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Abstract 
This work discusses properties of a recently published weak interactions 
theory which is derived from a Lagrangian density w . This theory depends 
on the experimentally confirmed massive neutrino. The interaction which is 
carried by an appropriate mediating field is consistent with the Fermi coupl-
ing constant of weak interactions FG . Its results prove the existence of a vec-
tor term V  and an axial vector term A  in a description of weak interac-
tions processes and of their associated parity nonconservation. An analysis of 
the weak interactions Lagrangian density w  shows similarity and differ-
ences between the theoretical structure of electrodynamics and that of weak 
interactions. 
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1. Introduction 

This work is dedicated to some fundamental properties of weak interactions. An 
important part of an examination of the validity of a given physical theory is the 
search for vital elements that are not included in it. For example, every theory of 
an electrically charged particle should have an expression for a divergenceless 
4-current , 0jµµ = , which is known by the name of the continuity equation. 
Indeed, a divergenceless 4-current is the differential form of charge conservation 
(see [1], p. 76). Charge conservation has a solid experimental support and it is a 
crucial feature of Maxwellian electrodynamics. Since the continuity equation 
represents charge conservation, one concludes that a quantum theory is un- 
acceptable if it has no consistent expression for the continuity equation of its 
electrically charged particles. It turns out that a vital element of the Standard 
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Model electroweak theory is the existence of a pair of electrically charged 
elementary particles, called W +  and W − , respectively. As a matter of fact, the 
electroweak theory has no consistent expression for a divergenceless 4-current of 
its , W W+ −  particles. For more details of this issue, see Section 2 of [2] and 
references therein. This is just one reason justifying the claim that the electro- 
weak theory is unacceptable and that weak interactions need an alternative 
theory. 

For this end, an interaction term of the Lagrangian density of a weakly inter- 
acting Dirac particle has been constructed [2]. The Lagrangian density obtained 
therein describes weak interactions between two spin-1 2  Dirac particles which 
are mediated by an appropriate weak field. The theory abides by the dimensions 
of the Fermi coupling constant FG  and by its universality. It is proved in [2] 
that this interaction term is consistent with the vector V  and the axial-vector 
A , which are two attributes of weak interactions and with their associated parity 

nonconservation processes. The present work contains a further investigation of 
the system and proves new properties of the equations of weakly interacting 
particles and of their mediating fields. 

Units where 1c= =  are used. Greek indices run from 0 to 3 and Latin 
indices run from 1 to 3. The diagonal metric is ( )1, 1, 1, 1− − − . Square brackets 

[ ]  denote the dimension of the enclosed expression. In a system of units where 
1c= =  there is just one dimension, and the dimension of length, denoted by 

[ ]L , is used. In particular, energy and momentum take the dimension 1L−    
and the dimension of a dipole is [ ]L . Throughout this work the calligraphic 
letters  ,  ,   and   denote weak interactions quantities that are 
analogous to the corresponding electromagnetic quantities where F µν  denotes 
the electromagnetic field tensor, B , E  denote the magnetic and the electric 
fields, respectively and Aµ  is the 4-potential of the fields. The second section 
shows how the weak fields equations of motion can be derived from a Lagran- 
gian density. The third section examines solutions of the weak fields equations of 
motion. Some properties of the equations of motion of weakly interacting Dirac 
particles are derived in the fourth section. A discussion of the results is presented 
in the fifth section. It shows similarity and differences between the weak inter- 
action theory which is discussed below and quantum electrodynamics (QED) of 
an electrically charged Dirac particle. The last section contains a summary of the 
results. 

2. The Weak Fields Equations of Motion 

The neutrino is regarded here as a chargeless massive Dirac particle that carries a 
weak interaction elementary axial dipole. The weak fields of this dipole are 
analogous to the electromagnetic fields of an elementary axial dipole. Hence, the 
standard form of the Lagrangian density of the system is (see [2])  

( ) 1 .
16πw i m dµ µν µν

µ µν µνψ γ ψ ψσ ψ= ∂ − − +              (1) 
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Here µν  is a 4 4×  antisymmetric tensor of the weak fields, d  denotes the 
strength of an elementary weak dipole, and µνσ  is defined in terms of the 
Dirac γ  matrices (see [3] p. 21)  

( ).
2
i

µν µ ν ν µσ γ γ γ γ≡ −                      (2) 

The first term of (1) describes a free Dirac particle (see [4], p. 54). The second 
term is that of the free weak fields, whose structure is analogous to that of free 
electromagnetic fields (see [4], p. 70). The third term represents the dipole-fields 
weak interaction (see [2], Equation (11)). 

An application of the variational principle to the mediating fields µν  of (1) 
yields their equations of motion. The analysis of the electromagnetic fields (see 
[1]) indicates how to accomplish this task. Like the case of the electromagnetic 
fields, the weak fields µν  are the 4-curl of a 4-potential µ  (see [1], p. 65)  

, , .µν ν µ µ ν≡ −                          (3) 

Following the analysis of [1] (see pp. 70-71), one obtains the homogeneous 
equations  

*
, 0.v
µν =                            (4) 

Here *µν  is the dual tensor of µν   
* ,αβ
µν µναβ≡                            (5) 

and µναβ  is the completely antisymmetric unit tensor of the fourth rank. The 
equations (4) are derived from the mathematical structure of (3). They corres- 
pond to the homogeneous pair of Maxwell equations and are independent of the 
Lagrangian density (1) (see [1], pp. 70-71). 

Another pair of equations is derived from the Lagrangian density (1). The 
general form of the Euler-Lagrange equations is (see [4], p. 15)  

( )
0.

r rx xµ µϕ ϕ
∂ ∂ ∂

− =
∂ ∂ ∂ ∂ ∂

 
                   (6) 

Here , 1, ,r r Nϕ =   denotes the rth independent fields of the system and the 
Equation (6) are obtained “by independently varying each field, ( )r xδϕ ” (see 
[4], p. 15). It is explained in the following lines how an application of (6) to the 
weak fields of (1) yields the following equations  

, 0.µν
ν =                            (7) 

This is the second pair of the equations of motion of the weak fields. 
These equations are obtained from a procedure that is analogous to the 

derivation of the inhomogeneous pair of Maxwell equations (see [1], pp. 78-79). 
However, the interaction term of the weak Lagrangian density (the last term of 
(1)) differs from the standard form of the interaction term of the electro- 
magnetic fields (see [4], p. 84)  

QED
int .e Aµ

µψγ ψ= −                        (8) 

It follows that the electromagnetic interaction term depends on the compo- 
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nents of the 4-potential Aµ  which are regarded as the generalized coordinates, 
whereas the weak interaction term depends on the derivatives of Aµ , namely 
the weak fields µν  of (3). In the electromagnetic case, the variation of the 
fields Aµ  yields the inhomogeneous term of Maxwell equations (see [1], p. 
79)  

, 4π ,F eµν µ
ν ψγ ψ= −                         (9) 

where e µψγ ψ  is the quantum expression for the 4-current jµ  of a Dirac 
particle (see [3], pp. 23, 24). 

By contrast, the weak interaction term of (1) is independent of the function 
Aµ . Hence, the Euler-Lagrange Equations (6) and the linear dependence of the 

weak interaction term on the fields’ derivatives µν  of (3) yield a null value. 
Hence, the second pair of the equations of motion of the weak fields (7) is ho- 
mogeneous  

, 0.µν
ν =                            (10) 

This analysis proves that the Maxwellian-like equations of motion of the weak 
fields, which are used in [2], can be consistently derived from an appropriate 
Lagrangian density. 

3. Solutions of the Weak Fields Equations of Motion 

It is proved in Section 2 that the equations of motion of the weak fields take the 
form of the four homogeneous Maxwell equations. Therefore, the vast literature 
on mathematical properties of electromagnetic fields is useful for finding solu- 
tions to the weak fields. 

The simplest case is that of the weak fields which are calculated in the rest 
frame of a Dirac particle, say a neutrino. Here we have a motionless elementary 
pointlike axial dipole located at the origin of coordinates. As is well known, at 
far enough regions this field takes the form of the magnetic field of a localized 
system of stationary currents (see [1], pp. 111-113 or [5], pp. 180-182). Let d  
denote moment of the system’s magnetic dipole. At a far enough point x , the 
required 3-dimensional vector potential is  

( ) 3

×
=

d xA x
x

                        (11) 

and its magnetic field is  

( ) ( ) 2

5

3
.

⋅ −
=

x x d x d
B x

x
                  (12) 

Having this information, one can apply a mathematical approach and examine 
a sequence of localized systems of stationary electric currents that have the same 
magnetic moment d  and their spatial size tends to zero. Thus, concerning the 
fields of a motionless pointlike axial dipole of a Dirac particle, one finds that the 
validity of the 4-potential (11) and of its fields (12) holds for any given point 
near the origin. This argument proves that (11) and (12) hold for the entire 
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3-dimensional space outside the origin. 
The structure of the weak 4-potential (11) differs from that of the electromag- 

netic case of a charge e . Thus, in the electromagnetic case, the 4-potential of an 
electric charge e  is given by the Lienard-Wiechert formula which takes the 
following 4-vector form (see [1], p. 174)  

.
v

A e
R v

µ
µ µ

µ

=                        (13) 

Here Rµ  denotes the distance from the space-time point where the 4-potential 
is measured to the retarded location of the charge and vµ  is the retarded 
4-velocity of the charge. 

Let us examine the fields at a large distance from the location of the particles. 
In the electromagnetic case the 4-potential (13) decreases like 1 R  whereas in 
the weak case (11) it decreases like 21 R . The corresponding fields are obtained 
from the 4-curl (3) of the 4-potential. Assume that a given function ( ),f t r  
decreases at a large distance like 1 nr . Then, its derivative with respect to a 
spatial coordinate decreases like 11 nr +  whereas its derivative with respect to 
time decreases like 1 nr . It follows that derivatives with respect to time are 
dominant at large distance. Thus, the 4-potential of the electromagnetic fields 
(13) proves that its time derivative decreases like 1 r  whereas the weak 4- 
potential (11) as well as its time-derivative decrease like 21 r . These properties 
are useful for finding the radiation components of the fields. 

The dimension of the given quantities helps us find the structure of 
expressions that represent energy radiation. Energy has the dimension 1L−     
and density has the dimension 3L−   . Hence, energy density has the dimension 

4L−   . Now, the electromagnetic fields and the weak fields have the dimension 
2L−   . For this reason an expression for energy density must depend quadra-  

tically on the fields. (The energy-momentum tensor of electromagnetic fields 
represents energy-momentum density and current. And indeed, its form is a 
product of the fields (see [1], p. 87 or [5], p. 605)). Furthermore, radiation 
intensity obeys the inverse square law, which means that it decreases like 21 r . 
Therefore, electromagnetic fields which have a component that decreases like 
1 r  may emit radiation, because the product of such fields decreases like 21 r . 
On the other hand, weak fields, whose most significant term decreases like 21 r  
cannot emit radiation. 

This result indicates that: 
a system of weak dipoles does not emit radiation. 
The foregoing discussion holds for a motionless weak dipole. Hence, in order 

to prove this claim one has to examine the general case of fields of an arbitrarily 
moving weak dipole. The fact that the weak fields satisfy the four homogeneous 
Maxwell equations is useful for this task. Thus, the following proof uses 
mathematical information which is found in textbooks that discuss Maxwellian 
electrodynamics. In particular, the validity of statements used below for the 
proof is substantiated merely by an appropriate reference to specific pages of 
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textbooks. 
Let us define the origin of coordinates at the instantaneous position of a given 

Dirac particle and use spherical polar coordinates where the z-axis is parallel to 
the instantaneous direction of the particle’s spin. The homogeneous Maxwell 
equations prove that each component of the 4-potentials satisfies the free wave 
equation (see [1], pp. 171-172, Equations (62.2) and (62.6))  

2

2 0.
A

A
t

µ
µ

∂
∆ − =

∂
                      (14) 

In spherical polar coordinates one finds the following expression for the 
Laplacian  

2 2
2 2

1 1 ,r
r rr r
∂ ∂ ∆ ≡ − ∂ ∂ 

l                   (15) 

where 2l  is the square of the angular momentum operator (see [6], pp. 107- 
108; [7], p. 15). The following analysis determines the required properties of 
solutions to the wave Equation (14). 

Let us examine the solution at a region of space which is close to the position 
of the particle. As stated in [1] (see near the bottom of p. 172), at this region “the 
derivatives with respect to the coordinates increase more rapidly than its time 
derivative.” Therefore, near the origin of coordinates the solution of the wave 
equation (14) is determined by the spatial derivatives. It follows that at this 
region the solution takes the form of the static dipole (11) and it varies like 2r− . 
The Laplacian operator (15) of the wave Equation (14) is homogeneous with 
respect to r  and its order is 2r−  whereas the time derivative operator of (14) 
is homogeneous with respect to r  and its order is 0r . It follows that the radial 
dependence of a solution to the wave Equation (14) may have terms that behave 
like Nr− , where 2N ≥ . 

As stated above, energy density depends quadratically on the fields. Therefore, 
the radial dependence of the weak field, which decreases like Nr− , where 

2N ≥ , means that at a large distance the weak fields’ energy density decreases 
like 4r− , or even faster. This result proves that weak fields have no radiation 
term, because radiation obeys the inverse square law. 

It is interesting to compare the radiationless weak axial dipole fields with the 
magnetic dipole radiation of electrodynamics. Indeed, in the case of weak field, 
the primary expression of the 4-potential (11) decreases like 21 r . Hence, as 
shown above, its fields at far enough regions cannot have a radiation component. 
On the other hand, the magnetic dipole radiation of electrodynamics is obtained 
from a power series expansion of the primary expression for the retard 4- 
potential (see [1], pp. 203-205 or [5], pp. 397-398). The electromagnetic 4- 
potential (13) decreases like 1 r . Therefore, the calculation shows that its power 
series expansion also contains terms that decrease like 1 r . In the general case, 
these terms determine the magnetic dipole contribution to electromagnetic ra- 
diation. 
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4. Equations of Motion of Weakly Interacting Particles 

The Lagrangian density (1) of the system also determines the equations of mo- 
tion of a weakly interacting Dirac particle. For this end one has to vary only the 
fields that describe this particle (see e.g. [4], p. 84). The second term of the 
Lagrangian density (1) depends only on the fields that mediate weak interactions. 
Therefore, it is ignored in the calculation of the particle’s equations of motion. 

The interaction term of the Lagrangian density of a weakly interacting particle 
(1) is  

int .d µν
µνψσ ψ=                       (16) 

The operator d µν
µνσ   of (16) is analogous to the operator of the electro- 

magnetic interaction of the electron e Aµ
µγ− . Indeed, each of them is a Lorentz 

scalar whose dimension is 1L−   . In the electromagnetic case, quantum pro- 
perties of the electron can be examined in circumstances that can be divided into 
two different categories—bound states and processes where the electron is free. 

A bound state of the electron has a well defined energy and in the Schroe- 
dinger picture the time coordinate of its wave function appears only in the factor 

( )exp iEt− , where E  denotes the energy of the given state (see [6], p. 28). Con- 
sidering a specific energy state nψ , one finds that the electron’s energy is an 
eigenvalue of the Hamiltonian and it is derived from the Dirac equation (see e.g. 
[6], p. 28 or [3], p. 52)  

† 3 3d d ,n n n n D nE i r H r
t

ψ ψ ψ ψ∂
= =

∂∫ ∫ †              (17) 

where  
† 0ψ γ ψ≡                         (18) 

(see [3], p. 24) and DH  denotes the Dirac Hamiltonian. Here †
nψ  is the 

complex conjugate function of nψ  and both are the Hamiltonian’s eigenfunc- 
tions which describe the same bound state of the electron. 

In a scattering process the state fψ  of the outgoing electron differs from its 
incoming state iψ . The entire process is obtained from the time-integral of the 
intensity of the transition. It is described by the following matrix element (see 
[8], p. 186)  

† 3d d .if f D iM H r tψ ψ= ∫                    (19) 

(This time integral is unnecessarily omitted from Equation (12) of [2]). Evi- 
dently, a free electron does not change its state. Therefore, only the interaction 
term of DH  is used in actual calculations of (19). 

Let us turn to the neutrino’s weak interactions. Experiment does not show 
bound states of a neutrino. Therefore, only scattering processes are relevant to 
this comparison with electrodynamics. Like in the case of electron scattering 
(19), one must define the form of the Hamiltonian’s interaction term which is 
derived from the Lagrangian term (16). The function †ψ  is used in the Ha- 
miltonian and the additional 0γ  of (18) changes dramatically the tensorial 
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structure of the weak interaction term of (16). Detailed calculations (see [2], 
Section 3) yield the following expression of the Hamiltonian’s weak interactions 
term  

( )† † 0 52 .i i
int i iH d d iµν

µνψ ψ ψ γ σ ψ ψ γ γ γ ψ= = −  †        (20) 

(The pure imaginary number i  should be distinguished from the running 
index i .) Here , i i   are the electric-like and magnetic-like 3-vectors of the 
corresponding entries of the antisymmetric tensor of the weak field (see [1], p. 
65)  

0
0

.
0

0

x y z

x z y

y z x

z y x

µν

− − − 
 − =  −
  − 

  
  


  
  

                (21) 

Expression (20) which describes weak interactions comprises two terms. The 

iiγ  of the first term are three Hermitian matrices which are entries of a 3-vector 
and the three 5

iγ γ  of the second term are three Hermitian matrices which are 
entries of an axial 3-vector. They respectively correspond to the vector V  and 
the axial vector A  of weak interactions. In (20) the vector iiγ  and the axial 
vector 5

iγ γ  are contracted with the appropriate weak fields , i i   of the 
other particle. Here the role of the fields of the other particle is analogous to the 
well-known example of the hydrogen atom, where the electron interacts with the 

0A  static potential of the proton. Evidently, during the scattering process the 
weak fields , i i   as well as the entries of the spinors of the two interacting 
Dirac particles are functions of the space-time coordinates. In order to calculate 
a specific neutrino scattering process one must substitute the weak interaction 
term of (20) into the formula of the scattering process (19) and carry out the 
integrals over the space-time coordinates. These integrals yield appropriate 
coefficients of the 3-vector iiγ  and of the axial 3-vector 5

iγ γ  which operate 
on the Dirac function ψ . 

5. Discussion 

The weak interaction theory which is discussed in this work is derived from an 
application of the variational principle to the Lagrangian density (1). The results 
show that the theoretical basis of weak interactions is similar to that of QED of 
an electrically charged Dirac particle. QED of such a particle relies on a 
well-known Lagrangian density QED  (see [4], p. 84). Let us write its standard 
form together with the weak interaction Lagrangian density w  of (1), in order 
to facilitate a comparison between them.  

( )QED
1

16π
i m F F e Aµ µν µ

µ µν µψ γ ψ ψγ ψ= ∂ − − −                 (22) 

( ) 1 .
16πw i m dµ µν µν

µ µν µνψ γ ψ ψσ ψ= ∂ − − +                   (1) 
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The QED Lagrangian density QED  of (22) comprises three terms: The first 
term, which contains the quantities enclosed in parentheses, describes a free 
Dirac particle. The second term describes free electromagnetic fields. The last 
term describes the interaction between an electrically charged Dirac particle and 
electromagnetic fields. Similarly, the Lagrangian density w  of (1) is used in 
this work as a basis for the weak interaction theory. Like QED  of (22), it 
comprises three analogous terms: The first term is the same as its counterpart of 
(22) and it describes a free Dirac particle. The second term which describes free 
weak fields, takes the same mathematical form as that of the free electromagnetic 
fields of (22). The last term describes the weak interactions between a Dirac 
particle and the weak fields. 

The form of the electromagnetic interaction term of a Dirac particle  
e Aµ

µψγ ψ−  abides by the following experimentally confirmed properties of 
Maxwellian electrodynamics: the dimensionless of the electric charge 2 0e L   =     
and its universality. Therefore, its operator e Aµ

µγ  is a Lorentz scalar whose 
dimension is 1L−    and the dimension of e Aµ

µψγ ψ−  is 4L−   . The other 
terms of (22) also have these properties. Indeed, having the same dimension and 
the same form of Lorentz transformation is a fundamental requirement that 
should be satisfied by any physical expression that contains several terms. 
Analogously, the weak interaction term of (1) abides by the following experi- 
mentally confirmed properties of weak interactions: the dimension of the Fermi 
constant [ ] 2

FG L =    and its universality. On this basis it is proved in [2] that 
weak interactions can be described as an interaction between axial dipoles of two 
Dirac particles. Here the dimension of each dipole is [ ]L  and the coupling 
constant that describes the interaction strength has the dimension 2L   , which 
is the dimension of the Fermi constant FG . For this reason, also the weak 
interaction operator of (1) d µν

µνσ   is a Lorentz scalar whose dimension is 
1L−   . Indeed, the dimension of the dipole strength d  is [ ]L  and that of the 

weak fields µν  is 2L−   . 
The analysis presented in [2] proves the following difference between electro- 

magnetic fields and weak fields: as is well known, the electromagnetic fields 
satisfy two homogeneous Maxwell equations and two inhomogeneous Maxwell 
equations whereas in the case of weak fields the equations of motion take the 
form of the four homogeneous Maxwell equations. 

The analysis of Section 3 yields the mathematical structure of the weak 
interactions fields. The following argument explains the similarity and the 
differences between electromagnetic fields and weak fields. Maxwellian electro- 
dynamics contains the two inhomogeneous Equations (9). As explained in the 
Introduction section of [2], a field function of a given quantum field theory takes 
the form ( )xψ , where x  denotes the four space-time coordinates. This field 
function describes a pointlike particle. 

Let us use these properties for an examination of a quantum system that 
comprises a finite number of electrically charged Dirac particles and for a 
comparison between it and a corresponding system of weakly interacting Dirac 
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particles. For every Dirac particle define a small sphere whose center is at the 
particle’s location and consider the entire three dimensional space S ′  outside 
these spheres. Evidently, the 4-current of the charges vanishes at S ′ . Therefore, 
Maxwell equations at S ′  take the form of four homogeneous equations. It 
follows that at S ′  Maxwell equations takes the same form as the equation of 
motion of the mediating fields of weak interactions which is discussed in this 
work. This result means that at S ′  the electromagnetic 4-potentials and the 
weak 4-potentials solve the same wave equation (14). Specific solutions of these 
equations depend on the boundary values of the fields. In both cases the 
boundary values vanish at infinity. It follows that the difference between electro- 
magnetic fields and weak fields stem from the different boundary values on the 
small spheres that enclose the Dirac particles of the given system. In the elec- 
tromagnetic case the boundary values are independent of the angular coor- 
dinates and the solution fits the Coulomb formula where the potential decreases 
like 1 R . On the other hand, in the weak interaction case the boundary values 
of the 4-potentials fit the cross product ×d x  of (11) which depends on the 
angular coordinates. It means that the solution fits the axial dipole formula (11) 
which decreases like 21 R . 

Maxwellian electrodynamics and the weak interaction theory discussed here 
are related to two different attributes of a Dirac particle. The electric charge is 
related to the particle’s density, which is the 0-component of the 4-current 
e µψγ ψ . The weak interaction theory discussed herein is related to the spin of a 
Dirac particle and its interaction term d µν

µνψσ ψ  yields fields of an axial 
dipole. It turns out that the associated Hamiltonian which is derived from this 
weak interactions Lagrangian density comprises two terms, a vector V  and an 
axial vector A . This result fits weak interactions data where parity is not 
conserved. 

6. Concluding Remarks 

This work shows that the dynamics of weak interactions can be described as a 
dipole-dipole interaction between two Dirac particles. This theory relies on the 
experimentally confirmed finite mass of the neutrino [9] [10]. The equations of 
motion of its mediating fields take the form of four homogeneous Maxwell 
equations. 

The basis of this weak interaction theory is the Lagrangian density (1) which is 
similar to the QED Lagrangian density (22) (see Section 5). This similarity indi- 
cates that the weak interaction theory described herein follows a successful 
route. The structure of this theory is consistent with the form of the Fermi weak 
interaction coupling constant FG . The results prove parity violation in weak 
interactions processes. It is well known that this outcome is consistent with 
experimental data (see [8] pp. 214-215 and 220-222). This is probably the first 
time that parity violation of weak interactions processes is derived from general 
considerations which rely on the variational principle. Another result is derived 
in Section 3, which proves that the weak interactions mediating fields have no 
radiation term. 
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