120) every four days until 
a constant mass was reached. The final moisture content of each sample was de-
termined by oven drying the samples (leaves, stems or branches) at 105˚C for 24 
h [23]. The experiments were carried out in replicates.  

2.5. Modeling 
2.5.1. Drying Model Based on Fick’s Diffusive Model 
The data of moisture versus time were fitted to a model based on the Fick’s 
second law of diffusion [27]: 

2

2

dM d MD
dt dx

=                         (2) 

where M is the local moisture content (kg of moisture/kg of dry matter), x is the 
diffusion path (m), t is the time (s), and D is the moisture diffusivity (m²/s). 

This model assumes that the drying during the falling rate period is controlled 
by the mechanisms of liquid-vapor diffusion and occurs in only one direction;  
 
Table 1. Water activity of saturated solutions at 30˚C, 40˚C and 50˚C [25] [26]. 

Compound 
Water activity 

30˚C 40˚C 50˚C 

KOH 0.074 0.063 0.057 

CH3COOK 0.216 0.204 0.192 

MgCl2 0.324 0.316 0.305 

K2CO3 0.432 0.432 0.433 

Mg(NO3)2 0.514 0.484 0.454 

NaNO2 0.635 0.616 0.597 

NaCl 0.751 0.747 0.744 

KCl 0.836 0.823 0.812 
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that the sample layers are homogeneous and the moisture diffusivity does not 
depend on the moisture content [27] [28]. For flat slab-shaped samples under 
uniform initial moisture content, and assuming that the resistance to mass 
transfer at the surface of the sample is negligible in comparison to the internal 
resistance, the analytical solution of Equation (2) was obtained by Crank [29] 
and is given by Equation (6) for the following initial condition and boundary 
conditions:  

0,0 , it x L M M= < < =                     (3) 

0, 0, 0dMt x
dx

> = =                       (4) 

0, , et x L M M> = =                       (5) 

where L is the thickness (m) of the sample. 
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 −  

∑            (6) 

where Mt is the average moisture content at any time (kg of moisture/kg of dry 
matter), Deff is the effective diffusivity coefficient (m2/s) and L is the sample 
thickness. The effective diffusivity replaces the ordinary diffusion coefficient to 
take into account other moisture transport mechanisms that appear in porous 
materials, such as capillary flow, Knudsen flow, hydrodynamic flow or surface 
diffusion [4]. The Deff values were fitted from Equation (6) with n = 100, using 
the Solver routine available in software Microsoft Excel®.  

2.5.2. Desorption Isotherms 
A water sorption isotherm is a fundamental relationship that describes the de-
pendence of water content within a solid-water mixture on the water activity, at 
a certain pressure and temperature [30]. The Guggenheim, Anderson and de 
Boer (GAB) model (Equation (7)) is recommended as a versatile and suitable 
model to predict the sorption data in a wide range of water activities [29] and 
was used to describe the sorption data in this study. This model is relevant be-
cause their three parameters (Xm, K and Cg) may be physically interpreted, which 
may be very useful in the analysis of sorption processes [3] [31]. 

( )( )1 1
g w

m w w g w

C KaX
X Ka Ka C Ka

=
− − +

                  (7) 

The theoretical basis of GAB model is the consideration of physical adsorp-
tion of water in multilayers with no lateral interactions. In this concept, a first 
layer of tightly bound water, which is called a monolayer, uniformly covers the 
surface of the absorbent material. Additional water molecule layers will coat this 
first layer, forming several levels in which the water interaction with the adsor-
bent surface becomes progressively weaker. Therefore, the binding energy be-
tween the adsorbent surface and water will decrease from the strong binding 
energy at the monolayer to zero at the outer layers. In the outer layers, far from 
the adsorbent surface, the water molecules show properties similar to those of 
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liquid water [30]. 
Each parameter in GAB’s model has a physical meaning associated to the wa-

ter state in the mono or multilayers. Owing to that, the values of parameters Xm, 
K and Cg should be restricted, so that Xm and Cg must be greater than 0 and 1 
respectively, and K must range from 0 to 1 [3]. Xm is known as the monolayer 
moisture content and it is interpreted as a measure of the number of active sites 
available for water sorption in the material. The value of this parameter is ex-
pected to decrease as the temperature is increased, due to the destruction of the 
active sites available for water sorption [30]. The parameters Cg and K represent 
the nature of the water-material interaction. Cg is a measure of the strength of 
water binding to the primary binding sites. It is expected to decrease as the tem-
perature rises, since at higher temperatures more energy is provided to the ma-
terial, facilitating the water removal. Finally, K characterizes the properties of 
multilayer water in comparison to free liquid water and its value should increase 
with increasing temperature. A value of K close to 1 means that there is almost 
no difference between water in the multilayer and liquid water and then it can be 
considered that the molecules of water located above the monolayer are not 
structured in a multilayer [3]. 

2.5.3. Artificial Neural Network 
The first step in designing a neural network is to select its basic structure, with 
given neurons and hidden layers between the input and the output. A typical 
input/output relationship of a neural network with a single hidden layer is given 
by: 

( )2 1tansigy b LW b IW x= + ⋅ + ⋅                (8) 

where y is an output vector, x is an input vector, LW is the connection matrix of 
weights corresponding to all the arcs from the hidden layer to the output layer, 
IW is the connection matrix from the input layer to the hidden layer, b1 and b2 
are the bias vectors for the hidden and output layers, respectively.  

In a feed forward neural network, the signal received by the intermediate 
(hidden) layer goes to the neurons of the output layer. In the hidden layer, in 
turn, each unit (Yj) sums its weighted inputs and applies the activation function 
to generate the output signal according to: 

act
1

fj ij i j
i

Y W X b
=

 
= + 

 
∑                   (9) 

where Wij is the weight of the connection between the i-th input and the j-th 
neuron of the hidden layer and bi if the bias weight of the unit j. The activation 
function used in this work is the tan-sigmoidal, given by: 

( )act
1f

1 e−=
+                      (10) 

The output from neuron Yj is sent to all units of the output layer, Each output 
neuron Ok sums the weighted input signal and applied the activation function 
according to: 
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act
1

fk jk j k
j

O V Y b
=

 
= + 

 
∑                  (11) 

The weights Wij of each connection between neurons in adjacent layers are 
determined during the network learning process. The initial values of weights 
are aleatory chosen, but since the results converge to a local minimum, the initial 
values do not influence the results. The learning process uses nonlinear optimi-
zation algorithms to correct the weights and, once a network has been trained, it 
can provide a response with few simple calculations, which is one of the advan-
tages of using a neural network instead of fully theoretical differential models. A 
key difficulty with optimization to determine the neural network weights is that 
multiple minima occur in the objective function used. Consequently, satisfactory 
representation of data rests on the use of the best local minimum that can be 
achieved in a reasonable time.  

Like any data fitting technique, the neural network is also evaluated on the 
ability to fit the training data and predict outside the training set. An appropriate 
neural network should exhibit good generalization for few data and computa-
tional efficiency, which means that the smaller the network, the fewer the para-
meters and the data required and the shorter the identification time involved. In 
practice, smaller ANNs are easier to train and thus perform better, and can also 
be more easily scaled to more complex problems. Therefore, in this work, the 
design of the neural network was done in the Neural Network Toolbox for use 
with MatLab. MatLab Neural Network Toolbox allowed for fast model creation 
and validation in a single framework. Standard Bayesian regularization back 
propagation training algorithm was used for training the network. This training 
algorithm updated the weights between adjacent neurons according to the 
Levenberg-Marquardt algorithm. It minimizes a linear combination of squared 
errors multiplied by weights to produce a network that best fits the experimental 
data. The number of neurons in the hidden layer was chosen by trial and error, 
as suggested by Himmelblau [11] starting with 2 neurons and adding up some 
more until the network performance in estimating the correct output is satisfac-
tory. A reasonable number of neurons for this application was found to be 4. 

3. Results and Discussions 
3.1. Physical Properties 

The photograph of a whole branch of regular mint shown in Figure 2 illustrates 
the differences of leaves and stems shape and sizes. It can be seen that the leaves 
are flat-shaped and thin, while the stem has a cylindrical shape. Their structures 
are also different, because the leaves are fragile and flexible, and the stem is more 
rigid and firm. 

The main dimensions, apparent density and moisture content of fresh regular 
mint leaves and stems are presented in Table 2. 

The moisture content of fresh leaves is slightly lower and the apparent density 
is about 10% higher than that of stems. Both fractions have a low sphericity,  
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Figure 2. Photograph of a regular mint whole branch. 

 
Table 2. Physical properties of fresh regular mint leaves and stems. 

 Leaves Stems 

Moisture content (db) 6 ± 1 10 ± 3 

Apparent density (g/cm³) 0.86 ± 0.02 0.79 ± 0.01 

Sphericity 0.12 ± 0.01 0.22 ± 0.03 

Thickness (mm) 0.18 ± 0.02 - 

Diameter (mm) - 2.5 ± 0.5 

Width (mm) 3.5 ± 0.4 - 

Length (mm) 6.1 ± 0.8 2.4 ± 0.2 

Projected area (cm²) 16 ± 3 0.7 ± 0.2 

Superficial area (cm²) 33 ± 7 2.0 ± 0.5 

Volume (cm³) 0.29 ± 0.07 0.12 ± 0.06 

 
which is consistent with the cylindrical-shaped format of the stems, and the flat 
and slab-shaped format of leaves. In the values of sphericity, apparent density 
and length of both materials, the standard deviations are small (under 10%). 
However, it can be noted that in general the standard deviations in the mea-
surements of the stems’ properties were significantly higher than those of leaves. 
These deviations reached values of 50% in the volume values, 30% in the mois-
ture content, 28% in the projected area, 25% in the superficial area and 23% in 
the width. Regarding to the leaves, the standard deviations were high only in the 
volume (24%), projected and superficial areas (about 20%) and moisture content 
(16%). In fact, a wide size distribution is expected in samples of both fractions, 
considering the natural variability in dimensions of biological materials. The 
higher deviation in the stems physical properties is probably because their di-
mensions tend to change more depending on their growth stage and position in 
the branch. 

It is worth noting the low superficial area of stems (2 cm2) n comparison to 
leaves (33 cm2) and the very distinct ratios of area to volume which is 114 cm−1 
for the leaves and only 17 cm−1 for the stems. 
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3.2. Sorption Isotherms 

The desorption isotherms of leaves, stems and branches of regular mint, deter-
mined at 40˚C are shown in Figure 3. It shows that the isotherms of the three 
materials have a sigmoid shape (type II isotherms), which is a characteristic 
shape for biological materials [3]. 

The results for branches and their fractions are similar throughout the range 
of water activity evaluated, except for the higher values of water activity, where 
the stems presented slightly higher equilibrium moistures in comparison to 
leaves and branches. This behavior indicates that under equilibrium conditions 
at a given temperature, the interaction between the water and the materials are 
similar for leaves and stems, in spite of their differences in structure and compo-
sition. As for the other evaluated temperatures (30˚C and 50˚C), the behavior 
was similar to that observed at 40˚C, these results will not be showed for the sake 
of being concise. 

To analyze the influence of temperature on desorption isotherms of regular 
mint fractions, in Figure 4 are presented the isotherms obtained for leaves and 
stems under the temperatures of 30˚C, 40˚C and 50˚C. 

At a given water activity, the equilibrium moisture content of leaves decreases 
with increasing the temperature (Figure 4(a)). Leaves are very sensitive to high 
temperatures and shrink considerably when dryer. The increase in the tempera- 
ture contributes to changing the structure of the material, destroying some active 
sites available for water sorption. Moreover, the binding energy between the wa-
ter molecules and the solid is reduced at a higher temperature. As the water mo-
lecules become less stable, they break away from the water binding sites, which 
also contributes to reducing the equilibrium moisture content of leaves [3] [30]. 
The dependence of equilibrium moisture content on the temperature was not 
observed in the desorption isotherms of stems (Figure 4(b)). This behavior is 
probably because the structure of the stems are better preserved in this range  
 

 
Figure 3. Desorption isotherms of leaves, stems and branches of regular mint at 40˚C. 
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(a) 

 
(b) 

Figure 4. Desorption isotherms of (a) leaves and (b) stems at temperatures of 30˚C, 40˚C 
and 50˚C. 
 
of temperatures, since they have a more rigid structure in comparison to the 
leaves. Therefore, the increase in the temperature possibly did not affect signifi-
cantly the amount of water physically adsorbed on the stems, leading to similar 
equilibrium moisture contents under the three temperatures evaluated. 

The results obtained for the whole branches showed a similar behavior to that 
of the leaves. Since the samples of branches used in these assays were composed 
of about 76% of leaves and 24% of stems (weight basis), this similarity was al-
ready expected. 

Figure 5 shows the fitted equations in comparison to the experimental iso-
therms of leaves and stems, under temperatures of 30˚C, 40˚C and 50˚C and the 
fitted parameters of GAB model for whole branches, leaves and stems can be 
seen in Table 3. 
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(a) 

 
(b) 

Figure 5. Desorption isotherms fitted equations for regular mint (a) leaves and (b) stems. 
 
Table 3. Estimated parameters in GAB model and determination coefficients for desorp-
tion isotherms of leaves, stems and branches of regular mint at 30˚C, 40˚C and 50˚C. 

 Xm Cg K R² 

Leaves 

30˚C 0.071 71.59 0.85 0.996 

40˚C 0.048 20.88 0.96 0.987 

50˚C 0.040 1.84 0.99 0.911 

Stems 

30˚C 0.063 15.43 0.91 0.991 

40˚C 0.064 3.75 0.98 0.991 

50˚C 0.067 2.96 1.00 0.982 

Branches 

30˚C 0.065 41.86 0.89 0.994 

40˚C 0.057 5.57 0.95 0.991 

50˚C 0.052 2.29 0.99 0.978 
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For both materials, under the temperatures evaluated, the GAB model fitted 
well the experimental data, with correlation coefficients greater than 0.91. Ac-
cording to Table 3, for leaves and branches the value of parameter Xm increases 
with increasing temperature, while for stems it remains almost constant. These 
results corroborate the previous analysis suggesting that the leaf structure is af-
fected by the increasing temperature, while the stem structure tends to remain 
preserved. The parameter Cg was greater than 1 for the whole temperature range, 
indicating that the monolayer is formed by water tightly bound to the primary 
sorption sites. Cg decreases with increasing temperature, which was expected 
once the monolayer presents higher energy levels at higher temperatures and the 
water tends to remain in the multilayer. The values of K between 0 and 1 con-
firm that fitted parameters are consistent with their physical meanings. The val-
ues are close to 1 at temperatures of 40˚C and 50˚C, which means that water in 
the multilayer is energetically similar to free liquid water at the same tempera-
ture, and that the energy required to remove this water from leaves and stems is 
similar. 

Finally, a qualitative evaluation of the fitted parameters indicates that the 
monolayer moisture content in the three materials in very small (less than 0.071 
in dry basis), indicating that even in the smallest water activity, the desorption 
process essentially occurred in the multilayer. 

3.3. Drying Kinetics 

The drying kinetics of regular mint leaves and stems at temperatures of 40˚C, 
50˚C, 60˚C and 70˚C can be observed in Figure 6, which depicts curves of 
moisture ratio versus drying time. 

Figure 6 shows that the drying of leaves and stems are affected differently by 
the increase in the temperature and that the drying process occurred predomi-
nantly at a decreasing rate for all conditions evaluated. It can be noted that the 
drying rate of stems decreased gradually as the temperature was raised from 
40˚C to 70˚C, while the drying rate of leaves showed a sharp increase as the 
temperature raised from 40˚C to 50˚C, and then it gradually increased from 
50˚C to 70˚C. This behavior was also observed in drying whole regular mint 
branches. The increase in temperature from 40˚C to 70˚C reduced the drying 
time in 80% for leaves, 68% for stems, and 71% for whole branches. 

A comparison of drying kinetics for the branches, leaves and stems at temper-
atures of 40˚C and 60˚C can be seen in Figure 7. 

It can be observed that at 40˚C (Figure 7(a)) the curves obtained for 
branches, leaves and stems are similar, and particularly at the beginning of dry-
ing, the differences are within the range of measurements uncertainties. At 60˚C 
(Figure 7(b)) the leaves are dried at higher rates than the stems, while the whole 
branches are dried at similar rates to those of the leaves. This behavior was re-
produced at the temperatures of 50˚C and 70˚C. The similarity in the drying ki-
netics of leaves and whole branches is explained because the branches used in 
the experiments were composed of approximately 80% of leaves in a weight ba-
sis. 
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(a) 

 
(b) 

Figure 6. Moisture ratio versus time in drying (a) leaves and (b) stems under different 
temperatures. 
 

Analysis of sorption isotherms showed that the multilayer water, which is 
predominantly removed in drying, is energetically similar to free liquid water 
and that the energy required to remove it from leaves and stems is similar. 
Therefore, the differences in drying kinetics of leaves and stems can be attri-
buted to factors related to water transport mechanisms within the materials. It is 
known that heat and mass transfer are processes strongly favored by the contact 
area. As shown in Table 2, the surface area of leaves is one order of magnitude 
higher than that of the stems. Furthermore, the flat-shaped format of leaves, 
with a high ratio of area to volume, also favors an effective contact with hot air 
in drying. Since drying occurred at decreasing rates, the diffusive mechanisms 
limit the water transport. They are also enhanced by the very small thickness of 
the leaves (0.18 mm), while the average characteristic dimension of the stems is 
much larger (1.25 mm). 
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(a) 

 
(b) 

Figure 7. Moisture ratio versus time in drying regular mint branches and their fractions 
at (a) 40˚C and (b) 60˚C. 

3.3.1. Effective Diffusivities  
The experimental data of moisture ratio versus time were fitted to Equation (6), 
and the effective diffusivity values were calculated for leaves, stems and branches 
at temperatures of 40˚C, 50˚C, 60˚C and 70˚C. The fitted values of effective dif-
fusivities are shown in Table 4, and a comparison of experimental and predicted 
values of moisture ratio versus time at 50˚C can be seen in Figure 8. 

Based on the curves shown in Figure 8 and on the low values of the determi-
nation coefficients in Table 4 (generally less than 0.92), it can be inferred that 
Equation (6) is not a good model to predict the drying kinetic of leaves, stems 
and branches of regular mint. The poor agreement may be explained, since some 
important assumption of this model are not satisfied in drying plants. One of 
them is that the bed of material behaves as a homogeneous solid throughout 
drying, which is clearly untrue. In fact, the leaves, stems and branches shrink  
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Figure 8. Moisture ratio versus time for leaves, stems and branches at 50˚C: model based 
on Equation (7). 
 
Table 4. Values of effective diffusivity and determination coefficients obtained from the 
fit o regular mint leaves and stems drying data to a model based on the Fick’s second law 
of diffusion. 

 Leaves Stems 

40˚C 
Deff (m2/s) 5.07 × 10−10 4.00 × 10−10 

R2 0.979 0.987 

50˚C 
Deff (m2/s) 1.17 × 10−9 5.82 × 10−10 

R2 0.979 0.981 

60˚C 
Deff (m2/s) 1.524 × 10−9 9.133 × 10−10 

R2 0.965 0.972 

70˚C 
Deff (m2/s) 2.47 × 10−9 1.46 × 10−9 

R2 0.962 0.958 

 
considerably during drying, and their sizes and shapes change expressively, as 
could be observed in the experiments and has been already demonstrated in pre-
vious research [32]. This behavior leads to highly heterogeneous packed-beds, 
whose structure changes considerably over the drying time. Besides, the effective 
diffusivity of biological materials in a function of moisture content, and not con-
stant as assumed in Equation (6). 

However, the fitted values of effective diffusivity in Table 4 can be used to 
provide a rough estimate of diffusive resistances for leaves and stems, using the 
packed-beds thickness as a characteristic dimension, which is the same for all 
evaluated conditions. It can be noted in Table 4 that in all temperatures, the ef-
fective diffusivity of leaves is higher than that of stems, reflecting the differences 
in the structure of these materials. At a given temperature, the diffusive resis-
tance calculated for the stems is always higher than that of the leaves. For instance, 
at 40˚C, the resistance in drying the stems was about 25% higher in comparison 
to the leaves, at 50˚C it was 100% higher, and at 60˚C and 70˚C it was 70% higher. 
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3.3.2. Empirical Model Based on ANN 
The model based on ANN technique can be obtained from a purely experimen-
tal database, without making assumptions that do not reflect the real behavior of 
the material during the drying process. For the ANN modeling, a total of 24 
drying experiments were used, out of which 15 for fitting and 9 for verifying the 
robustness of neural network. Based on Equation (8), weights and biases for a 
network with 4 neurons were: 

1

3.1395 11.2405 1.7887 8.6610
3.6839 0.5685 0.4299 1.5036
2.9787 0.6645 0.3926 1.5105
3.5918 0.2051 0.0725 4.3892

IW b

− − −   
   −   = =
   −
   

−   

 

[ ] [ ]20.1239 0.8023 1.4172 2.6439 2.3685LW b= − − =  

The number of neurons (4) in the hidden layer found to this application was 
chosen by trial and error, as was suggested by Himmelblau [11]. 

Figure 9 shows the simulated estimations from the ANN, together with expe-
rimental points, for whole branches (a) and leaves (b) at the temperature of 
60˚C, and for stems (c) at the temperature of 50˚C. 

It can be seen that a good agreement between measured and estimated results 
was obtained using the artificial neural network. 

Figure 10 shows the resulting correlation lines for the fitting database set. It 
can be withdrawn from Figure 10 that in the modeling using ANN, the neural 
network obtained to predict the moisture of branches and their fractions is ver-
satile, since one single network was capable of predicting satisfactorily the mois-
ture of the three materials in the range of temperatures evaluated. On the other 
hand, when using the modeling based on the Fick’s second law, an effective dif-
fusivity adjustment is required for every material (leaves, stems or branches) at 
each temperature. Moreover, the correlation factor (R2) obtained in the ANN 
modeling (0.9956) is greater than that of the modeling based on the Fick’s 
second law (about 0.92), which indicates that the ANN can predict better the 
drying kinetic of regular mint leaves, stems and branches. At this point, it can 
surely be said that the artificial neural network performance was much superior 
than that of the model based on the Fick’s second law. 

4. Conclusion 

The results from this study showed that drying of leaves and stems are limited by 
diffusive mechanisms and owing to the differences in the morphological charac-
teristic of the fractions, their drying rates are differently affected by the temper-
ature, which leads to very distinct drying rates particularly for temperatures over 
50˚C. Analysis of desorption behavior showed that stems and leaves have similar 
water binding properties, therefore the lower drying rates observed for stems are 
due to factors related to their shape and dimensions, which result in higher dif-
fusive resistance in comparison to the leaves. Considering the conditions eva-
luated, the drying kinetics of branches were closer to those of the leaves. At each  
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(a) 

 
(b) 

 
(c) 

Figure 9. Verification results for (a) branches and (b) leaves drying kinetics at 60˚C, and 
for (c) stems drying kinetics at 50˚C. 
 
temperature, effective diffusivities could be fitted from the kinetic data of stems, 
leaves and branches, but the use of a simplified approach that assumes a con-
stant diffusivity for the whole process under a given temperature resulted in 
poor fittings for the conditions tested. Finally, although an artificial neural net-
work and a model based on the Fick’s second law of diffusion can be used to  
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Figure 10. Drying kinetics fitting performance. 
 
predict the drying kinetic of regular mint leaves, stems and branches in temper-
atures of 40˚C, 50˚C, 60˚C and 70˚C, the artificial neural network performance 
was superior in all evaluated instances. An important advantage of this approach 
is that a single network is capable to predict the drying kinetics for the three 
materials over the whole range of experimental conditions evaluated.  
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