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Abstract 
This paper proposes a simple two-step nonparametric procedure to estimate 
the intraday jump tail and measure the jump tail risk in asset price with noisy 
high frequency data. We first propose the pre-averaging threshold approach 
to estimate the intraday jumps occurred, and then use the peaks-over-   
threshold (POT) method and generalized Pareto distribution (GPD) to model 
the intraday jump tail and further measure the jump tail risk. Finally, an em-
pirical example further demonstrates the power of the proposed method to 
measure the jump tail risk under the effect of microstructure noise. 
 

Keywords 
High Frequency Data, Intraday Jump, Microstructure Noise, Jump Tail Risk, 
Pre-Averaging 

 

1. Introduction 

It’s well recognized that the financial asset returns are not normally distributed, 
but instead exhibit more slowly decaying and asymmetric tails. The earliest in-
fluential researches in Mandelbrot [1] and Fama [2] show the empirical evidence 
for fat-tailed return distributions. And the numerous subsequent studies show 
that these fatter tails may be attributable to stochastic volatility and/or occasio-
nally large absolute price changes, called “jumps” in the underlying asset price 
process. With the availability of reliable financial high frequency data over the 
last two decades, many closer researches on the dynamics of financial asset pric-
es have documented the presence of jumps; see Barndorff-Nielsen and Shephard 
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[3] [4], Huangand Tauchen [5], Aït-Sahalia and Jacod [6], Lee and Hannig [7], 
Lee and Mykland [8], and so on. While both components can account for the 
extreme tail behavior, they have different mechanisms and further have very dif-
ferent implications on pricing and risk management, as recently explored by 
Bollerslev and Todorov [9]. 

In contrast to the numerous studies on tail risk resulting from stochastic vola-
tility, there is fewer work to study the jump tail risk. To the best of our know-
ledge, recent contributions are mainly from Bollerslev and Todorov [9] [10] [11]. 
However, the recent financial crisis has further spurred the interest of studying 
the jump tail events, and the econometric techniques for more accurately esti-
mating and modeling such risks. On the other hand, the existing studies on 
jump tail risk are performed under the assumption of semimartingale price 
process in an idealized world. The real application, however, runs into well- 
known bias problem caused by market microstructure noise, when the data fre-
quency is very high. The presence of market microstructure noise is widely 
demonstrated in literature; see O’Hara [12], Hasbrouck [13] and the references 
therein. Such kind of noises are usually caused by the frictions in actual trades, 
including tick size, discrete observation, bid-ask spread, and other trading me-
chanics. Hence, how to estimate the jump tails and measure the jump tail risk 
under the effect of microstructure noise is of great significance in real applica-
tion. Although there are some methods proposed to deal with the noise, such as 
the two time scale and multi-time scale approach (Zhang, et al. [14] [15]), 
pre-averaging method (Podolskij and Vetter [16], Jacod, Li, Mykland [17]) and 
realized kernel method (Barndorff-Nielsen and Shephard [18]), most of them are 
used in the scenarios of estimating the integrated volatility or testing the jump 
component. In this paper, we consider the problem of estimating the jump tail 
and measuring the jump tail risk when the observations are contaminated by 
microstructure noise. 

In this paper, we focus on studying the intraday jump tail and measuring the 
jump tail risk under the market microstructure noise. A simple two-step nonpa-
rametric procedure is proposed to implement the analysis. In first step, we use 
the pre-averaging threshold method to nonparametrically estimate the intraday 
jump under the effect of microstructure noise. In particular, we first adopt local 
“pre-averaging” via a kernel function to produce a set of non-overlapping 
(asymptotically) noise-free observations, and then use the threshold technique to 
identify the jump series. In second step, we model the intraday jump tail based 
on the extreme value theory (EVT) and further calculate the jump tail risk 
measure (Value-at-Risk and Expected Shortfall). Our method is nonparametric, 
and is easy to implement. Finally, a real data example with actual high frequency 
data of MSFT is used to show these procedures. 

The remainder of this paper is organized as follows. Section 2 presents the 
methodology to estimate the intraday jump and jump tail risk measurement. 
Section 3 provides an empirical example to show the procedure. Section 4 draws 
conclusions. 
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2. Intraday Jump Tail Risk Measurement under  
Microstructure Noise 

In this section, a simple two-step procedure is proposed to measure the intraday 
jump tail risk with noisy high frequency data. In first step, a pre-averaging thre-
shold method is proposed to nonparametrically identify the intraday jump un-
der the effect of microstructure noise. In second step, the peaks-over-threshold 
(POT) method based on the generalized Pareto distribution (GPD) is used to 
model the intraday jump tail and further to calculate the jump tail risk measure, 
i.e. VaR (Value-at-Risk) and ES (Expected Shortfall). 

2.1. Pre-Averaging Threshold Estimation of Intraday Jump 

Assume that the efficient logarithmic price tp  of an asset defined on a filtered 
probability space ( )( )0

, , ,t t≥
Ω   , evolves as 

d d d dt t t t tp b t W Jσ= + + ,                       (1) 

where ( )tW W=  is an  -adapted standard Brownian motion. The drift 
( )tb b=  and the volatility ( )tσ σ=  are progressively measurable processes 

which guarantee that (1) has a unique, strong solution, which are adapted and 
right continuous with left limits (càdlàg) processes. ( )tJ J=  is a compound 
Poisson process with finite activity of jumps. Note that tJ  can be written as 

1
t

i

N
t iJ Xτ=
= ∑ , where ( )tN  is a Poisson process with intensity λ , and 

i
Xτ  

denotes the jump size at the jump location iτ . 
i

Xτ  are independent identically 
distributed and independent of tN . We further assume that tN  is indepen-
dent of tW . However, our results can extend to the scenarios with non-constant 
intensity and more general dependence structure between 

i
Xτ  and tN . 

Suppose that on the finite and fixed time horizon [ ]0,T , there are 1n +  
discrete realization 

0 1 1
, , , ,

n nt t t tp p p p
−

  of process tp . 0 10 nt t t T= < < < =  
is an arbitrary partition of interval [ ]0,T . For simplicity, assume that the ob-
servations are equally spaced. Denote n T n∆ = , then i nt i= ∆ . In the presence 
of microstructure noise, at any given time it , the actually observed log-price is 

it
Z  other than 

it
p , which can be given as 

i i it t tZ p ε= + ,                           (2) 

where tε  is the noise term. Assume that the tε s are i.i.d. and independent of 

tW  and tJ  processes, and with 0tEε = , and 2
tEε < ∞ . Although the noises 

are not necessary i.i.d, this assumption is only for the simplicity to prove the 
theoretical properties. See the studies in Yu et al. [19], where we show that the 
estimation method for intraday jump used in this paper also performs well in the 
setting of correlated noises. 

Our goal is to estimate the intraday jump iX , with these noisy observation 
data { }, 0,1, ,

it
Z i n=  . For the simplicity of notation, we denote 

n

n
i iV V ∆= , 

1
n n n
i i iV V V −∆ = −  for any process ( )tV V=  in the following. 
In this paper, we use the pre-averaging approach to diminish the effect of 

noise. Let n
iZ  denote the weighted average of nk  observations of  
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1 1, , ,
n

n n n
i i i kZ Z Z+ + − , where 1

1
nkn n n

i j i jjZ g Z−
+=

= ∆∑ , with weights ( )n
j ng g j k= . We  

require that the weighting function ( )g x  is continuous on [ ]0,1 , piecewise 
1C  with a piecewise Lipschitz derivative g′ , and satisfies ( ) ( )0 1 0g g= = ,  

( )1 2

0
d 0g s s >∫ . We further require that the integer sequence nk  satisfies  

( )1 4
n n nk θ ο∆ = + ∆  for some constant 0θ > . 
Then we can use the threshold technique to identify the jump with these 

pre-averaging observations { }n
iZ . The threshold function is required to satisfy 

the following assumption. 
Assumption 1 The threshold function ( )nr ∆  is a deterministic function of 

the step length n∆ , such that 
(a) ( )0lim 0

n nr∆ → ∆ = ; 

(b) 
( )
( )

21 2 1

0

log
lim 0n

n

n

nr
∆

∆ →

∆
=

∆
. 

Power functions ( )n nr αβ∆ = ∆  for any ( )0,1 2α ∈  and Rβ ∈  are possible 
choices. Under the Assumption 1, for P-almost all ω , 0∃∆ >  such that  

n∀∆ ≤ ∆ , we have that 0, , 1i n∀ = − , 
( ) ( ) ( ){ }2 1

1 0i knn jj ii n
NZ r

I I + −
= +

  ∆ =≤ ∆ 
 

=


, which says  

that the threshold function ( )nr ∆  can be used to asymptotically identify the 
intervals where no jump occurred; also see the literature on the noise- and jump- 
robust volatility estimation (Jing et al. [20]). In other words, if ( ) ( )

2n
i nZ r≤ ∆ , 

there exists jumps on interval ( 1,
ni i kt t + −  . Thus, we can use this threshold me-

thod to identify the intervals where jump occurs and further give a coarse esti-
mation of the location of jumps. Let Tτ  denote the location set of jumps oc-
curred on [ ]0,T , then 

[ ] ( ) ( ){ }2ˆ 0, : , 0, ,n
i i n nT t T Z r i jτ ∗ ∗= ∈ > ∆ =  ,             (3) 

where ( )1ni i k∗ = − . 
We now turn to estimate the jump size by a simple nonparametric method. 

Denote by ( )
1

1
n

nn n

i k
i ii kN N N+ −

∆+ − ∆∆ = − ; if 1 1ni k
i N+ −∆ ≥ , by ( )iτ  the first instant 

a jump occurs within ( 1,
ni i kt t + −  , and ( )iX

τ
 the size of this first jump, also let 

1, ,min
T jj NX Xτ==



. For the simplicity of notation, we denote ( )1n nj n k = −   
in the following. For small n∆ , we have that a.s. in any time interval ( 1,

ni i kt t + −  , 
at most only one jump can occur. Moreover, we can obtain that the pre-averag- 
ing observation 0

n
iZ  of continuous diffusion process without jump satisfies 

( )1 4
0sup log1n

i n nZ O= ∆ ∆ , while the pre-averaging observation of jump process 
n

iJ  is greater than X  multiplying some constant, which is not negligible. So 
we propose the following estimator for jump size ( )iX

τ
, 

( ) ( ) ( )
2

ˆ
i n

i n

n
i

Z r
X Z I
τ  

> ∆ 
 

= .                      (4) 

Yu et al. [19] demonstrated the theoretical properties of estimator (4). The 
results shows that for each i , ( )

ˆ
iX

τ
 estimates the product of some constant g   

and the size of the first jump occurs within ( 1,
ni i kt t + −  , ( ) { }1 1i i kn

i N
gX I

τ + −∆ ≥
, where  
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( )1

0
dg g s s= ∫ . 

2.2. Intraday Jump Tail Risk Measurement 

In this subsection, we present how to model the intraday jump tail and then to 
measure the jump tail risk, i.e. VaR (Value-at-Risk) and ES (Expected Shortfall) 
based on extreme value theory (EVT). Extreme value theory provides simple pa-
rametric models to capture the extreme tails of distribution and to forecast risk. 
There are mainly two methods of applying EVT: the first is known as the Block 
Maxima (Minima) (BMM) method based on the generalized extreme value dis-
tribution (GEV), while the second is known as the peaks-over-threshold (POT) 
approach based on the generalized Pareto distribution (GPD). Since the POT 
method uses GPD to fit the exceedances over a given threshold and hence it 
doesn’t require a large data set as BMM, it is considered more efficient in model-
ling limited data (McNeil, Frey and Embrecht [21]). Thus, in the following, we 
use the POT method to model the tail distribution of the identified intraday jump 
series. 

Suppose that the jump series { }iX  are identically distributed random va-
riables with unknown underlying distribution function ( ) ( )iF x P X x= ≤ . The 
excess distribution uF  over a threshold u  is given by 

( ) ( ) ( ) ( )
( )

( ) ( )
( )1 1u

F y u F u F x F u
F y P X u y X u

F u F u
+ − −

= − ≤ > = =
− −

    (5) 

for 0 Fy x u< < − , where Fx ≤ ∞  is the right endpoint of F , and y x u= − . 
In EVT framework, there is a key result that for a large class of underlying dis-

tributions F  (containing all the common continuous distributions in statistics, 
such as normal, lognormal, t, gamma, exponential, beta, etc.), as the threshold u  
progressively increases, the excess distribution uF  converges to a generalized 
Pareto distribution. In the sense of this result, the GPD is the natural model for 
the excess distribution above sufficiently high thresholds. That is the excess dis-
tribution function uF  can be approximated by GPD for a certain u : 

( ) ( ),uF y G yξ σ≈ ,                         (6) 

where ,Gξ σ  is the generalized Pareto distribution (GPD), which is given by 

( ) ( ) 1

,
1    if   0

1          if   0y

yG y
e

ξξ
σ

ξ σ
σ

ξ

ξ

−

−

 + ≠= 
− ≠

                  (7) 

for ( )0, Fy x u∈ −    if 0ξ ≥ , and 0,y σ
ξ

 
∈ − 
 

 if 0ξ < . Here ξ  is the  

shape parameter and σ  is the scale parameter for GPD. 
Hence, for x u≥ , replacing the uF  by GPD, 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
1

1 .u

F x P X u P X x X u

F u P X u x u X u

x uF u F x u F u
ξ

ξ
σ

−

= > > >

= − > − >

− = − = + 
 

           (8) 



C. Yu et al. 
 

77 

This gives a formula for tail probabilities. The inverse of (8) gives the high 
quantile of the distribution or VaR. Thus, for ( )F uα ≥  (i.e. tail probability is 
1 α− ), VaR is given by 

( ) ( )
1 1 .VaR q F u
F u

ξ

α α
σ α
ξ

−  − = = + −     
               (9) 

For 1ξ < , the ES is given by 

( )11 d .
1 1 1x

VaR uES q F x α
α α

σ ξ
α ξ ξ

−
= = +

− − −∫              (10) 

Equations (9) and (10) give the theoretical formulae to calculate the jump tail 
risk measure. In the following, we show that how to estimate the VaR and ES with 
the identified jump series. 

For the identified jump series { }ˆ
iX , if there are total n  observations and 

uN  of observations above u , we get an empirical estimator uN n  of ( )F u . 
Putting the maximum likelihood estimates of the parameters of the GPD together, 
we arrive an estimator for tail distribution ( )F x , 

( ) ( )
ˆ1ˆˆ 1 1 .

ˆ
uNF x x u

n

ξ
ξ
σ

−
 

= − + −  
 

                 (11) 

Also, we get the estimator of VaR 

 ( )
ˆ

ˆ
1 1 ,ˆ

u

nVaR u
N

ξ

α
σ α
ξ

−   = + − −    
               (12) 

and the estimator of ES 



 ˆˆ
.ˆ ˆ1 1

VaR uES α
α

σ ξ
ξ ξ

−
= +

− −
                     (13) 

The estimation procedure presented above depends heavily on the important 
parameter u . In this paper, we will use the mean excess plot to choose a reason-
able threshold. The idea behind this method is demonstrated as follows. Given a 
high threshold 0u , suppose that the excess 0X u−  follows a GPD with para-
meter ξ  and σ . Then the mean excess over the threshold 0u  is 

( )0 0 .
1

E X u X u σ
ξ

− > =
−

                    (14) 

For any 0u u> , define the mean excess function ( )e u  as 

( ) ( ) ( )0 .
1

u u
e u E X u X u

σ ξ
ξ

+ −
= − > =

−
              (15) 

Thus, for a fixed ξ , the mean excess function is a linear function of u  for 

0u u> . This result leads to simple graphical method to infer the appropriate 
threshold value 0u  for the GPD. Define the empirical mean excess function as 

( ) ( )
1

1ˆ .
uN

i
iu

e u x u
N =

= −∑                      (16) 

The scatter plot of ( )ê u  against u  is called the mean excess plot, which 
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should be linear in u  for 0u u> . Hence, we can choose a reasonable threshold 
according to the mean excess plot. 

3. Empirical Example 

In this section, we implement our procedure of measuring the intraday jump tail 
risk with actual high frequency data. We collect the transaction data for Micro-
soft Corporation (MSFT) shares carried out on NASDAQ from Jan 3, 2011 to Jul 
29, 2011 from Wharton Research Data Services (WRDS). We use every ten 
seconds data to identify and estimate the intraday jumps in one minute return 
by implementing pre-averaging step with 7nk =  observations. Over this seven 
months time period, there were total 336,960 ten-seconds observations corres-
ponding to daily 6.5 trading hours in valid 144 trading days excluding weekends 
and holidays. The return is calculated by ( )1

log log 100
i i it t tr P P

−
= − × , where 

it
P  

denotes the transaction price at it . 
Firstly, we use the pre-averaging threshold method to estimate the intraday 

jump. Let ( ) ( )1g x x x= ∧ − , which is used in Jacod et al. [17]. In addition, 
choose the threshold function following the studies in Christensen et al. [22]. In 
order to study the intraday dynamic pattern of jumps, we summarize their fre-
quencies at one-minute frequency of all trading days. Figure 1 presents the fre-
quency distribution of the identified intraday jumps occurred in 6.5 trading 
hours. It’s obvious that the intraday jumps for MSFT from Jan 3, 2011 to Jul 29, 
2011 take on “L”-type dynamics. It says that most jumps occurred around the 
market opening time. For example, there are over 40 trading days with jumps 
observed at 9:31 (i.e. one minute after the market opening). However, there are 
less than 10 trading days with jumps observed at half an hour after opening time. 
This “L”-type intraday pattern may be driven by the accumulations of news ar-
rivals overnight. 

Figure 2 presents the Q-Q plot of the estimated intraday jumps. The result 
shows that the intraday jump has fatter tails than normal distribution. This fur-
ther demonstrates the reasonability of using the EVT to model the jump tails. 

 

 
Figure 1. Frequency distribution of intraday jump. 
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Next, we use the POT method and generalized Pareto distribution (GPD) to 
fit the negative and positive jump tail respectively. The threshold u  is chosen 
by the mean excess function. Figure 3 and Figure 4 present the mean excess plot 
for negative jump tail and positive jump tail respectively. Observing the plots, we 
choose 0.20u =  for negative jump, and 0.25u =  for positive jump. 

 

 
Figure 2. QQ plot of intraday jump. 

 

 
Figure 3. Mean excess function for negative jump tail. 

 

 
Figure 4. Mean excess function for positive jump tail. 
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Based on the chosen threshold u , Table 1 presents the estimation results of 
intraday jump and jump tail. Firstly, we can see that there are 452 positive jumps 
and 437 negative jumps happened among the total one-minute return observa-
tions and the corresponding percentage is 0.81% and 0.78% respectively. The 
number of exceedances over threshold is 293 and 286 for positive and negative 
jump respectively. It seems that the number of jumps occurred or the intensity 
of jumps is symmetric for positive and negative jumps. Secondly, by comparing 
the results of jump tail distribution, we find that the shape parameter ξ  for 
positive jump is −0.0803 and is not significant at the given 10%, 5%, 1% levels, 
which means that positive jump tail may follow exponential distribution. How-
ever, the shape parameter ξ  for negative jump is 0.2176 and is significant at 
1% level, which means that negative jump tail follows GPD with heavy tail. 
These results show that the positive and negative jump tail is asymmetric. In 
particular, the negative tail is heavier than the positive tail, which shows that 
there are more negative extreme events happened than positive events over the 
periods from Jan. 3, 2011 to Jul. 29, 2011 for MSFT. 

We then calculate the VaR and ES for negative and positive jumps based on 
the above estimation results of jump tail distribution. The results of VaR and ES 
are presented in Table 2. We find that as the significance level (i.e. tail probability) 
decreases, the results of VaR and ES for negative jump becomes larger than posi-
tive jump as expected, which further demonstrates the asymmetry of negative 
and positive jump tails. Meanwhile, the values in parenthesis in Table 2 are the 
p  values in testing the validity of VaRs and ESs by Kupiec test. Values smaller 

than a given significance level indicate that the risk measures are invalid. From 
the results, we can see that the risk measure are valid except the case of 10% sig-
nificance level for positive jump, which further in turn shows the success of our 
measuring method for jump tail risk. 

4. Conclusion 

Jump component in asset price process is a very important source of financial  
 

Table 1. Estimation results of intraday jump and jump tail. 

 Negative jump Positive jump 

Counts 437 452 

Percentage 0.78% 0.81% 

Threshold u 0.20 0.25 

Counts of exceedances 286 293 

Percentage of exceedances 65.45% 64.82% 

ξ  (shape parameter) 0.2176*** −0.0803 

 (0.0669) (0.0796) 

σ  (scale parameter) 0.0809*** 0.1225*** 

 (0.0071) (0.0138) 

Note: Values in parenthesis are the standard errors of the estimates, *, **, *** mean that the results are sig-
nificant at 10%, 5%, 1% level respectively. 
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Table 2. Results of VaR and ES for intraday jump. 

Sig. level 
Negative tail Positive tail 

VaR ES VaR ES 

5.00% 0.5417 0.5787 0.5762 0.6095 

 (0.9654) (0.9177) (0.9955) (0.7538) 

1.00% 0.8408 0.8521 0.7216 0.7296 

 (0.9795) (0.9795) (0.7815) (0.7815) 

0.50% 1.0057 1.0124 0.7787 0.7829 

 (0.9854) (0.9854) (0.6139) (0.6139) 

0.10% 1.4994 1.5014 0.8995 0.9004 

 (0.3405) (0.3405) (0.2977) (0.2977) 

0.01% 2.5864 2.5867 1.0473* 1.0474* 

 (0.1108) (0.1108) (0.0962) (0.0962) 

Note: Values in parenthesis are the p values in testing the validity of VaRs and ESs, *, **, *** mean that the 
risk measures are invalid at 10%, 5%, 1% level respectively. 

 
extreme risk. With the availability of high frequency data, it has aroused wide 
attention of researchers in last two decades. However, with the frequency of data 
increases, the identification of jump and its relevant studies will run into the bias 
problem caused by market microstructure noise. In this paper, we propose a 
simple nonparametric method to identify the intraday jump and measure the 
intraday jump tail risk with noisy high frequency data. We use a two-step pro-
cedure to measure the jump tail risk. In first step, we use a pre-averaging ap-
proach to diminish the effects of noises, and then propose the pre-averaging 
threshold estimator of intraday jump. In second step, we fit the tail distribution 
of the identified jump series with POT method and GPD, and then to calculate 
the risk measure (VaR and ES) of jump tail. Finally, we show the power of our 
procedure by a real data study. The results show that our proposed procedure of 
measuring the jump tail risk is valid and is easy to implement. Moreover, the 
nonparametric identification of intraday jump can also be used to analyze the 
dynamics of intraday jump, which is useful to study the microstructure of the 
market. Further studies on risk management, such as analyzing the impactors of 
jump tail risk, dynamic jump tail risk forecasting are the future research direc-
tions. 
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