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Abstract 
This paper is a short introduction to the common type of damages in compo-
site structures and different ways of their inspection. Due to the high increase 
of interest in composite materials in past decades and their usage in different 
structures, there is a need to discuss the damage types in them along with dif-
ferent ways of inspection. This paper provides a short review of these facts in 
order to fill out the gap that there is in the literature. Major emphasis is placed 
on the damage types and their mechanisms and inspection methods, mostly 
focused on wave propagation based structural health monitoring (SHM). 
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1. Introduction 

Composite materials are increasingly used in many industries including aero-
space, automotive, electrical industries, etc. Composites can be defined as two or 
more materials combined to form a single material. The increasing interest in 
composites is due to their significant advantages over metals, such as light weight, 
corrosion resistance, design flexibility, high strength, better fatigue life, etc. Com-
posites also show an advantage over metal in low-temperature refrigeration sys-
tems [1] [2] and even in cryogenic environment. There are a few concerns which 
restrict the wider usage of composites: higher cost, complex fabrication, damage 
inspection, complex damage mechanism, etc. In general, composites can be ca-
tegorized as fiber-reinforced and particle-reinforced [3]. Here the discussion is 
about fiber-reinforced composites. 

As mentioned, composites have been used widely by different industries and 
more specifically in aerospace industries in past decades. Figure 1 has shown the 
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increasing usage rate of composites in past four decades in aerospace industry 
[4], including the infrastructural installations which can affect the behavior of 
the electrical system by inducing harmonics as they role in insulations [5] or by 
affecting the internal electrical grid when used in the generators [6]. It is clear 
that the percentage of composites in aircraft designs is increased to more than 
50%. As an example, the extensive application of composites to the manufactur-
ing and design of the A350-XWB, contributes to an almost 25% reduction in fu-
els consumption [7]. 

The greatest advantage of using composite materials is their ability to be tai-
lored to design requirements. The structure can be made stiffer in one direction 
and more flexible in another. This implies that the structure can be designed to 
be exactly as strong and stiff as it needs to be, leading to improved structural 
weight, aero elasticity and ultimately fuel efficiency. Figure 2 illustrates the ma-
terial distribution on the Boeing 787 [8]. 

In this paper, the common damage types in composites and different methods 
to inspect them are discussed shortly. In the next section, the damage mechanisms  

 

 
Figure 1. Increase in the use of composites over the last four decades [4]. 

 

 
Figure 2. Material distribution on the Boeing 787 [8]. 
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and different types of them in composites are discussed with supporting pic-
tures. The last section provides the information about different methods for da- 
mage detection. 

2. Damage Types in Composites 

Damage mechanisms in composites are not as well understood as metals. De-
fects can be happen in composite materials and structures during the manufac-
turing process or in the service life of the structure/part/component.  

The manufacturing process has a wide range of potential for causing defects in 
composites. The most common one is porosity which is the presence of a void in 
the matrix. The porosity can be caused by incorrect or non-optimal curing para- 
meters (Figure 3) [9]. Inclusion of foreign bodies in matrix is another defect 
which happens during the manufacturing process which ranges from backing film 
to a greasy finger marks. 

In service defects in composite structures, mostly happens due to impact da- 
mages. The most common defect due to the impact is delamination. In a lamina- 
ted composite, delamination is separated layers, to form a mica-like structure 
with a significant loss in mechanical properties (Figure 4) [10]. Delamination in 
curved composite beams under different static loadings has been investigated ex- 
tensively by Khoshravan et al. [11]. Matrix crack, fiber-matrix debonding, and 
fiber breakage also happen during the impact or other kind of severe loadings in 
composites. Figure 5 illustrates these phenomena in composite structures [12] 
[13] [14]. 

Other than impact, fatigue and lightning strikes can cause severe damages to 
composite structures and significantly reduce their mechanical properties. It is 
worth to mention that ply orientation of composite laminates has a significant 
role in stress concentration, fatigue life and mechanical properties of laminates 
[15] [16] [17] [18]. 

 

 
Figure 3. Porosity in a laminated composite [9]. 
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Figure 4. Delamination of CFRP 
under compression load [10]. 

 

 
(a)                                           (b) 

 
(c) 

Figure 5. (a) Matrix crack; (b) Fiber breakage; and (c) Fiber-matrix debond while “a” shows 
the matrix-fiber debonding and “b” points to the matrix microcracks [12] [13] [14]. 

100μm
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The growing usage of composite material in the structure of modern aircrafts 
has introduced new challenges. Aircrafts are vulnerable to the lightning strike 
that introduces direct and indirect effects in the skin of an aircraft. Damage de-
velopment in a composite sample caused by flow of simulated lightning strike 
has been investigated by Gharghabi et al. [19] [20]. They have concluded that the 
flow of current impulse could induce irreversible damage and cause material 
property that might not be observable by simply inspecting the composite. This 
physical phenomenon has also, some practical implications that can be utilized 
in various high speed applications [21]. 

3. Damage Detection in Composites 

In last couple of decades, lots of structural health monitoring (SHM) methods 
have been developed in order to detect the presence of the damage and predict 
its location [22] [23] [24] [25]. Guided wave base techniques are the most popu-
lar ones. The popularity comes from the sensitivity to small size damages, large 
detection area and low attenuation. Among the guided waves, Lamb waves are 
the most popular ones. Lamb waves are elastic waves between two surfaces. Ref-
lection and scattering from defects in the structures is a well-known fact for 
Lamb waves and it can be used to localize damage in structure. Methods that are 
discussed here are all Lamb wave based SHM methods. Generally, a piezoelectric 
is used as an actuator to introduce Lamb wave to the structure. 

Wave filed imaging is an SHM method which has been used widely by re-
searchers [26] [27] [28] [29]. This method is the most suitable method for com-
plex structures. In this method, the whole part is divided to small pixels and a 
sensor is attached to each pixel. The acquired signal at each pixel is used to re-
construct a picture of the structure. In order to acquire a high resolution picture 
of the structure, a high number of sensors must be attached to the structure 
which means that it increase the need of instrumentation and also it make it very 
time consuming. 

Another method which has been introduced by Zhao et al. [30] is RAPID. 
RAPID is a reconstruction algorithm for the probabilistic inspection of defects. 
They tested a wing panel to find the damage location. Their results indicate that 
RAPID is capable of detecting the presence of the damage and find its location. 

Cross-correlation method introduced by Veidt [31] is a method which uses 
the cross-correlation as the signal processing part. They used the envelopes of 
residual signal and excitation signal to perform the cross-correlation and calcu-
late the damage index (DI) for each point on the plate. The highest DI shows the 
damage location. 

Delay-and-sum method is based on the residual signal which is calculated by 
subtracting the baseline data from the current state data [32]. They used the Hil- 
bert transform in order to find the wave travel time from actuator to the damage 
and scatter to sensors. Their method shows a high precision in localizing the da- 
mage. 

Windowed Energy Arrival Method (WEAM) is first introduced by Sharif Kho-
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daei et al. [33]. Their work is based on the delay-and-sum method with few mo- 
difications. They applied a weight with a lognormal distribution on the results in 
order to avoid the boundary reflections and improve the damage detection re-
sults. 

All of the listed SHM methods need a baseline data to be compared to real 
time data from sensors. Most reliable method to obtain the baseline data is expe-
rimental tests. Testing the structures in every single condition of their service life 
is an impossible job. Most researchers employ the FEM in order to obtain the 
baseline data [34] [35], but the FEM are computationally very expensive [36] 
[37] [38]. Furthermore, FEM equations are invalid in discontinuities like cracks 
tips. One alternative is to use meshless approaches such as peridynamics. Yag-
hoobi and Chorzepa [39] [40] introduced a framework based on peridynamics to 
model fiber reinforcement in cementitious composites. Furthermore, unguided 
and complex fracture behavior of fiber reinforced composite beams is investi-
gated using micropolar peridynamics by Yaghoobi and Chorzepa [41]. Another 
alternative way is using spectral finite elements method (SFEM). SFEM was po-
pularized first by Doyle [42] using Fourier based SFEM (FSFEM) and proved to 
be computationally very efficient compared to FEM. Later on other researchers 
introduced new methods such as wavelet spectral finite element (WSFE) [43]. 
The major drawback of SFEM is in the modeling of realistic structures and com-
plex features. 

Khalili et al. [44] [45] introduced WSFE-based UEL for 1-D composite beams 
in order to overcome the drawback of WSFE in modeling complex features. They 
improved their methods to simulate delamination in composite beams [46]. Later 
on, they developed WSFE-based UEL to simulate 2-D composite structures [47] 
[48]. Their works show that WSFE-based UEL has the computational efficiency of 
WSFE along with the ability of modeling realistic structures. These newly devel-
oped elements have a very high potential to be employed to make the baseline 
data for SHM purposes as it has been proved in their latest paper [49]. 

In addition to the previous methods, the frequency response functions cou- 
pled with machine learning techniques are of great importance in damage detec-
tion of composites and other complex structures [50]. In [51] [52] [53] [54], an 
Euler-Bernoulli model is developed to mimic the behavior of a damaged compo-
site where various types of delamination are inspected by implanting an artificial 
immune based approach. 

4. Conclusion 

There is an increasing interest in composites in different industries due to their 
advantages to other engineering materials. However, because the damage mechan-
ism in composites is not as well understood as metals; there is a resistance as well. 
In this paper, different damages and their inspection methods were discussed. 
Porosity, delamination, matrix crack, fiber breakage and fiber-matrix debond are 
among the most common damages in composites. These damages can be happen 
during the life time due to severe loading or because of manufacturing process. 
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Due to the anisotropic nature of composites, detecting the possible damages has 
its own difficulties which have been discussed in the text. 
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