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Abstract 
There exist many iterative methods for computing the maximum likelihood 
estimator but most of them suffer from one or several drawbacks such as the 
need to inverse a Hessian matrix and the need to find good initial approxima-
tions of the parameters that are unknown in practice. In this paper, we present 
an estimation method without matrix inversion based on a linear approxima-
tion of the likelihood equations in a neighborhood of the constrained maxi-
mum likelihood estimator. We obtain closed-form approximations of solu-
tions and standard errors. Then, we propose an iterative algorithm which 
cycles through the components of the vector parameter and updates one 
component at a time. The initial solution, which is necessary to start the itera-
tive procedure, is automated. The proposed algorithm is compared to some of 
the best iterative optimization algorithms available on R and MATLAB soft-
ware through a simulation study and applied to the statistical analysis of a 
road safety measure. 
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1. Introduction 

Approximation methods for Maximum Likelihood (ML) systems of equations 
are of interest and are motivated in this paper by the need to find estimation 
methods that are simple and easy to implement in the specific field of the 
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statistical evaluation of the impact of a road safety measure. In practice, the 
estimation methods dedicated to this evaluation depend both on the nature of 
the measure and the available data. Methods based on frequencies combination 
have received considerable attention [1] [2] [3] and for the most part of them, 
we are faced with the estimation of unknown parameters which are often 
functionally dependent. 

Many approximation methods for maximum likelihood estimation need to 
solve systems of linear or non-linear equations with or without constraints 
[4]-[9]. Newton-Raphson’s method and Fisher scoring are certainly the most 
commonly used approximation methods. They consist in updating the whole 
parameter vector using the iterative scheme:  

( ) ( ) ( )( ) ( )( )1
1k k k kMφ φ φ φ

−
+  = + ∇  

                 (1) 

where ( )kφ  is the estimate of the vector parameter at the step k , 


 is the 
log-likelihood function, ( )( )kφ∇  is the gradient of 


 and ( )( )kM φ  is the 

observed or the expected information matrix. Both methods require the com- 
putation of second-order partial derivatives and a matrix inversion in each 
iteration, which can be very costly. Some authors such as Wang [10] have 
proposed quadratic approximations and extended Fisher scoring. The main 
point is to use quadratic approximations to the log-likelihood function and 
optimize these approximations within the constrained parameter space. 

Within the framework of crash data analysis, different iterative estimation 
methods have been proposed [2] [11]. For example, Mkhadri et al. [11] propose 
a Minorization-Maximization (MM) algorithm for the maximum likelihood 
estimation of the parameter vector of a multinomial distribution modelling 
crash data. Their proposed MM algorithm cycles through the components of 
the parameter vector and updates one component at a time which leads to 
closed-form expressions of the parameters. They claim that their MM algorithm 
is simple to implement without any matrix inversion and constraints are 
integrated easily. 

Despite the above advantages, the choice of the starting value ( )0φ  remains a 
major issue since a value of ( )0φ  relatively far from the true unknown value of 
the vector parameter can lead to erroneous solutions or to non-convergence. In 
addition to this, it must be noted that obtaining explicit expressions of standard 
errors is not generally easy. 

In this paper, we present an estimation method without matrix inversion 
based on a linear approximation of the likelihood equations in a neighborhood 
of the constrained maximum likelihood estimator. We obtain closed-form ap- 
proximations of solutions and standard errors. Then, we propose a partial linear 
approximation (PLA) algorithm which cycles through the components of the 
vector parameter and updates one component at a time. The initial solution is 
automated and standard errors are obtained in a closed-form. The PLA is com- 
pared to some of the best available algorithms on R and MATLAB software 
through a simulation study and applied to real crash data. 
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The remainder of the paper is organized as follows. Section 2 is devoted to the 
statistical model and the main assumptions used to get closed-form appro- 
ximations and standard errors. The proposed estimation method and the method 
for computing standard errors are presented in Section 3. The general framework 
of the proposed algorithm is also described. In Section 4, we give an illustration 
of our results using a crash data model. The numerical performance of the 
proposed algorithm is examined in Section 5 through a simulation study while a 
real-data application is given in Section 6. The appendix is devoted to the technical 
details of the main results. 

2. Statistical Model and Main Assumptions  
2.1. Statistical Model  

Let ( )11 1 21 2, , , , ,r rY Y Y Y Y=    be a random vector with ( )2 1r r >  compo- 
nents and ( ) ( ) ( ) ( ) ( )( )11 1 21 2, , , , ,r rπ φ π φ π φ π φ π φ=    be a vector of pro- 
babilities such that  

( )
2

1 1
1

r

ij
i j

π φ
= =

=∑∑  

where φ  is a parameter vector. It is assumed that the vector Y  has the 
multinomial distribution ( )( );n π φ  where 0n >  is a known integer. The 
basic principle of the multinomial distribution ( )( );n π φ  consists in dis- 
tributing n  items in 2r  categories or classes ( 2r  being the number of com- 
ponents of vector ( )π φ ). The probability for an object to fall in a class is called 
class probability with the sum of all class probabilities equal to 1. Here, the class 
probabilities ( )ijπ φ  depend on the unknown vector parameter φ . 

Given a vector of integers ( )11 1 21 2, , , , ,r ry y y y y=    such that  
2

1 1
,

r

ij
i j

y n
= =

=∑∑  

the probability function related to ( )( );n π φ  is defined by  

( ) ( )( )
2

2
1 11 1

! .
!

ij
r y

ijr
i jiji j

nf y
y

π φ
= =

= =

= ∏∏
∏ ∏

               (2) 

2.2. ML Estimation and Main Assumptions  

Assumption 1. The vector parameter φ  is partitioned as ( ),φ θ β=  where 
0θ >  is a real parameter, ( )T

1, , rβ β β=   is a vector and 0jβ >  for all  
1, ,j r=  .  

Assumption 2. The unknown vector φ  is subject to a linear constraint 
( ) 0C φ =  where C  is a continuously differentiable function from 1r+  to 

 .  
Let ( ) 2

11 1 21 2, , , , , r
r ry y y y y= ∈    be a vector of observed data and ( )φ  

be the logarithm of the probability density function ( )f y  defined by Equation 
(2). The constrained maximum likelihood estimator ( )ˆ ˆ ˆ,φ θ β= , is solution to 
the optimization problem 
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( ) ( )Maximize      subjet to   0.Cφ φ =                 (3) 

Problem (3) is equivalent to the maximization of function  

( ) ( ) ( ), Cφ λ φ λ φ= −                      (4) 

where λ  is the Lagrange multiplier. The information matrix linked to the 
constrained maximum likelihood estimator φ̂  is  

T T

,
0

J C U
J

C U B
φ φ φ φ

φ φ
φ φ φ

τ   
Γ = =   

      
                 (5) 

where ( )T 1
1, , , r

rC C C Cφ θ β β += ∂ ∂ ∂ ∂ ∂ ∂ ∈  , 1 1r rJφ
+ +∈ ×  ,  

2 2 2

2
1

,    , ,
r

E U Eφ φτ
θ β θ βθ

   ∂ ∂ ∂
= − ∈ = − −   ∂ ∂ ∂ ∂∂   

  

   

and Bφ  is a r r×  matrix whose entries are ( )2
m jE β β−∂ ∂ ∂ , , 1, ,m j r=  . 

We also assume that the following conditions are verified: 
Assumption 3. 0C θ∂ ∂ =  and , 0Cβ β κ= ≠  where .,.  is the inner 

product, κ  is a constant and ( )T
1 , , r

rC C Cβ β β= ∂ ∂ ∂ ∂ ∈  ;  
Assumption 4. For any 0θ > , there exists a non-singular r r×  matrix  

ˆ,yθ
Ω  such that T 1

ˆ ˆ ˆ, 0yC C
β θ β

−Ω >  and the non-linear system  

ˆ
ˆ

ˆ ˆ

ˆ,

0
ˆ,

rC
C

φ
β

φ β

β
β

β β

 ∂
 ∂  ∂

− = ∂ 



  

is approximated by the linear system  

ˆ ˆ,
T
ˆ

ˆ

0 0
y y

C D
C
θ β

β

β
κ

Ω     
=     

     
 

where ( )T0 0, , 0 r
r = ∈   and yD  is a 1r ×  vector whose components are 

obtained from y .  
Assumption 5. There exists a function 1: rg − →   such that the equation  

ˆ
0

φθ
∂  = ∂ 
  is equivalent to ( )ˆ ˆgθ β= .  

Assumption 6. There exist two strictly positive real numbers ,na φ  and ,nb φ , 
a non-singular r r×  diagonal matrix φΣ  and a vector rVφ ∈  such that 

1 2
, ,n na bφ φ φτ −= , ( )T

,nB a V Vφ φ φ φ φ= Σ +  and ,nU b Vφ φ φ= .  
Assumption 3 specifies the form of function C . Particularly, C  is only a 

function of sub-vector β . Assumptions 4 and 5 enable us to get β̂  from θ̂  
and inversely. Assumption 6 enables us to transform the Fisher information 
matrix in order to use classical results on matrix inversion with Schur’s com- 
plement [17]. 

3. The Estimation Method  
3.1. Partial Linear Approximation Principle  

The general problem of finding the constrained maximum likelihood estimator 
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has been discussed by many authors [12] [13] [14]. The classical approach is 
based on a Newton-type algorithm and computes the components of φ̂  at once. 
Except from some few simple cases, it is not generally possible to get explicit 
expressions of the components of φ̂ . One shows the following lemma (we refer 
the reader to the appendix for a proof). 

Lemma 1. The constrained maximum likelihood estimator φ̂ , provided it 
exists, is solution to the non-linear system  

ˆ
ˆ

ˆ ˆ ˆ

ˆ,

0 and 0
ˆ,

rC
C

φ
β

φ φ β

β
β

θ β β

 ∂
 ∂  ∂ ∂  = − =   ∂ ∂   



             (6) 

where ( )T0 0, , 0 r
r = ∈  .  

Our approach consists in dividing Equation (6) into two parts: one con- 
cerning the first component of φ̂  and the other one concerning the sub-vector 
β̂ . 

Theorem 1. Under assumptions 3 - 5, the constrained MLE ( )ˆ ˆ ˆ,φ θ β=  is 
given by:  

( )ˆ ˆgθ β=  

1
ˆ,

ˆ .yy D
θ

β −= Ω  

The non-obvious part of the proof consists in the determination of β̂  by 
inverting the ( ) ( )1 1r r+ × +  matrix linked to the linear system in Assumption 
4. This result based on the inversion of partitioned matrices will not be 
demonstrated in this paper. We refer the reader to classical papers on Schur 
complement [15] [16]. 

From Theorem 1, it is seen that the MLE ( )ˆ ˆ ˆ,φ θ β=  is a fixed point of the 
function from 1r+

  to itself defined by ( ) ( )( )1
,, , y yg Dθθ β β −Ω . We can then 

build an iterative algorithm to estimate φ . The classical fixed point method 
which consists in simultaneously updating θ̂  and β̂  may be hard to im- 
plement because of the link between θ̂  and β̂ . We propose instead to alternate 
between updating θ̂  holding β̂  fixed and vice-versa. Starting from a given 

( )0θ , we compute ( )0β  and then ( )1θ  and ( )1β  and so on. The process is 
repeated until a stopping criteria is satisfied. For example, we can stop the 
iterations when successive values of the log-likelihood satisfy the condition 

( )( ) ( )( )1k kφ φ+ − <    where 0> . 
The estimation process may be completed by the computation of standard 

errors with Theorem 2 below. 
Theorem 2. Under assumptions 3 - 6, the asymptotic variance of the com- 

ponents of φ̂  are  

( ) 1 1
ˆ ˆ

2 22 2 2
ˆ ˆ ˆ ˆ ˆ, ,

ˆˆ 1n na b V C
φ φ

φ φ φ β φ
σ θ ξ

− −

−
−

Σ Σ

 
= + −  

 
              (7) 

and  
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( ) ( )1
ˆ

222 1 1 1
ˆ ˆ ˆ ˆ ˆ, , , ,

ˆˆ ,      1, ,j n j j ja C C j r
β

φ φ β φ β
σ β

−

−
− − −

Σ

 
= Σ − × Σ × =  

 
        (8) 

where T 1 0V Cφ φ φ βξ −= Σ >  and the real values 1
, jφ

−Σ  (resp. , jCβ ), 1, ,j r=  , 
are the diagonal elements (resp. components) of matrix 1

φ
−Σ  (resp. of vector 

Cβ ).  
The proof is given in the appendix. It stems from the results of N'Guessan and 

Langrand [17]. 

3.2. General Framework of the Partial Linear  
Approximation Algorithm  

Algorithm 1 (The partial linear approximation algorithm).  
Step 0 (Initialization) Given ( )0θ , 0> , yD , compute ( )

( )0
0 1

, yy
D

θ
β −= Ω .  

Step 1 (Loop for computing φ̂ ) For a given 0k ≥ ,  
a) Compute ( ) ( )( )1k kgθ β+ =  and ( )

( )1
1 1

,k
k

yy
D

θ
β +

+ −= Ω .  

b) If ( )( ) ( )( )1k kφ φ+ − ≥   , then replace k  by 1k +  and return to Step 1.  

Else, set ( )1ˆ kθ θ += , ( )1ˆ kβ β +=  and go to Step 2.  
Step 2 (Computation of standard errors) 

a) Compute ( ) 1 1
ˆ ˆ

2 22 2 2
ˆ ˆ ˆ ˆ ˆ, ,

ˆˆ 1n na b V C
φ φ

φ φ φ β φ
σ θ ξ

− −

−
−

Σ Σ

 
= + −  

 
.  

b) For 1, ,j r=  , compute ( ) ( )1
ˆ

222 1 1 1
ˆ ˆ ˆ ˆ ˆ, , , ,

ˆˆ j n j j ja C C
β

φ φ β φ β
σ β

−

−
− − −

Σ

 
= Σ − × Σ ×  

 
.  

The aim of this paper is not to conduct a theoretical study of the convergence 
of the proposed algorithm. We rather focus on the numerical aspect of this 
convergence through an application model. Nevertheless, we can notice that the 
estimation of φ̂  using our algorithm does not require any matrix inversion. It 
is thus easy to think that getting the constrained maximum likelihood estimator 
φ̂  is improved in terms of computation time. 

4. Application to the Combination of Crash Data  
4.1. Statistical Model  

We apply the above algorithm to estimate the parameters of a statistical model 
used to assess the effect of a road safety measure applied to an experimental site 
presenting 0r >  mutually exclusive accident types (fatal accidents, seriously 
injured people, slightly injured people, material damage, etc) over a fixed 
period. Let us consider the random vector ( )11 1 21 2, , , , ,r rY Y Y Y Y=    where 

1 jY  and ( )2 1, ,jY j r=   respectively represent the number of accidents of type 
j  registered on the experimental site before and after the application of the 

road safety measure. In order to take into account some external factors (such as 
traffic flow, speed limit variation, weather conditions, regression to the mean 
effect, etc), the experimental site is linked to a control area where the safety 
measure was not directly applied. The accidents data for the control area over 
the same period is given by the non-random vector ( )T

1, , rZ z z=   where jz  
denotes the ratio of the number of accidents of type j  registered in the period 
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after to the number of accidents of type j  registered in the period before. 
Following N’Guessan et al. [18], we assume that the vector Y  has the multi- 
nomial distribution  

( )( ),Y M n π φ∼  

where n  is the total number of crashes recorded at the experimental site and 
( )11 1 21 2, , , , ,r rπ π π π π=    is a vector of class probabilities whose components 

are  

( ) 1

1

1

if   1;   1, ,
1

if   2;   1, , .
1

j
r

m mm
ij r

j m mm
r

m mm

i j r
z

z
i j r

z

β

θ β
π φ

θβ β

θ β

=

=

=


= =

+
= 
 = = +

∑
∑
∑





           (9) 

By construction, the parameter vector ( ),φ θ β=  of this model satisfies the 
conditions 0θ > , 0jβ >  and the linear constraint  

( ) ( )0, with 1 , 1rC Cφ φ β= = −                (10) 

where ( )1 1, ,1 r
r = ∈  . The scalar θ  denotes the unknown parameter average 

effect of the road safety measure while each ( )1, ,j j rβ =   denotes the risk of 
having an accident of type j  on a site having the same characteristics as the 
experimental site. This model is a special case of the multinomial model 
proposed by N’Guessan et al. [18] which was applied simultaneously on several 
sites. 

4.2. Cyclic Estimation of the Average Effect and the  
Different Accident Risks  

The log-likelihood is specified up to an additive constant by  

( ) ( ) ( ). 2 . 2
1 1 1

log log log 1 log
r r r

m m m m j j m j j
m j j

y y y z y zφ β θ θ β β
= = =

    
= + − + +    

     
∑ ∑ ∑

 (11) 

where . 1 2m m my y y= + . Different iterative methods can be used to compute the 
constrained MLE φ̂ . Most of them look for stationary points of the Lagrangian  

( ) ( )
1

, 1 .
r

m
m

φ λ φ λ β
=

 = − − 
 
∑  

N'Guessan et al. [18] showed that a stationary point of ( ),φ λ  must be the 
solution to the following system of non-linear equations:  

( )
( )

( )
( )

( )( )
( )

2 .
1

2.
.

ˆ ˆ
0ˆ ˆ1

ˆ ˆ ˆ ˆ1
0,   1, ,ˆ ˆˆ1

ˆ ˆ0,  0,  1, ,

r

m m
m

j j j j
j

j

E Z
y y

E Z

n z y E Z z
y j r

E ZE Z

j r

θ
θ

β θ β

θ

θ β

=

  
− =   +  


+ − − − = =

+
 > > =



∑





        (12) 
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where 2. 21
r

mmy y
=

= ∑  and ( ) 1
ˆˆ r

m mmE Z zβ
=

= ∑ . 

The main idea proposed in this paper consists in neglecting the term  
( )( ) ( )2.

ˆ ˆ ˆ
j jy E Z z E Zβ −   so that we can write the remaining equations  

( )
( ).

ˆ ˆ1
0, 1, ,ˆ ˆ1

j j
j

n z
y j r

E Z

β θ

θ

+
− = =

+
  

as the linear system of equations  

ˆ,
ˆ

yy D
θ
βΩ =                           (13) 

where T
ˆ ˆ,

ˆ
yy M D Z

θ θ
θΩ = − , ( )ˆ 1

ˆ ˆdiag 1 , ,1 rM z z
θ

θ θ= + +  is a diagonal r r×  
matrix and  

T
11 21 1 2, , .rr r

y
y y y yD

n n
+ + = ∈ 

 
   

Drawing our inspiration from the work by N'Guessan [19], we show that the 
linear system (13) has the vector ( ) 1T 1 1

ˆ ˆ
ˆ ˆ1 y yZ M D M D

θ θ
β θ

−
− −= −  as unique so- 

lution. One shows that  

( )T 1
ˆ

1

ˆ1ˆ1 1 .ˆ1

r
m m

y
m m

z yZ M D
n zθ

θθ
θ

− ⋅

=

− = −
+

∑  

The components of the constrained MLE φ̂  can then be computed as 
follows. 

Corollary 1. The components of ( )ˆ ˆ ˆ,φ θ β=  are given by  

( ) ( )
21

11 1

ˆ
ˆ

r
mm

r r
m m mm m

y

z y
θ

β
=

= =

=
×

∑
∑ ∑

                 (14) 

( )
.1 1ˆ ,    1, ,ˆˆ 11
j

j
jn

y
j r

nz
β

θθ
= × × =

+− ∆
             (15) 

where ( )
1

ˆ1ˆ
ˆ1

r
m m

n
m m

z y
n z

θθ
θ

⋅

=

∆ =
+

∑ .  

Applying Theorem 2’s results, we can give the asymptotic variance of the 
constrained MLE φ̂ . 

Corollary 2. The asymptotic variance of the components of the constrained 
maximum likelihood estimator φ̂  is given by  

( ) ( )
( )
( )( )

( )2
2 2 3

2

ˆ ˆ1 1ˆ ˆˆ 1ˆ ˆ

E Z E Z
n nnE Z E Z

σ θ θ θ θ
 
 = + + +  
 

         (16) 

( ) ( )2 1ˆ ˆ ˆˆ 1 ,      1, ,j j j j r
n

σ β β β= − =                (17) 

where ( ) 1
ˆˆ r

m mmE Z zβ
=

= ∑  and ( )2 2
1
ˆˆ r

m mmE Z zβ
=

= ∑ .  

Technical proof uses the Schur complement approach and stems from [17]. 
One shows (see the appendix) that the elements of the asymptotic information 
matrix φΓ  linked to φ̂  are  
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( ) ( ) ( )
2 2

T 1 T0,1, ,1 ,   ,   ,   r E Z
C U Z B V V

n nφ φ φ φ φ φ φ

γ γτ γ
θ

+= ∈ = = = Σ +    (18) 

where  

( ) ( )

1 2

1

1 1,   diag , , ,   .
1r

n nV Z
nE Z E Zφ φ
θγ γ

γ β β θ
   

= Σ = × =     +  


     (19) 

Setting ,na φ γ=  and ( )( ) ( )2 3
,nb E Z nφ γ θ= , we show that Assumption 6 is 

satisfied. We then apply Theorem 2 to get the results of Corollary 2. 

4.3. Practical Aspect of the Partial Linear Approximation  
Algorithm  

Algorithm 2.  
Step 0 (Initialization) Given 0>  and yD , set ( )0 0θ =  and compute  
( )0

yDβ = .  
Step 1 (Loop for computing φ̂ ) For a given 0k ≥ ,  

a) Compute ( )
( )( ) ( )

1 21

11 1

r
k mm

r rk
m m mm m

y

z y
θ

β
+ =

= =

=
×

∑
∑ ∑

  

b) For 1, ,j r=  , compute  

( )
( )

( )

( )
.1

1 1
.

1
1

1 1 .
111

1

jk
j k kr

m m j
k

m m

y
nz y z

n z

β
θ θ

θ

+
+ +

+
=

= × ×
+

−
+

∑
 

c) If ( )( ) ( )( )1k kφ φ+ − ≥   , then replace k  by 1k +  and return to Step 1.  

Else, set ( )1ˆ kθ θ += , ( )1ˆ kβ β +=  and go to Step 2.  
Step 2 (Computation of standard errors) 

a) Compute ( ) ( )
( )
( )( )

( )2
2 2 3

2

ˆ ˆ1 1ˆ ˆˆ 1ˆ ˆ

E Z E Z
n nnE Z E Z

σ θ θ θ θ
 
 = + + +  
 

.  

b) For 1, ,j r=  , compute ( ) ( )2 1ˆ ˆ ˆˆ 1j j jn
σ β β β= − .  

The partial linear approximation algorithm for computing the constrained 
maximum likelihood estimator φ̂  of the model presented in subsection 4.1 
stems from the cyclic algorithm of N’Guessan and Geraldo [20]. The PLA 
proceeds as follows: step 1 allows to estimate φ̂  alternating between its two 
components θ̂  et β̂ . To start the procedure, we initialize ( )0θ . Then we 
compute ( ) ( )0 1, ,j j rβ =   and define ( ) ( ) ( )( )0 0 0,φ θ β= . But, we could also 
initialize ( )0β  using the problem’s data and get ( )0θ . The process is repeated 
until the stopping criterion is satisfied. We note that our algorithm is automated 
and can be started as soon as the problem’s data yD  is entered. 

We can also note that the second partial derivatives of the log-likelihood 
function are no longer used in our algorithm. The aim of this paper is not to 
carry out a theoretical study of the convergence of the proposed algorithm. We 
rather focus on the numerical aspect of this convergence using simulated 
datasets. 
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5. Numerical Results with Simulated Datasets  
5.1. Data Simulation Principle  

For a given value of r  (the number of crash types), we generate the com-  

ponents of vector ( )T
1, , rZ z z=   from a uniform random variable 

1 5,
2 2

U  
 
 

.  

The true value of θ  denoted 0θ  is fixed and the true value of β , denoted 

( )T0 0 0
1 , , rβ β β=  , such that 0

1 1r
jj β= =∑ , comes from a uniform random 

variable ( ),1U −   where 510−= . Using those values, we compute the true 
probabilities  

( ) ( )
0 0 0 0

0 0 1
1 20 0 0 0

1 1

,   ,    1, ,
1 1

r
j j m mm

j jr r
m m m mm m

z
j r

z z

β θ β β
π φ π φ

θ β θ β
=

= =

= = =
+ +

∑
∑ ∑

  

linked to the multinomial distribution presented in subsection 4.1. Finally, one 
generates the total number n  of crash data from a Poisson distribution and 
then randomly shares it between the before and after periods using probabilities 

( )0
1 jπ φ  and ( )0

2 jπ φ . The observed values of ijy  such that 2
1 1

r
iji j y n

= =
=∑ ∑  

are then found. 

5.2. Numerical Results  

This subsection deals with the numerical convergence of the partial linear 
approximation algorithm. As usual in the study of iterative algorithms, we 
analyse the influence of the initial solution ( ) ( ) ( )( )0 0 0,φ θ β= , the number of 
iterations, the computation time (CPU time) and the mean squared error. The 
performances of the partial linear approximation algorithm are compared to 
those of some classical optimization methods available in R and MATLAB 
software. The computations presented in this section were executed on a PC 
with an AMD E-350 Processor 1.6 GHz CPU. 

The methods selected for comparison are the Newton-Raphson’s method, 
Nelder-Mead’s (NM) simplex algorithm [21], quasi-Newton BFGS algorithm 
(from the names of its authors Broyden, Fletcher, Goldfarb and Shanno [22] [23] 
[24] [25]), Interior Point (IP) algorithm [26], the Lenverberg-Marquardt (LM) 
algorithm [27] [28] and Trust Region (TR) algorithms [29]. In our work, the 
BFGS and NM algorithms are implemented using the package developed by 
Varadhan [30]. 

The simulation process was performed on many simulated crash datasets. For 
each one, small and large values of n  were considered. The results presented 
here correspond to the case 3r = , { }50;5000n∈ , ( )0 0 0,φ θ β=  with 0 0.6θ =  
and ( )0 0.025,0.232,0.743β = . 

Three different ways of setting ( )0β  were considered:  
1) Uniform initialisation: ( ) ( ) ( )0 0 0

1 2 1r rβ β β= = = = . 

2) Proportional initialisation: ( ) 1 20 j j
j

y y
n

β
+

= , 1, ,j r=  . 

3) Random initialisation: for 1, ,j r=  , ( ) ( )0
1

r
j j iiu uβ

=
= ∑  where each  
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( )1, ,iu i r=   is randomly generated from an uniform distribution  
( )0.05,0.95U .  
By combining the two values of n  and the three ways to initialize ( )0β , we 

get six scenarios and for each one, we performed 1000 replications. The stopping 
criterion is the condition ( )( ) ( )( )1 510k kφ φ+ −− <  . 

Tables 1-6 present a few of the results obtained for an overall 6000 simu- 
lations. All computation times are given in seconds and the duration ratio of an  
 
Table 1. Results for uniform initialisation of ( )0β , 3r = , 50n = . 

 R software MATLAB software 

 PLA NR BFGS NM PLA LM TR IP 

φ̂  0.621 0.617 0.617 0.618 0.643 0.639 0.639 0.639 

 0.060 0.054 0.054 0.054 0.060 0.054 0.054 0.054 

 0.207 0.227 0.227 0.227 0.203 0.223 0.223 0.223 

 0.733 0.719 0.719 0.719 0.737 0.723 0.723 0.723 

Min.  
iterations 

2 2 11 8 2 3 2 8 

Max.  
iterations 

4 4 11 19 4 4 11 22 

Mean 
iterations 

3.1 3.0 11.0 12.1 3.1 3.2 5.8 13.8 

CPU time 7.64E−04 3.84E−03 1.83E−01 2.85E−01 1.41E−03 4.37E−02 5.07E−02 4.97E−01 

Duration 
ratio 

1 5 239 373 1 31 36 353 

MSE 9.90E−03 9.74E−03 9.74E−03 9.79E−03 1.12E−02 1.09E−02 1.09E−02 1.09E−02 

 
Table 2. Results for uniform initialisation of ( )0β , 3r = , 5000n = . 

 R software MATLAB software 

 PLA NR BFGS NM PLA LM TR IP 

φ̂  0.604 0.601 0.601 0.602 0.604 0.601 0.601 0.601 

 0.028 0.025 0.025 0.025 0.028 0.025 0.025 0.025 

 0.212 0.232 0.232 0.233 0.212 0.232 0.232 0.232 

 0.760 0.743 0.743 0.742 0.760 0.743 0.743 0.743 

Min.  
iterations 

4 3 15 12 4 3 3 9 

Max.  
iterations 

4 4 15 20 4 4 12 21 

Mean 
iterations 

4.0 3.3 15.0 15.1 4.0 3.0 6.4 13.7 

CPU time 9.35E−04 4.11E−03 3.23E−01 3.54E−01 1.71E−03 4.24E−02 5.30E−02 5.33E−01 

Duration 
ratio 

1 4 345 379 1 25 31 311 

MSE 2.82E−04 9.62E−05 9.62E−05 1.18E−04 2.77E−04 9.24E−05 9.24E−05 9.24E−05 
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Table 3. Results for proportional initialisation of ( )0β , 3r = , 50n = . 

 R software MATLAB software 

 PLA NR BFGS NM PLA LM TR IP 

φ̂  0.626 0.622 0.622 0.623 0.632 0.628 0.628 0.628 

 0.061 0.055 0.055 0.055 0.060 0.053 0.053 0.053 

 0.206 0.226 0.226 0.226 0.205 0.226 0.226 0.226 

 0.733 0.720 0.720 0.719 0.735 0.721 0.721 0.721 

Min.  
iterations 

3 2 11 8 3 2 2 6 

Max.  
iterations 

3 3 11 19 3 3 13 20 

Mean 
iterations 

3.0 2.9 11.0 12.0 3.0 3.0 6.1 11.5 

CPU time 7.11E−04 3.75E−03 1.85E−01 2.81E−01 1.30E−03 4.26E−02 5.14E−02 4.99E−01 

Duration 
ratio 

1 5 260 395 1 33 39 383 

MSE 1.00E−02 9.86E−03 9.86E−03 9.84E−03 1.15E−02 1.13E−02 1.13E−02 1.13E−02 

 
Table 4. Results for proportional initialisation of ( )0β , 3r = , 5000n = . 

 
R software MATLAB software 

PLA NR BFGS NM PLA LM TR IP 

φ̂  0.604 0.601 0.660 0.662 0.604 0.601 0.601 0.601 

 0.028 0.025 0.025 0.026 0.028 0.025 0.025 0.025 

 0.211 0.232 0.232 0.233 0.211 0.232 0.232 0.232 

 0.760 0.743 0.743 0.742 0.760 0.743 0.743 0.743 

Min.  
iterations 

4 2 1 1 4 2 2 3 

Max.  
iterations 

4 3 15 21 4 3 12 20 

Mean 
iterations 

4.0 2.9 14.6 14.7 4.0 3.0 6.3 12.5 

CPU time 9.20E−04 3.69E−03 3.10E−01 3.47E−01 1.59E−03 4.19E−02 5.21E−02 5.31E−01 

Duration 
ratio 

1 4 337 378 1 26 33 334 

MSE 2.76E−04 8.96E−05 5.17E−02 5.16E−02 2.82E−04 9.30E−05 9.30E−05 9.30E−05 

 
algorithm is defined as the ratio between the mean computation time of this 
latter and the mean computation time of the PLA (therefore the duration ratio of 
the partial linear approximation algorithm always equals 1). The computation 
time depends on the computer used to perform the simulations while the 
duration ratio is computer-free and therefore more useful. 

To analyse the convergence, we used the mean squared error (MSE) defined 
as:  



A. N’Guessan et al. 
 

144 

Table 5. Results for random initialisation of ( )0β , 3r = , 50n = . 

 R software MATLAB software 

 PLA NR BFGS NM PLA LM TR IP 

φ̂  0.639 0.635 0.932 0.939 0.632 0.628 0.628 0.628 

 0.060 0.053 0.094 0.065 0.060 0.054 0.054 0.054 

 0.205 0.226 0.243 0.247 0.204 0.224 0.224 0.224 

 0.735 0.721 0.663 0.688 0.736 0.722 0.722 0.722 

Min.  
iterations 

2 2 1 1 2 3 3 8 

Max.  
iterations 

4 4 11 20 4 4 12 22 

Mean 
iterations 

3.4 3.1 9.5 10.5 3.4 3.4 5.9 13.5 

CPU time 7.76E−04 3.92E−03 1.60E−01 2.75E−01 1.39E−03 4.29E−02 4.96E−02 4.95E−01 

Duration 
ratio 

1 5 207 354 1 31 36 357 

MSE 1.16E−02 1.13E−02 2.52E−01 2.47E−01 1.08E−02 1.05E−02 1.05E−02 1.05E−02 

 
Table 6. Results for random initialisation of ( )0β , 3r = , 5000n = . 

 R software MATLAB software 

 PLA NR BFGS NM PLA LM TR IP 

φ̂  0.603 0.600 0.839 0.841 0.603 0.600 0.600 0.600 

 0.028 0.025 0.067 0.036 0.028 0.025 0.025 0.025 

 0.211 0.232 0.244 0.252 0.211 0.232 0.232 0.232 

 0.760 0.743 0.689 0.712 0.760 0.743 0.743 0.743 

Min.  
iterations 

3 2 1 1 3 3 3 8 

Max.  
iterations 

4 4 15 20 4 4 12 31 

Mean 
iterations 

4.0 3.4 13.2 13.4 4.0 3.4 6.5 14.1 

CPU time 8.55E−04 4.40E−03 2.84E−01 3.31E−01 1.58E−03 4.30E−02 5.40E−02 5.34E−01 

Duration 
ratio 

1 5 332 387 1 27 34 338 

MSE 2.80E−04 9.40E−05 1.85E−01 1.75E−01 2.81E−04 9.55E−05 9.55E−05 9.55E−05 

 

( ) ( ) ( )2 20 0 0

1

1ˆ ˆ ˆMSE ,
1

r

j j
jr

φ φ θ θ β β
=

 
= − + − +  

∑            (20) 

One can see that the MSE decreases when n  (the total number of road 
crashes) increases. The PLA is at least as efficient as the other algorithms. It 
always converges to reasonable and acceptable parameter vector estimates and 
the estimate gets closer to the the true value as n  increases. 

For a small value of n  (see Table 1, Table 3 and Table 5), the estimate φ̂  
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produced by the PLA is relatively close to the true parameter vector and quite 
close to those of the other methods. More generally, all the compared methods 
have a MSE of order 210− . However the estimates produced by the BFGS and 
Nelder-Mead’s methods are very far from the true values (see Table 5). In the 
case of random initialisation, the MSE for Nelder-Mead’s and BFGS algorithms 
is 20 times greater than those of the other algorithms. 

When n  increases ( )5000n = , the MSE of the PLA decreases from 210−  to 
410− . So the PLA is also efficient. Unsurprisingly, when n  is very great the 

estimates produced by the other algorithms are closer to the true values than 
those of the PLA. This is expected because the other algorithms work with the 
exact gradient. However, the Nelder-Mead’s and BFGS algorithms produce 
estimates very far from the truth. Their MSE’s order is 210−  (Table 4 and Table 
6) while those of the PLA and the other methods are 410− . 

To analyse the influence of the initial guess, we considered the mean number 
of iterations and the amplitude of the iterations (i.e. difference between the 
maximum and the minimum number of iterations). An increase in the am- 
plitude of iterations suggests a greater influence of the initial solution ( )0φ . The 
results given in Tables 1-6 suggest that the PLA is stable and robust to initial 
guesses of the parameter being estimated. For the 6000 replications, the number 
of iterations needed by the PLA to converge lies between 2 and 4. In other words, 
setting the initial guess to 6000 different values chosen in the parameter vectors 
space does not disturb the PLA. This performance is as good as those of Newton- 
Raphson and Levenberg-Marquardt and by far better than those of BFGS, 
Nelder-Mead’s and Interior Point which have their number of iterations varying 
respectively from 1 to 15, 1 to 21 and 3 to 31. 

As far as the computation time is concerned, it can be noticed that all the CPU 
time ratio are greater than 1 which means that none of the compared algorithms 
is faster than the PLA. On average, the PLA is 4 to 5 times quicker than 
Newton-Raphson, 239 to 345 times quicker than BFGS algorithm, 354 to 395 
times quicker than Nelder-Mead, 27 to 31 times quicker than Levenberg- 
Marquardt, 33 to 39 times quicker than Trust region algorithms and 311 to 383 
times quicker than Interior point algorithms. This can be an important factor 
when larger values of r  are considered. 

6. Real-Data Analysis  

We apply the partial linear approximation algorithm to the data concerning the 
changes applied to road markings on a rural Nord Pas-de-Calais road (France) 
[31]. This road lay-out consisted in what is called “Italian marking”. The road 
markings were modified in order to make overtaking impossible in both 
directions at the same time. On a short distance, there are two lanes for the first 
direction (overtaking is then allowed in that direction) and there is only one for 
the other direction. Both directions are separated by a white line. A bit farther 
away, the system is inverted so that overtaking is possible in the opposite 
direction, and so on. The data recorded for eight years (four years before and 
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four years after) on the marked area are given by Table 7. 
Note that the number of fatal crashes (Fatal) decreased from four (in the 

before period) to one after the lay-out change. Indeed there were four accidents 
with at least one person killed in the period before the road works and one crash 
with at least one person killed in the period after. The number of slight crashes 
(no serious bodily injuries involved) recorded in the same period were more 
than halved. For the same lengths of time, on a portion of National Road 17 used 
as a control area, accident reports are the following. 

The values given in Table 8 are obtained by dividing, for each accident type, 
the number of crashes after the changes by the number of crashes before. On the 
whole, a decrease can be noted in comparison with the control area accident 
numbers between the 4-year period after the changes and the 4-year period 
before. All the algorithms can be applied to Table 7 and Table 8. Since the 
simulation results suggested that the partial linear approximation algorithm con- 
verges after a few iterations and remains steady, we only present the estimations 
related to the partial linear approximation algorithm (Table 9). 

Parameters 1β , 2β  and 3β  enable us to assess the risks for each type of 
accident on the test area in the eight years when the road markings’ effects are 
studied. Estimated values 1̂β , 2β̂  and 3β̂  are respectively 0.1525 , 0.1605  
and 0.6870 . These values suggest that in the eight years of road marking 
analysis, 15.25%  of the crashes recorded in the test area were fatal, 16.05%  
were serious and 68.70%  were slight as compared to the crashes recorded in 
the control area. 

The estimated mean efficiency index ( )θ̂  is 0.7054. It corresponds to an 
average decrease in proportion of ( )29.46% 1 0.7054 100%= − ×  of the whole  

 
Table 7. Crash data for experimental zone. 

Accident data before Accident data after Total 

Fatal Serious Slight Fatal Serious Slight  

4 4 16 1 1 7 33 

 
Table 8. Crash data for control zone. 

Fatal Serious Slight 

0.519 0.422 0.560 

 
Table 9. Pas-De-Calais’s crash data using partial linear approximation algorithm. 

Parameters Estimations Standard error 95%  Confidence interval 

   Lower bound Upper bound 

θ  (Mean efficiency 
index) 

0.7054 0.2760 0.1645 1.2463 

1β  (Fatal risk) 0.1525 0.0626 0.0298 0.2752 

2β  (Serious risk) 0.1605 0.0639 0.0353 0.2858 

3β  (Slight risk) 0.6870 0.0807 0.5287 0.8452 
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set of accidents in the test area as compared to the average trend in the control 
area. The mean effect significance for this type of lay-out may also be tested by 
using the confidence interval at the 95%  level associated to parameter θ . This 
confidence interval reveals a bracket of values whose lower (resp. upper) bound 
is strictly superior to 0 (resp. 1). Indeed, as [ ]1 0.1646,1.2463∈ , we cannot rule 
out the hypothesis 0 : 1H θ =  versus 1 : 1H θ ≠  with a type-1 error of 5% . 
Even if in the case studied here, we can notice a decrease in proportion of 

( )29.46% 1 0.7054 100%= − ×  in the average accident number in the test area, 
the above test shows that the mean efficiency index value is not significantly 
different from 1 to enable us to conclude that this type of road marking is 
efficient. In practice, an analysis according to periods, recorded data and control 
area should be carried out in order to get more appropriate conclusions. 

7. Concluding Remarks  

We propose in this paper, under assumptions, a principle of 2-block splitting of 
a constrained Maximum Likelihood (ML) system of equations linked to a 
parameter vector. We obtain analytical approximations of the components of the 
constrained ML estimator. The standard asymptotic errors are also obtained in 
closed-form. 

We then build an iterative algorithm by initializing the first component of the 
parameter vector without inverting (at each iteration) the information matrix 
nor the Hessian matrix. Our partial linear approximation algorithm cycles 
through the components of the parameter vector and updates one component at 
a time. It is very simple to program and the constraints are integrated easily. To 
implement our algorithm, we use a particular version of the multinomial model 
of N’Guessan et al. [18] used to estimate the average effect of a road safety 
measure and the different accident risks when road conditions are improved. 
We prove that the assumptions are all satisfied and we obtain simple expressions 
of the estimators and their asymptotic variance. Afterwards, we give a practical 
version of our algorithm. 

The numerical performance of the proposed algorithm is examined through a 
simulation study and compared to those of classical methods available in R and 
MATLAB software. The choice of these other methods is dictated not only by 
the fact that they are relevant and integrated in most statistical software but also 
by the fact that some need second order derivatives and others do not. The 
comparisons suggest that not only the partial linear approximation algorithm is 
competitive in statistical accuracy and computational speed with the best 
currently available algorithm, but also it is not disturbed by the initial guess. 

The link between the numerical performance of our algorithm and the 
particular model used in this paper seems to be a limitation to the com- 
petitiveness of our algorithm with regards to the other methods considered in 
this paper. However, this particular choice of model allows not only to show the 
feasibility of our algorithm but also represents a good basis for approaching, 
under additional conditions, more general models. 
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The simulations results obtained on the particular model considered in this 
paper suggest that our algorithm may be extended to other families of multi- 
nomial models (such as the model of N’Guessan et al. [18]). Drawing our 
inspiration from [32], we may also prove the asymptotic strong consistency of 
the estimator obtained from our algorithm. This perspective will give a wider 
interest to our algorithm in the context of a large-scale use. 
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8. Appendix  
8.1. Proof of Lemma 1  

Proof. Problem (3) is equivalent to maximizing function  

( ) ( ) ( ), Cφ λ φ λ φ= −                      (21) 

where λ  is the Lagrange multiplier. Any solution φ̂  must satisfy  

ˆ ˆ

0   and   0,  1, , .
j

j r
φ φ

θ β
 ∂ ∂  = = =    ∂ ∂   



                (22) 

From assumption 3, system (22) is equivalent to  

ˆ ˆ ˆ

ˆ0   and   0,    1, ,
j j

C j r
φ φ φ

λ
θ β β

   ∂ ∂ ∂  = − = =        ∂ ∂ ∂     

 

         (23) 

where ( )ˆ ˆλ λ φ= . After multiplication by ˆ
jβ  and summation on the index j , 

we get:  

1 1ˆ ˆ

ˆ ˆ ˆ 0.
r r

j j
j jj j

C

φ φ

β λ β
β β= =

   ∂ ∂
− =      ∂ ∂   

∑ ∑  

that is equivalent to  

ˆ
ˆ

ˆ ˆ ˆ, , 0.C
β

φ

β λ β
β

 ∂
− = ∂ 

  

We obtain (6) by substitution of λ̂  in (23).                         □ 

8.2. Proof of Theorem 2  

Proof. Under conditions 6, φΓ  is non singular and after some matrix mani- 
pulations, we get  

( ) ( )
( ) ( )

1 T 1
1

1 1 1

1 1 T 1
1

1 11

,
W J C R

R C J R

J B J B U B
J

B U J B J

φ φ φ φ
φ

φ φ φ φ

φ φ φ φ φ φ
φ

φ φ φ φ φ φτ

− −
−

− − −

− − −

−
− −−

 
Γ =  

−  
 −
 =
 −  

 

where 1

21
,nR a C

φ
φ φ β −

−−

Σ
=  is a scalar, ( )1

121 1 1 1 T 1
, 1nB a V V V

φ
φ φ φ φ φ φ φ φ−

−
− − − − −

Σ

 
= Σ − + Σ Σ 

 
  

is the inverse of Bφ , ( ) ( )1

1 22
, , 1n nJ B b a V

φ
φ φ φ φ φ −

− −

Σ
= + , is a scalar,  

( ) 1 1 1
,nJ aφ φ φ φτ

− − −= Σ , is a r r×  matrix and 1 1 T 1 1W J J C R C Jφ φ φ φ φ φ φ
− − − −= −  is the 

( ) ( )1 1r r+ × +  asymptotic variance-covariance matrix of φ . We show that  

( ) ( )
( ) ( )

T1,1 2,1
2,1 2, 2

W W
W

W W
φ φ

φ
φ φ

 
=  
  

 

where ( )1,1Wφ  is a scalar and ( )2, 2Wφ  is a r r×  matrix. The asymptotic 
variance of θ̂  is given by ( )1,1Wφ  and ( )2 ˆˆ jσ β  is obtained by the diagonal 
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elements of ( )2, 2Wφ . After straightforward calculation, we get  

( ) ( ) ( )
( )1

2 2
1 2 , ,1 2

22
1,1

1

n nb a
W J B R J B

V
φ

φ φ
φ φ φ φ φ φ φ

φ

ξ

−

−
− −−

Σ

= −
+

 

and  

( ) ( )1

21 1 1 T 1
,2, 2 nW a C C C

φ
φ φ φ β φ β β φ−

−− − − −

Σ
= Σ − Σ Σ  

where T 1V Cφ φ φ βξ −= Σ . The results of Theorem 2 follow from a direct calculation.  
□ 

8.3. Proof of Corollary 2  

Proof. Taking the second derivatives of the negative of   with respect to the  

components of φ  and λ , we show that: 
2 2

2 0
λ θλ

∂ ∂
= =
∂ ∂∂

  , 
2

1
jλ β

∂
= −

∂ ∂
 ,  

( )( )
( )( )

22
2.

2 2 2
1

n E Zy

E Zθ θ θ

∂
= − +

∂ +

 , 
( )( )

2

2
1

j

j

nz

E Zθ β θ

∂
= −

∂ ∂ +

  and  

( )( ) ( )( )

( )( ) ( )( )

2 2 2
. 2.
2 2 2

2

2
2.

2 2

if    
1

if    
1

j j j

j

j k j k j k

y n z y z
j k

E Z E Z

n z z y z z
j k

E Z E Z

θ
β θ

β β θ

θ


− + − =

+∂ = 
∂ ∂  − ≠

+

  

for j , 1, ,k r=  . Now, setting ( ). j jE y nβ= , ( ) ( ) ( )( )2. 1E y n E Z E Zθ θ= +  
and ( )( )1n E Zγ θ= + , we obtain the components of matrix Jφ  as follows  

( )
( ) ( ) ( )

2 2 2 22

, , ,,  ,   and ,j j j k
j jj jk

j

z z z zE Z nU B B j k
n n nE Z nE Zφ φ φ φ

γ γθ θγγ
τ γ

θ γβ
 

= = = + = ≠  
 

 

where , jUφ  (resp. , jjBφ  and , jkBφ ) are the components of vector Uφ  (resp. 
the elements of matrix Bφ ). Using the last expressions of the elements of Uφ  
and Bφ  and after straightforward calculation, we show that  

( ) 1 1 T12, 2W
nφ φγ ββ− −= Σ −  and then, we deduce the expression of ( )2 ˆˆ jσ β   

given by corollary 2. In the same way, we obtain  

( ) ( )
2

21,1 nW
nt E Zφ

φ

θ θ
γ

= −  

where ( ) ( ) ( )2 2 2 2ˆt n E Z n E Z E Zφ θγ  = +    . Using the last expression of tφ , 
we get the expression of ( )2 ˆσ̂ θ .                                     □ 
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