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Abstract 
The paper presents an analytical method of identifying the curvature of the 
turnout diverging track consisting of sections of varying curvature. Both li-
near and nonlinear (polynomial) curvatures of the turnout diverging track are 
identified and evaluated in the paper. The presented method is a universal 
one; it enables to assume curvature values at the beginning and end point of 
the geometrical layout of the turnout. The results of dynamics analysis show 
that widely used in railway practice, clothoid sections with nonzero curvatures 
at the beginning and end points of the turnout lead to increased dynamic in-
teractions in the track-vehicle system. The turnout with nonlinear curvature 
reaching zero values at the extreme points of the geometrical layout is indi-
cated in the paper as the most favourable, taking into account dynamic inte-
ractions occurring in the track-vehicle system. 
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1. Introduction 

Typical, used since the beginning of railway engineering, geometrical layout of 
the turnout diverging track consists of a single circular arc without transition 
curves. It introduces sudden, abrupt changes of the horizontal curvature of the 
layout at the beginning and end of the turnout diverging track, which increases 
dynamic interactions in the track-vehicle system, particularly unfavourable in 
high speed rail (HSR). Investigation and evaluation of geometrical layouts of the 
turnout diverging track are still a current issue. 

Recently, aiming at smoothing changes of the curvature at the neuralgic re-
gions of the turnout diverging track, the clothoid sections have been introduced 
at both sides of the circular arc [1] [2] [3]. The curvature of the applied clothoid 
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sections in many cases does not reach zero value at the extreme points (i.e. at the 
beginning and end points of the turnout). The paper presents the evaluation of 
the selected geometrical layouts of the turnout diverging track to indicate the 
most favourable solution for HSR. 

In the turnout with linear curvature sections, a diverging track is divided into 
three zones (Figure 1):  
• a beginning zone of the length 1l , in which curvature increases linearly from  

1
1

1k
R

=  (or 1 0k = ) to 2
2

1k
R

= , 

• a middle zone of the length 2l  with constant curvature 2
2

1k
R

= , 

• an end zone of the length 3l , in which curvature decreases linearly from  

2
2

1k
R

= , to 3
3

1k
R

=  (or 3 0k = ).  

The various values of curvature and length of each section can be applied in 
the designing process. Curvature of the turnout diverging track is described by 
an analytical function ( )k l , where l  stands for the length of the curve. 

This paper presents the identification of analytical functions ( )k l  for linear 
curvature sections (i.e. clothoid sections) as well as for nonlinear curvature sec-
tions in the polynomial form. The identified curvatures have been compared 
using the dynamic model, described in [4], to find out the most favorable solu-
tion from the point of view of minimizing the dynamic effects.  

In this paper, the Cartesian coordinates of the turnout diverging tracks are not 
presented. The method of the identification of the Cartesian coordinates from 
the curvature ( )k l  is described in [4]. The determination of parametric equa-
tions ( )x l  and ( )y l  requires the expansion of the integrands into Taylor se-
ries [5] using Maxima package [6]. 

2. Application of the Linear Curvature Sections 
2.1. Solution for the Beginning Zone 

In the beginning zone of the turnout the considered issue is identified by boundary  
 

 
Figure 1. Curvature of the turnout diverging track (linear curvature sections) 
( )1 1 2 2 3 316000 m,  40 m, 6000 m,  64.584 m,  45 m, 25000 mR l R l l R= = = = = = . 



W. Koc, K. Palikowska 
 

44 

conditions [2] 

( )
( )

1

1 2

0k k
k l k
 =
 =

                            (1) 

and a differential equation 

( ) 0k l′′ = .                            (2) 

After determining the constants, the solution of the differential problem (1), 
(2) is as follows: 

( ) 2 1
1

1

k kk l k l
l
−

= + .                        (3) 

The slope of the tangent at the end of the zone, for 1l l= , is defined by the 
formula: 

( ) 1 2
1 12

k kl lθ +
= .                         (4) 

2.2. Solution for the Middle Zone  

In the circular arc zone, i.e. for 1 1 2,l l l l∈ + , curvature is constant: 

( ) 2k l k= .                           (5) 

At the end of circular arc the slope of the tangent is defined by the formula: 

( ) 1 2
1 2 1 2 22

k kl l l k lθ +
+ = + ⋅ .                    (6) 

2.3. Solution for the End Zone  

In the end zone of the turnout the following boundary conditions are adopted:  

( )
( )

1 2 2

1 2 3 3

k l l k
k l l l k
 + =
 + + =

                       (7) 

for the differential Equation (2). After determining the constants, the solution of 
the differential problem (2), (7) is as follows: 

( ) ( )3 2 3 2
2 1 2

3 3

k k k kk l k l l l
l l
− −

= − + + .                (8) 

The slope of the tangent at the end of the turnout is defined by the formula: 

( ) 2 31 2
1 2 3 1 2 2 32 2

k kk kl l l l k l lθ ++
+ + = + + ,             (9) 

from which the turnout angle 1
n

 can be obtained as 

( )1 2 3

1
tan

n
l l lθ

=
+ +

.                     (10) 

3. Application of the Nonlinear Curvature Sections 

The curvature of the turnout diverging track in Figure 1 is not undoubtedly an 
ideal solution. The adoption of more gentle changes of the curvature at both 
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sides of the circular arc and the assumption of zero curvature value at the ex-
treme points (i.e. the turnout beginning and end points) of the geometric layout 
are worth considering. 

3.1. Solution for the Beginning Zone  

The following boundary conditions have been adopted: 

( ) ( )

( ) ( )
1 1 2

2 1
1

1

0

0 0

k k k l k
k kk C k l

l

 = =


− ′ ′= =


                  (11) 

to the differential equation 
( ) ( )4 0k l =                          (12) 

with assumption, that coefficient 0C ≥ . 
As a result of solving the differential problem (11), (12) the following curva-

ture has been obtained: 

( ) ( ) ( ) ( )2 3
1 2 1 2 1 2 12 3

1 1 1

2 3 2C C Ck l k k k l k k l k k l
l l l

− −
= + − − − + − .    (13) 

Function ( )k l  describing the curvature in the considered zone should be 
monotonic and should increase for 0l > . In order to obtain a feasible solution 
the coefficient C should be properly adjusted. It has been shown, that the appro-
priate 1.5;3C∈ . Taking into account the length of the parametric curve (13) 
and a curve of linear curvature (i.e. generalized clothoid) the most favourable 
assumption seems to be C = 1.5. Curvature ( )k l  in this case is as follows: 

( ) ( ) ( ) 3
1 2 1 2 13

1 1

3 1
2 2

k l k k k l k k l
l l

= + − − − .             (14) 

At the end of the zone, for 1l l= , the slope of the tangent is described by the 
formula:  

( ) 1 2
1 1

3 5
8

k kl lθ +
= .                     (15) 

3.2. Solution for the Middle Zone 

Similarly to the middle zone described in the section 2.2, i.e. for 1 1 2,l l l l∈ + , 
the curvature is constant ( ) 2k l k= . The slope of the tangent at the end of the 
circular arc, for 1 2l l l= + , is described by the formula:  

( ) 1 2
1 2 1 2 2

3 5
8

k kl l l k lθ +
+ = + ⋅ .                (16) 

3.3. Solution for the End Zone 

Assuming the boundary conditions: 

( ) ( )

( ) ( )
1 2 2 1 2 3 3

3 2
1 2 1 2 3

3

0

k l l k k l l l k
k kk l l k l l l C

l

 + = + + =


− ′ ′+ = + + =


           (17) 
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for the differential Equation (12) the following solution has been obtained: 

( ) 2 3
1 2 3 4k l c c l c l c l= + + +                    (18) 

where 

( ) ( ) ( )2 3
1 2 1 2 1 2 3 22 3

3 3

3 2C Cc k l l l l k k
l l

 − −
= + + + + − 

 
 

( ) ( ) ( ) ( ) ( )2
2 1 2 1 2 3 22 3

3 3

2 3 3 2C C
c l l l l k k

l l
− − 

= − + + + − 
 

 

( ) ( ) ( )3 1 2 3 22 3
3 3

3 23 CCc l l k k
l l

− −
= + + − 
 

 

( )4 3 23
3

2 .Cc k k
l
−

= − −  

Assuming C = 1.5 the following coefficient formulas have been obtained: 

( ) ( ) ( )2 3
1 2 1 2 1 2 3 22 3

3 3

3 1
2 2

c k l l l l k k
l l

 
= + + + + − 

 
 

( ) ( ) ( )2
2 1 2 1 2 3 22 3

3 3

3 3
2

c l l l l k k
l l
 

= − + + + − 
 

 

( ) ( )3 1 2 3 22 3
3 3

3 3
2 2

c l l k k
l l

 
= + + − 
 

 

( )4 3 23
3

1 .
2

c k k
l

= − −  

The slope of the tangent at the end of the turnout, for 1 2 3l l l l= + + , is de-
fined by the formula: 

( ) 3 21 2
1 2 3 1 2 2 3

3 53 5
8 8

k kk kl l l l k l lθ ++
+ + = + ⋅ + .           (19) 

In Figure 2 the curvature of the turnout diverging track (for C = 1.5) with 
nonlinear curvature sections has been shown. The geometric parameters of the 
turnouts presented in Figure 1 and Figure 2 are conform. 

4. Selection of the Geometrical Layouts of Turnout  
Diverging Tracks 

In order to ensure a reliable comparative analysis of the geometrical layouts pre-
sented in Table 1, the following common assumptions have been adopted: 
• the turnout angle 1:n , where n = 50,  
• the curvature values 1k , 2k  and 3k  are common to all turnouts,  
• the circular arc radius 2 6000 mR = , 
• the length of the beginning zone 1l  and the end zone 3l  are similar and 

ensures the fulfillment of the kinematic conditions, 
• the length of the circular arc 2l  ensures reaching the assumed value of the 

turnout angle. 
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Figure 2. Curvature of the turnout diverging track (nonlinear curvature sections for C = 
1.5) ( )1 1 2 2 3 316000 m,  40 m, 6000 m,  57.184 m,  45 m, 25000 mR l R l l R= = = = = = . 

 
Table 1. Geometric parameters of the selected turnouts (the turnout angle 1:50). 

No Curvature 1k  
[rad/m] 

1l  
[m] 

2k  
[rad/m] 

2l  
[m] 

3l  
[m] 

3k  
[rad/m] 

L  
[m] 

1 Constant 1/6000 0.00 1/6000 119.984 0.00 1/6000 119.984 

2 Linear 1/16000 40.00 1/6000 64.584 45.00 1/25000 149.584 

3 Linear 1/16000 40.00 1/6000 62.484 60.00 0 162.484 

4 Linear 0 60.00 1/6000 59.984 60.00 0 179.984 

5 Nonlinear 1/16000 40.00 1/6000 57.184 45.00 1/25000 142.184 

6 Nonlinear 1/16000 40.00 1/6000 51.859 60.00 0 151.859 

7 Nonlinear 0 60.00 1/6000 44.984 60.00 0 164.984 

 
The highest velocity on a circular arc without superelevation (i.e. in the mid-

dle zone) results from the following condition:  
2

per
1

3,6m
Va a

R
 = ≤ 
 

, 

while in the extreme zones the condition is as follows 

( ) per
dmax max

3,6 d
V a l

l
ψ ψ= ≤  

where: 
V—train velocity [km/h], 
R—circular arc radius [m], 

ma —acceleration on circular arc [m/s2], 

pera —permissible value of acceleration on circular arc [m/s2], 
( )a l —function describing lateral acceleration in the zones of changing cur-

vature, 
ψ —rate of acceleration changes in the zone of changing curvature [m/s3]. 

perψ —permissible value of parameter ψ  [m/s3]. 
It is assumed that 2

per 0.6 m sa =  and 3
per 0.5 m sψ = .  
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On a circular arc without transition curves (turnout 1) the acceleration changes 
linearly from 0 to ma  along the length of the rigid base of wagon bl . Taking 
into account 

( )
2 1

3,6 b

Va l l
Rl

 =  
 

 for 0, bl l∈  

with condition 
3

per
1

3,6 b

V
Rl

ψ ψ = ≤ 
 

 

the limit of the velocity maxV  is obtained as follows 

3
max per3, 6 bV R l ψ= ⋅ ⋅ ⋅ .                   (20) 

On a circular arc in the middle zone with sections of changing curvature in 
the beginning and end zones the limit of the velocity is described by the formula  

max 2 per3, 6V R a= ⋅                       (21) 

In the beginning zone where curvature changes linearly a rate of acceleration 
changes ψ  is constant. In this zone the following condition should be fulfilled: 

3

per
2 1 1

1 1 1
3,6
V

R R l
ψ ψ

  = − ≤  
   

, 

from which the minimal length 1l  of the beginning zone can be determined: 
3

1
2 1 per

1 1 1
3,6
Vl

R R ψ
  ≥ −  

   
.                   (22) 

Nonlinear curvature (polynomial) induces changing rate of acceleration 
changes ψ  along the length of the turnout. The following condition should be 
fulfilled: 

3
2

max per3
2 1 1 1

1 1 3 3max 1.5 .
3,6 2 2
V l

R R l l
ψ ψ

    
= − − ≤ ⋅    

     
 

An increase by 50% of the limit value perψ  is justified by the fact, that the 
value maxψ occurs only once (for l = 0), and next decreases, reaches at the end of 
the section (for 1l l= ) zero value. The condition (22) can be applied also for the 
end zone of the turnout. 

For the assumed turnout angle 1:50 (i.e. n = 50) the following slope of the 
tangent has been obtained, using Equation (10): 

( )1 2 3
1arctan 0.019997 rad.l l l
n

θ + + = =  

Assuming 20 mbl =  for the turnout diverging track 1 (Table 1), using Equ-
ation (20) the maximal velocity ,

max 140.9352 km hR bV = . The length of the cir-
cular arc is obtained as follows: ( )2 1 2 3 119.984 ml R l l lθ= ⋅ + + = . The velocity 
limit in turnouts 2 ÷ 7 results from the Equation (21): max 216 km hV =  (in the 
comparative analysis of the turnouts, presented in section 6, it was assumed 

200 km hV = ). 
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The geometrical parameters of the selected seven turnouts are presented in 
Table 1. The lengths of the sections 1l  and 3l  result from condition (22), while 
the length 2l  results from the assumed slope of the tangent in the Equation (9) 
for linear curvature: 

( ) 2 31 2
2 1 2 3 1 3

2

1
2 2

k kk kl l l l l l
k

θ ++ = + + − −  
             (23) 

and in the Equation (19) for nonlinear curvature: 

( ) 3 21 2
2 1 2 3 1 3

2

3 53 51
8 8

k kk kl l l l l l
k

θ ++ = + + − −  
.          (24) 

The function of lateral acceleration ( )a l  along the layout, as proved in [4], 
results directly from the layout curvature ( )k l . The assumed functions of lateral 
acceleration ( )a l  for selected turnouts are presented in Table 2.  

5. The Dynamic Model 

With increased speed requirements on railways, the dynamic effects minimiza-
tion is a current issue, especially in HSR. Basing on the assumption that hori-
zontal curvature changes are a forcing factor of the lateral oscillations, selected 
seven geometrical layouts of the turnout diverging track are compared in terms 
on their impact on the dynamic interactions occurring in a rail-vehicle system. 
In the presented comparative analysis of the layouts, structural aspects of the rail  

 
Table 2. Lateral acceleration ( )a l  [m/s2] along the three zones (length [m]) of the selected turnouts. 

No Beginning zone Middle zone End zone 

1  
( ) 0.25567a l =  

0;119.984l ∈  
 

2 
( ) 0.19290123 0.00803755a l l= +

0;40.00l ∈  
( ) 0.51440329a l =  

40.00;104.584l ∈  
( ) 1.4299771 0.0086877a l l= −

104.584;149.584l ∈  

3 
( ) 0.19290123 0.00803755a l l= +

0;40.00l ∈  
( ) 0.51440329a l =

40.00;102.484l ∈  
( ) 1.39303841 0.00857339a l l= −

102.484;162.484l ∈  

4 
( ) 0.008573388a l l=  

0;60.00l ∈  
( ) 0.51440329a l =  

60.00;119.984l ∈  
( ) 1.54307270 0.008573388a l l= −

119.984;179.984l ∈  

5 
( )

6 2

0.19290123 0.01205633

          2.51173 10

a l l

l−

= +

− ×
0;40.00l ∈  

( ) 0.51440329a l =  

40.00;97.184l ∈  

( )
2 6 3

4.1896434 0.11706701
          0.000915 2.14511 10
a l l

l l−

= − +
− + ×

97.184;142.184l∈  

6 
( )

6 2

0.192901 0.01205633

          2.51173 10

a l l

l−

= +

− ×  
0;40.00l ∈  

( ) 0.51440329a l =  

40.00;91.859l ∈  

( )
2 6 3

2.217134 0.06952002
          0.00054248 1.19075 10
a l l

l l−

= − +
− + ×

91.859;151.859l∈  

7 
( )

6 2

0.01286008

          1.19075 10

a l l

l−

=

− ×
 

0;60.00l ∈  

( ) 0.51440329a l =  

60.00;104.984l ∈  

( )
2 6 3

3.2257675 0.08437543
          0.00058936 1.19075 10
a l l

l l−

= − +
− + ×

104.984;164.984l∈  
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vehicle are omitted.  
A dynamic model with one degree of freedom, consisting of a mass with a 

spring and a damper is applied to compare the dynamic interactions occurring 
on the various turnout diverging tracks. An additional parameter—a length of 
the rigid base of a wagon has been introduced, which results in referring to the 
lateral acceleration of the wagon mass center (arithmetic mean of accelerations 
occurring in the front and rear bogies).  

The lateral acceleration ( )a t  occurring along the turnout diverging track can 
be described by the separate functions dedicate for different turnout zones. As-
suming constant velocity along the turnout, as it is done in this paper, function 
( )a l  for each turnout zone is presented in Table 2. Considered case includes 

driven horizontal harmonic oscillations X [7] described by the equation 

( ) ( ) ( ) ( ) ( )
2

2 2
2

d d
2

dd
X t X t

u u X t a t
tt

ω+ + + =            (25) 

where: 
D—Lehr’s damping coefficient, 
ω —free oscillation frequency, 

21
Du

D
ω=

−
. 

Lehr’s damping coefficient D is used as a damping measure in the railway en-
gineering. In the presented paper D = 0.175 and ω = 3.5 π/s are assumed. The 
assumed value of D has been obtained in the experimental research presented in 
[8]. As proved in [9] this assumption has no impact on conclusions from the 
comparative analysis of dynamic properties of railway geometrical layouts.  

The function of oscillations ( )X t , describing lateral displacement of the ve-
hicle under the force ( ) ( )P t m a t= ⋅ , is the solution to the differential Equation 
(25). The function ( )X t  is the resultant of the static component and the sys-
tem oscillations. From the point of view of dynamic effects evaluation the resul-
tant acceleration of oscillation motion ( )va X t′′=  is essential. The maximum 
amplitude of the acceleration of oscillating motion max X ′′  and indicator aw  
defined as follows  

( )
0

0

d
kl l

a
l

w X t l
+

′′= ∫                       (26) 

where: 

0l —the point at which curvature of the turnout diverging track changes, 

kl —the length of the section on which oscillations are damped, 
are assumed as criteria of the dynamic effects evaluation presented in Section 6. 

6. Results of the Dynamics Analysis 

The length of the rigid base (it has been assumed 20 mbl = ) used in the dy-
namic model results in more gentle changes of lateral acceleration ( )a l , It is 
presented in Figure 3 and Figure 4 as the linea_corr for turnout 1 and 2 (Table  
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Figure 3. Lateral acceleration forcing the lateral oscillations for turnout 1. 
 

 
Figure 4. Lateral acceleration forcing the lateral oscillations for turnout 2. 
 
1). 

The acceleration of oscillating motion ( )X l′′ , computed numerically using 
the dynamic model described in section 5, for the selected seven geometrical 
layouts of turnout diverging track (Table 2 and Table 3) is presented in Figures 
5-12.  

Apart from the beginning and end zones of the turnout diverging track, the 
dynamic interactions occur also at the beginning and end of the middle zone, as 
shown in Figure 7.  

The comparative analysis of the selected layouts of the turnouts diverging 
track has been carried out using dynamic indicators: aw  (26) and max X ′′ , 
based on acceleration of oscillating motion ( )X l′′  from Figures 5-12. The 
computed values of aw  and max X ′′  for the selected seven turnouts are pre-
sented in Table 3. 

As shown evidently in Table 3 and Figures 5-12 the greatest values of accele-
ration in oscillating motion ( )X l′′  occur in the beginning and the end zone of 
the turnout diverging track, wherein the value of the acceleration is influenced 
by the assumed curvatures 1k  and 3k . In geometrical layouts of the turnout 
diverging track, in which 1 0k ≠  or 3 0k ≠  (turnout 2 and 5 in Figure 2, Fig-
ure 3 and Figure 10), the dynamic interactions are significantly greater (ap-
proximately 100 times greater) than in the layouts in which 1 0k =  and 3 0k =  
(turnout 4 and 7 in Figure 9 and Figure 12).  
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Table 3. Dynamic indicators aw  and amplitude of the acceleration of oscillating motion 

( )X l′′  for selected turnouts. 

No 

Zones of dynamic effects along the turnout diverging track 

Beginning zone 
Beginning of  

the circular arc 
End of the  
circular arc 

End zone 

aw  
[m2/s2] 

max X ′′  
[m/s2] 

aw  
[m2/s2] 

max X ′′  
[m/s2] 

aw  
[m2/s2] 

max X ′′  
[m/s2] 

aw  
[m2/s2] 

max X ′′  
[m/s2] 

1 216.89 174.40 0.00 0.000 0.00 0.00 216.90 174.40 

2 329.71 266.95 3.83 2.932 4.19 3.23 209.19 166.86 

3 329.71 266.95 3.83 2.932 3.81 2.80 3.81 2.80 

4 4.08 3.13 5.61 4.710 4.14 3.19 4.14 3.19 

5 330.84 268.06 0.10 0.055 0.11 0.06 209.24 165.64 

6 330.84 268.06 0.11 0.060 0.05 0.01 5.91 4.35 

7 6.10 4.69 0.60 0.030 1.87 0.09 6.40 4.72 

 

 

Figure 5. Acceleration of oscillating motion ( )X l′′  for turnout 1 (V = 141 km/h). 

 

 

Figure 6. Acceleration of oscillating motion ( )X l′′  for turnout 2 (V = 200 km/h). 

 
The assumption of 3 0k =  (turnout 3—Figure 8 and turnout 6—Figure 11) 

results in a radical reduction of the acceleration in oscillating motion ( )X l′′  in 
the end zone of the turnout diverging track. The simultaneous adoption of both 
conditions: 1 0k =  and 3 0k =  leads to a reduction of the dynamic interactions  
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Figure 7. Acceleration of oscillating motion ( )X l′′  in the middle zone of the turnout 2 

(V = 200 km/h). 
 

 

Figure 8. Acceleration of oscillating motion ( )X l′′  for turnout 3 (V = 200 km/h). 

 

 

Figure 9. Acceleration of oscillating motion ( )X l′′  for turnout 4 (V = 200 km/h). 

 
along the whole turnout diverging track; it is concerned layouts with sections of 
linear curvature (turnout 4—Figure 9) as well as layouts with sections of nonli-
near curvature (turnout 7—Figure 12).  

The presented results leads to conclusion that widely applied in a railway 
practice “clothoid sections” with curvatures 0k ≠  at the beginning and end 
points of the turnout diverging track are not justified. The dynamic properties of 
the layout can be significantly improved by assuming 1 0k =  and 3 0k =  at the 
mentioned points, accepting the fact that the length of the resulting turnout will  
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Figure 10. Acceleration of oscillating motion ( )X l′′  for turnout 5 (V = 200 km/h). 

 

 

Figure 11. Acceleration of oscillating motion ( )X l′′  for turnout 6 (V = 200 km/h). 

 

 

Figure 12. Acceleration of oscillating motion ( )X l′′  for turnout 7 (V = 200 km/h). 

 
slightly increase (Table 1).  

The acceleration in oscillating motion ( )X l′′  occurring at the beginning and 
at the end of the middle zone is not dependent on the curvatures values 1k  and 

3k , adopted in the beginning and the end zone of the turnout, but depends on 
the curvature characteristics. Linear curvatures 1k  and 3k  (turnouts 2 ÷ 4, 
Figures 6-9) induce greater values of dynamic indicators (Table 3) than nonli-
near ones (turnouts 5 ÷ 7, Figures 10-12).  

Taking into account the dynamic properties and the length of the layout, the 
turnout diverging track 7 is definitely the most favourable. Turnout 7 in com-
parison with turnout 4 has better dynamic properties in the middle zone, shorter 
length and insignificantly worse values of dynamic indicators in the beginning 
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and end zones (Table 3). 

7. The Most Favourable Geometrical Layout of the  
Turnout Diverging Track 

As a result of dynamics analysis it has been proved that the most favourable dy-
namic properties can be achieved by applying a nonlinear curvature in the be-
ginning and end zones of the turnout diverging track and assuming zero curva-
ture value at the extreme points of the geometrical layout.  

Assuming 1 0k =  and 3 0k =  the curvature ( )k l  of the turnout is defined 
as follows: 
• in the beginning zone, for 10,l l∈ , based on the Equation (14) the follow-

ing formula is obtained 

( ) 32 2
3

1 1

3
2 2
k kk l l l
l l

= −                        (27) 

• in the middle zone, i.e. for 1 1 2,l l l l∈ + , the curvature is constant 
( ) 2k l k=  

• in the end zone, for 1 2 1 2 3,l l l l l l∈ + + +  the curvature is described by the 
Equation (18) with the following coefficient values:  

( ) ( )2 3
1 2 1 2 1 22 3

3 3

3 11
2 2

c k l l l l
l l

   = − + + +  
   

 

( ) ( )2
2 2 1 2 1 22 3

3 3

3 3
2

c k l l l l
l l
 

= + + + 
 

 

( )3 2 1 22 3
3 3

3 3
2 2

c k l l
l l

 
= − + + 

 
 

2
4 3

3

.
2
kc
l

=  

The slope of the tangent at the end of the turnout, for 1 2 3l l l l= + + , is as fol-
lows 

( ) ( )2
1 2 3 2 2 1 3

5
8
kl l l k l l lθ + + = + + .               (28) 

In Figure 13 the curvature of the most favorable turnout diverging track 7 is 
presented. 

8. Conclusions 

Typical turnout diverging track consists of a single circular arc without transi-
tion curves. It introduces sudden, abrupt changes of the horizontal curvature of 
the layout at the beginning and end of the turnout diverging track, which in-
creases dynamic interactions in the track-vehicle system, particularly unfavoura-
ble in HSR.  

The paper presents a universal, analytical method of identifying the curvature 
of the turnout diverging track. Both linear and nonlinear (polynomial) curva-
tures of the turnout diverging track are identified and evaluated using a dynamic  
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Figure 13. Curvature of the turnout diverging track 7 (nonlinear curvature sections). 
( )1 1 2 2 3 30,  60 m, 1 6000 rad m,  44.984 m,  60 m, 0k l k l l k= = = = = = . 

 
model. The presented method enables to assume the curvature values at the be-
ginning and end point of the geometrical layout of the turnout. The length of the 
circular arc is adjusted to obtain the assumed turnout angle. 

Recently, aiming at smoothing changes of the curvature at the neuralgic re-
gions of the turnout diverging track, the clothoid sections have been introduced 
at both sides of the circular arc. The curvature of the applied clothoid sections 
changes linearly but in many cases does not reach zero value at the extreme 
points (i.e. at the beginning and end points of the turnout). The results of dy-
namics analysis presented in the paper show that clothoid sections with nonzero 
curvature at the beginning and end points of the turnout lead to increased dy-
namic interactions in the track-vehicle system. Dynamic interactions can be de-
creased by applying curvature reaching zero at the extreme points of the turnout.  

The paper presents the evaluation of the selected seven geometrical layouts of 
the turnout diverging track and indicates the most favourable solution for HSR. 
The most favourable from the dynamic properties point of view is the turnout 
diverging track with nonlinear curvature reaching zero values at the extreme 
points of the turnout.  
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