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Abstract 
Slow speed of the Next-Generation sequencing data analysis, compared to the 
latest high throughput sequencers such as HiSeq X system, using the current 
industry standard genome analysis pipeline, has been the major factor of data 
backlog which limits the real-time use of genomic data for precision medicine. 
This study demonstrates the DRAGEN Bio-IT Processor as a potential candi-
date to remove the “Big Data Bottleneck”. DRAGENTM accomplished the va-
riant calling, for ~40× coverage WGS data in as low as ~30 minutes using a 
single command, achieving the over 50-fold data analysis speed while main-
taining the similar or better variant calling accuracy than the standard GATK 
Best Practices workflow. This systematic comparison provides the faster and 
efficient NGS data analysis alternative to NGS-based healthcare industries and 
research institutes to meet the requirement for precision medicine based 
healthcare. 
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1. Introduction 

With the emergence of the 2nd generation high throughput Next Generation 
Sequencing (NGS) platforms as well as accurate and consistent identification of 
the genomic variants, the use of the personal genome sequencing information 
for the diagnostic and prognostic purpose has become the reality [1] [2]. Fur-
thermore, fast sequencing turnaround time and roughly $1000 NGS whole ge-
nome cost is encouraging more institutes and individuals to opt for NGS based 
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personalized medicine [3]-[8]. However, the “Big Data Bottleneck” is still the 
largest obstacle to use the NGS-based precision medicine in the real time disease 
and healthcare management. For instance, high throughput NGS HiSeq X Ten 
System has around 18,000 humans’ whole genome sequencing capacity at 30× 
genome coverage annually which translates into just ~30 - 40-minute turna-
round time for each genome sequencing. The most commonly used Genome 
Analysis Toolkit (GATK) best practice pipelines requires several hours to several 
days to analyze one human whole genome sequencing data, depending on the 
available processors. At commercial level, NGS-based data analysis time can be 
reduced significantly using the clusters of hundreds or thousands of CPUs. Also, 
several cloud-based solutions, such as GenomePilot by Appistry [9], etc., to ac-
celerate NGS-data analysis platform to speed-up the analysis has been intro-
duced. However, this conventional cluster approach requires expensive comput-
er system, maintenance and monitoring. Similarly, cloud-based platforms re-
quire massive data upload and download which is a limitation/burden for many 
research institutes and small to medium scale companies, especially in low 
bandwidth supported countries. Overall, the data processing strategy is not 
suitable for real time guidance/management of many medical diseases/condi- 
tions such as tolerance and rejection monitoring in organ transplant recipients, 
etc. Considering the routine use of the NGS-based diagnostic and prognostic in 
clinical setting, the need for the fast turnaround time, easy operation and accu-
rate NGS-based data analysis platform has become prominent. 

In this study, we assessed the performance of the world’s first bioinformatics 
processor DRAGEN Bio-IT Processor [10] [11] which is designed to analyze the 
NGS data. The DRAGEN (Dynamic Read Analysis for Genomics) Processor uses 
a field-programmable gate array (FPGA), implemented on a PCIe card embed-
ded in a pre-configured server, to provide hardware-accelerated implementa-
tions of genome pipeline algorithms, such as BCL conversion, compression, 
mapping, alignment, sorting, duplicate marking and haplotype variant calling. 

This study was carried out in two steps. First, run time performance of the 
DRAGEN Bio-IT Genome pipelines with the most commonly used GATK’s 
best-practice guidelines were analyzed for the 2 replicates of NA12878 Whole 
Genome Sequencing (WGS) dataset. Second, the variant calling efficiencies of 
the two pipelines were evaluated by comparing variants with the GIABv2.19 
high confidence (truth) call-set [12] [13]. These studies demonstrate that the 
employment of the DRAGEN Bio-IT processor decreased the WGS NGS-data 
analysis time to just ~40 minute while achieving the equivalent or better geno-
type variant calling accuracy than the standard GATK Best Practices workflow. 

2. Methods 
2.1. Sequence Data-Set and GIAB Validation Call-Set 

Two WGS replicates of the Coriell Cell Repository NA12878 reference sample 
NA12878 were downloaded from the Garvan NA12878 HiSeqX datasets [18]. 
These datasets have been sequenced on the Illumina HiSeq X platform using the 
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Illumina’s TruSeq Nano kit using 350 bp inserts. Each dataset contains over 120 
GB of fastq data yield, with > 87% bases with quality > Q30. These replicates are 
sequenced to assess the reproducibility and has been provided freely for research 
purpose by the The Garvan Institute of Medical Research, DNA nexus and AllSeq. 

As a gold standard practice to validate the variant calling platform’s perfor-
mance, the high confidence reference variant calls for the 1000 Genome project 
individual (sample NA12878), published by the Genome in a Bottle (GIAB) 
consortium [12] using hg19 coordinates, were utilized. The highly confident va-
riant call-set in the Variant Call Format (NISTIntegratedCalls_14datasets_ 
131103_allcall_UGHapMerge_HetHomVarPASS_VQSRv2.19_2mindatasets_5m
inYesNoRatio_all_nouncert_excludesimplerep_excludesegdups_excludedecoy_ 
excludeRepSeqSTRs_noCNVs.vcf.gz, GIAB v2.19) as well as the high confidence 
genomic region file (union13callableMQonlymerged_addcert_nouncert_exclu- 
desimplerep_excludesegdups_excludedecoy_excludeRepSeqSTRs_noCNVs_ 
v2.19_2mindatasets_5minYesNoRatio.bed.gz) were downloaded for the valida-
tion purpose. 

2.2. GATK Best Practices Workflow 

GATK Best Practices workflow is used most commonly to analyze the genomic 
data. The complete best practice pipeline [19] can be basically divided into two 
phase. First, preprocessing the raw data which includes, alignment the raw fastq 
data to the hg19 reference genome using mapping by BWA (version 0.7.12- 
r1039) [20], sorting by samtools (version 1.2 using htslib 1.2.1) [21], MarkDup-
licate and addRG by steps using picard-tools (version 1.119), and Base Recali-
bration using GATK (version 3.6-0-g89b7209) [19]. Second, Variants calling us-
ing GATK HaplotypeCaller. This study followed the GATK best practice work- 
flow recommended commands and arguments at each step which were executed 
on 48 core (using-nt and -nct arguments) the Intel Xeon E5-2697v2 12C server 
with 2.7 GHz processors,128 GB RAM and 3.2 TB capacity SSD running on 
CentOS 6.6. 

2.3. DRAGEN Bio-IT Processor and DRAGEN Genome Pipelines 

Unlike the traditional Genome analysis workflows, DRAGEN Bio-IT processor 
is the hardware accelerated platform which comes equipped with a custom Pe-
ripheral Component Interconnect Express (PCIe) board with a field-program- 
mable gate array (FPGA) which has been bundled with two 24 core Intel Xeon 
E5-2697v2 12C, 2.7 GHz processors with 128 GB RAM and 3.2 TB capacity SSD 
running on CentOS 6.6. DRAGEN system is supplied with DRAGEN Genome 
Pipeline which utilizes the DRAGEN Bio-It Platform with the improved and 
highly optimized mapping, aligning, sorting, duplicate marking and haplotype 
variant calling algorithms 11. A single DRAGEN run for WGS data, from fastq 
files to vcf files, can be completed in just one simple command. Also, DRAGEN 
can be run to output the intermediate alignment BAM file to be used with other 
variant caller (alignment mode) and vice versa. More details about the DRAGEN 
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Bio-IT Platform and DRAGEN Genome Pipeline has been recently published 
recently by Miller NA et al. [10] [11]. 

DRAGEN Command 
“dragen--num-threads 48-r/path/to/reference_Dir/--output-directory/path/to/ 
Output_Dir/--output-file-prefix PREFIX-1 Sequence_R1.fastq-2 Sequence_ 
R2.fastq--enable-variant-caller true--vc-reference/path/to/hg19.fa--vc-sample-name 
SampleID--enable-duplicate-marking true--remove-duplicates true—enable-bam- 
indexing true--enable-map-align-output true--intermediate-results-dir/staging/ 
tmp”. 

2.4. Performance Assessment of the Two Variant Calling Pipelines 

This study utilized below mentioned two WGS data analysis pipelines to process 
the dataset consist of two replicate of the NA12878. 

Pipeline 1. DRAGEN Alignment and DRAGEN Variant Caller (DRAGEN 
Genome Pipeline) 

Pipeline 2 GATK Best Practices workflow (BWA alignment, BAM file pre-
processing and HaplotypeCaller). 

All the analyses were performed on the server equipped with two 48 core Intel 
Xeon E5-2697v2 12C, 2.7 GHz processors with 128 GB RAM and 3.2 TB capacity 
SSD running on CentOS 6.6. Variant called using the pipelines were compared 
with the GIAB variants truth-set. For WGS dataset, a subset of variants in the 
GIAB high confidence genomic region bed file was extracted for each pipeline 
and compared with the GIAB’s high confident variant call-set to assess the per-
formance. 

To draw receiver operating characteristic (ROC) curve and calculate the sensi-
tivity and specificity of SNPs and INDELs, we defined the true positive (TP), 
true negative (TN), false positive (FP), and false negative (FN) variants as fol-
lows: 

TP: Correctly called ALT genotype which is also listed in GIAB truth-set. 
TN: Correctly called REF genotype which is also not listed in GIAB-truth-set 
FP: Incorrectly called ALT genotype which is not listed in GIAB truth-set. 
FN: Incorrectly missed ALT genotype which is listed in GIAB truth-set. 

( )Sensitivity TP TP FN= +                      (1) 

( )Specificity TP TP FP= +                      (2) 

( ) ( )Accuracy TP TN TP TN FP FN= + + + +              (3) 

3. Results 
3.1. Research Scheme 

Figure 1 shows the research scheme to assess the variant calling pipelines per-
formance for the whole genome sequencing data. This research employed two 
genome analysis pipelines, i.e. the DRAGEN genome pipelines and GATK Best 
Practice Pipelines, to assess the read-alignment and variant calling accuracy (as  
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Figure 1. Scheme of assessment of NGS data analysis pipelines. Flow chart shows the steps to as-
sess the variant calling performance of the various pipelines using DRAGEN and GATK-best 
practices guidelines. 

 
described in Method section). Two replicates of the NA12878 WGS sample, la-
belled as NA12878D and NA12878J18 with the coverage of 39.00× and 38.65× 
respectively, were used to assess the consistency and reproducibility of the va-
riant calling workflows. GIAB high confidence truth-set, along with the high 
confidence genomic region bed file, was used to assessed the performance of the 
both variant calling pipelines and suggest the best pipeline to the NGS-based re-
searcher. More details about the sequence dataset and validation call-set can be 
found in Method section. 

3.2. Runtime Performance of the Genome Analysis Pipelines 

One of the main object of this study is the Run-time assessment of the DRAGEN 
against the GATK Best Practice pipelines. Run time matrices were divided into, 
mapping time (i.e. fastq to Bam file generation time) and variant calling time 
(Bam to VCF generation). Table 1 lists the run time matrices for both the pipe-
lines. DRAGEN alignment includes the sorting, duplicate marking, ReadGroup 
information adding, etc. GATK best practice pipeline includes the mapping by 
BWA and preprocessing by samtools, Picard-tools, GATK, etc. All the command 
utilized the multithreaded option with maximum of 48 core, except the Pi-
card-tools which utilized single core. 
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Table 1. Performance comparison: run time assessment of variant calling pipelines. 

Dataset Sample Analysis Step Dragen BWA + HC 

WGS 

NA12878D 

FastQ2BAM 00:18:38 23:18:32 

Bam2VCF 00:23:17 9:13:19 

FastQ2VCF 00:37:53 32:31:51 

NA12878J 

FastQ2BAM 00:19:21 23:24:08 

Bam2VCF 00:24:42 09:31:12 

FastQ2VCF 00:40:15 32:55:20 

Here, table lists the run time profile of the two pipelines measured on the 2 replicates of NA12878 WGS 
dataset. For each pipeline, run-time for individual step, i.e. Mapping/Alignment (FastQ2BAM), Variant 
Calling (Bam2VCF) and complete pipeline run (FastQ2VCF), is listed. 

 
As listed in Table 1, DRAGEN competed alignment and BAM preprocessing 

for the NA12878D dataset in ~18 minute while GATK best practice pipeline 
took over 23 hours for the same (Figure 2). Likewise, variant calling using the 
GATK HaplotypeCaller completed in over 9 hours while DRAGEN Haplotype 
aware variant caller took just 23 minutes. All over, DRAGEN NGS data run was 
completed in ~37 minutes while the GATK tools over 32 hours. A similar 
run-time was obtained while analyzing the another WGS dataset (NA12878J). In 
a nutshell, around 50-fold NGS data processing speed can be obtained by uti-
lized the DRAGEN Genome Pipeline as compared to the GATK best practice 
recommendations. 

3.3. Variant Calling Accuracy of the WGS Variant Calling Pipelines 

Variant calling accuracy of the two pipelines were assessed against the standard 
GIAB high confidence region truth-set (v2.19). For this, both the WGS data 
analysis pipelines were executed for the two replicates of NA12878 WGS da-
ta. For each pipeline, a high-confident subset of variants, in the GIAB high 
confidence genome region (bed file), were selected and compared with the 
GIAB truth-set to calculate the sensitivity, specificity and accuracy of each 
pipelines. 

Both the pipelines showed ~99% and ~90% variant calling sensitivities for 
SNPs and INDELs, respectively while maintaining over 98% detection specificity 
in both the cases. As listed in Table 2 and shown in Figure 3, DRAGEN Ge-
nome pipelines showed slightly higher SNP detection accuracy than GATK best 
practice workflow. On the other hand, GATK best practice pipelines showed 
high INDEL detection accuracy for NA12878D dataset while DRAGEN pipeline 
for other (NA12878J) dataset. Further, as shown in Figure 4, ROC curve of 
SNPs and INDELs for DRAGEN genome pipeline showed high variant detection 
sensitivity at low False Positive Rate, but gradually with the in-crease of false 
positive hits the curve become similar (or lag behind) to that of the GATK Hap-
lotypeCaller. Overall, DRAGEN Genome Pipelines showed the comparable or 
better variant calling accuracy than the GATK best practice workflow. 
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Figure 2. Genome analysis pipelines run-profile statistics. The figure shows the run-profile statistics for each steps of the 
NGS-data analysis, i.e. the Alignment step (FastQ2BAM), Variant Calling step (BAM2VCF) and total run-time (FastQ2VCF) for 
each dataset, for the two NGS data analysis pipelines in this study. 

 

 
Figure 3. Variant calling performance assessment for WGS dataset. The figure shows the performance 
assessment of the genome analysis pipelines against the GIAB truth-set for the NA12878 sample. The 
Venn diagram shows the concordant SNPs (a) and (c) and the INDELs call (b) and (d) obtained by two 
pipelines against the GIAB truth-set. 

4. Discussion 

The major focus on the NGS-data analysis workflow is how to speed-up the 
analysis time without sacrificing the variant calling accuracy to utilize the NGS- 
based diagnosis more effectively, especially in a real-time disease management, 
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(a)                                                          (b) 

 
(c)                                                          (d) 

Figure 4. ROC curves of SNPs and INDELs for WGS dataset. ROC curves showing sensitivity vs. false positive rate for two repli-
cates of the whole genome, (a) and (c) SNPs and (b) and (d) INDELs, for the NA12878 data set. Variant quality and true posi-
tive/false positive variants were identified as described in the Online Methods section. 

 
Table 2. Performance comparison: accuracy of the variants calling pipelines. 

Pipeline #SNP† #FP SNPs 
Sensitivity 

(%) 
Specificity 

(%) 
Accuracy #INDEL§ #FPINDELs 

Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

WGS-NA12878D 

DRAGEN 2,776,320 2488 99.33 99.72 99.07 330,751 1076 89.66 98.42 88.39 

BWA + HC 2,763,565 1433 98.91 99.76 98.68 333,596 457 90.59 98.59 89.45 

WGS-NA12878J 

DRAGEN 2,779,858 2457 99.46 99.72 99.18 342,883 1799 92.56 98.01 90.85 

BWA + HC 2,765,879 1163 99.01 99.77 98.79 339,039 357 92.20 98.51 90.74 

Here, table lists the variant calling sensitivity and specificity profile of the 2 pipelines measured on the 2 replicated of NA12878 WGS dataset. For each pipe-
line, total number of SNP/INDEL, false positives, Sensitivity, Specificity and Accuracy is listed. Definition and formula of FP, sensitivity, specificity and 
accuracy is described in Method section. For SNP calling, DRAGEN Pipeline is shown to be more efficient than the BWA + HC pipelines. Similarly, 
DRAGEN pipeline shows comparable or better INDEL calling accuracy than GATK best practice workflow. 
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outbreaks of infectious disease and disaster situations, etc. This study assessed 
the analysis speed of sequencing data and variant calling accuracy of two ge-
nome analysis pipeline. The results showed that the ~40× coverage human WGS 
data processing using the DRAGEN Bio-IT Genome Pipelines can be completed 
in less than 40 minutes while obtaining the comparable accuracy with the stan-
dard GATK best practice workflow. 

One of the main objects of this study is to identify the fast, accurate and effi-
cient genomic analysis solution which can deal with the high computing demand 
in the era of massive NGS data analysis. Utilization of the DRAGEN Bio-IT pro-
cessor with DRAGEN Genome Pipeline can provide an efficient solution to the 
“Big-data bottleneck” since it can complete the standard human whole genome 
sequencing data analysis (fastq to vcf) in less than 40 minutes. The DRAGEN 
system processing time is sufficient to support ~30 - 40 minutes sequencing time 
for a single WGS sample in currently available high throughput sequencer. 
Therefore, one DRAGEN-system is enough to analyze the raw data generated 
from the high throughput sequencing system such as Illumina HiSeq X 10 se-
quencing center. 

In the recent time, several modifications of the GATK best practice pipelines 
have been published, e.g. Churchill [14], SpeedSeq [15], etc. Churchill pipeline 
claims to accomplish the 30× WGS sample in ~11 hours on a 48-core single 
CPU or ~1 hour 50 minutes on Ohio Supercomputer Center’s Glenn Cluster 
(768 cores over 96 nodes). Similarly, SpeedSeq claims 13-hour run-time for 50× 
NA12878 WGS using default software parameters and a single 16-core server 
(allowing 32 threads) with 128 GB of RAM. Even though, this study doesn’t 
compare the DRAGEN Genome pipeline’s speed and accuracy with such pipe-
lines, but ~40 minutes WGS data analysis time is much less than above men-
tioned pipelines which makes the DRAGEN system highly promising at indus-
trial scale. 

One important observation in our study is that DRAGEN Genome Pipelines is 
highly sensitive at low False Positive Rate. As shown in ROC curve of SNPs and 
INDELs for WGS dataset in the Figure 4, with the increase in the variant calling 
sensitivity (over 92% for SNPs and over 80% for INDEL case) the false positive 
hits increased significantly which reduces the overall DRAGEN variant callers’ 
accuracy. For example, as shown in Table 2, NA12878D and NA12878J samples 
have 1% and 0.5% lower INDEL calling specificity than the GATK Haplotype-
Caller, respectively. Accurate detection of INDEL from the NGS-data has been 
challenging due to the varying size and difficulty to map to the correct position 
in the genome (especially in the case of longer INDEL), etc. [16] [17]. These are 
the well-known issues which are caused by the technical limitation of NGS- 
platforms and analysis workflows. In the current study, we only compared the 
result of INDEL calling from the available resource/software without additional 
INDEL detection accuracy improvement. 

Altogether, this study focused on demonstrating the proficiency and compar-
ison of DRAGEN Bio-IT software and DRAGEN Genome Pipelines with tradi-
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tional approaches. These results implicate that the DRAGEN system can be used 
as a single platform to analyze the genomic data accurately in quicker time at 
industrial scale. We expect, this research will help the scientist to make an in-
formed choice to set-up a new (or modify the existing) genome analysis platform 
in their laboratory and/or institute. 
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