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Abstract 
This work presents a new application for the Hierarchical Function Expansion 
Method for the solution of the Navier-Stokes equations for compressible flu-
ids in two dimensions and in high velocity. This method is based on the finite 
elements method using the Petrov-Galerkin formulation, know as SUPG (Str- 
eamline Upwind Petrov-Galerkin), applied with the expansion of the variables 
into hierarchical functions. To test and validate the numerical method pro-
posed as well as the computational program developed simulations are per-
formed for some cases whose theoretical solutions are known. These cases are 
the following: continuity test, stability and convergence test, temperature step 
problem, and several oblique shocks. The objective of the last cases is basically 
to verify the capture of the shock wave by the method developed. The results 
obtained in the simulations with the proposed method were good both quali-
tatively and quantitatively when compared with the theoretical solutions. This 
allows concluding that the objectives of this work are reached. 
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1. Introduction 

The solution of complex problems in fluid mechanics and heat transfer with the 
use of numerical techniques, known as Computational Fluid Dynamics (CFD), is 
today a reality due to the development of computers with high velocity and with 
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large capacity of data storage. The use of computer codes in some areas of engi-
neering is today a reality and it has been received much attention by numerical 
researches [1]. The solution of turbulent flow on wings using high capacity 
computer in 1960 would consume years of processing with a coast of millions of 
dollars. Today, the solution of this kind of problem using modern computers 
would consume only few minutes of CPU with a coast of hundred dollars. 

This work develops an application of the hierarchical function expansion me-
thod, elaborated by [2], for the solution of Navier-Stokes equations in two di-
mensions for high velocity compressible flows. This method consists on the use 
of the finite element method with a Petrov-Galerkin formulation and the expan-
sion of the variables in hierarchical functions. The use of hierarchical expansion 
allows changing the degree of the adjustment polynomial of the variables during 
the calculation process without restarting the simulation. Moreover, the numer-
ical method developed has the great advantage of being able to adapt the degree 
of polynomial until the necessary value, instead of using extremely refined 
meshes. 

In a general way, the classical method of the weighted residuals (Galerkin) is 
used to get the equations for calculating the coefficients of the expansion func-
tions. However, it is observed that in problems of convective-diffusive transport 
with convection predominant the Galerkin method fails. Thus, normally for 
these problems, it is used the Petrov-Galerkin formulation [3] where the weighting 
functions are different from the expansion functions. 

The Petrov-Galerkin formulation consists on the method known as SUPG 
(Streamline Upwind Petrov-Galerkin) developed by [3]. In this method, the wei- 
ghting functions are building by adding a perturbation term in the weighting 
functions used in the Galerkin formulation. This perturbation acts only in the 
direction of the fluid flow [2]. Note that the SUPG method presents stability and 
very accurate results. The expansion functions used in the method developed in 
this work are formed by Legendre Polynomials which are adjusted in the ele-
ments in order to define corner, side and area functions. The main reason to use 
in this work the Legendre Polynomials instead of orthogonal functions such as 
sine, cosine and exponential, is because only a few functions are necessary to 
adjust to the shapes of complex solutions. This happens because a polynomial is 
much more complex than others functions like sine and exponential and com-
paratively it has a higher capacity of curve fitting. It is observed, however, that 
smaller is the number of functions used for the expansion of the variables simp-
ler the numerical method becomes. 

2. Theoretical Development 

As mentioned the numerical method proposed in this work consist on the ap-
plication of the hierarchical functions expansion method for the solution of pro- 
blems for compressible fluid flow at high velocities in two dimensions. The me-
thod proposed in this work uses the Continuity, Momentum and Energy con-
servation Equations together with the Mass Velocity and State Equations. These 
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equations are all in two dimensions, x and z directions. These equations are the 
commonly used and are the following:  

Continuity Equation: 

0u w
t x z
ρ ρ ρ∂ ∂ ∂
+ + =

∂ ∂ ∂
                  (1) 

Momentum Equations: 
2 2

2 2

p 4  
x 3

x x xG G u G w u u
t x z x z

µ µ
∂ ∂ ∂ ∂ ∂ ∂

+ + = − + +
∂ ∂ ∂ ∂ ∂ ∂

         (2) 

2 2
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Energy Equation: 
2
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2                            2
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    (4) 

Mass velocity Equations: 

uxG ρ=                           (5) 

wzG ρ=                          (6) 

State Equation: 

RT 0p ρ− =                         (7) 

Total energy Equation: 

 vE c Tρ=                         (8) 

For the flow solution the physical domain is divided into a mesh of several 
elements. These elements can have an arbitrary shape. However, in this work 
rectangular elements are used.  

For each elements i, j of the solution domain the variables ρ , u, w, Gx, Gz,, E, 
p and T are described by a function expansion as follows: 

1 1 1 1

1 1 1 1

; ; ; ;

; ; ;

M M M M

m m m m m m x x m m
m m m m

M M M M

z z m m m m m m m m
m m m m

ρ ρ Ν  u u Ν  w w Ν  G G Ν

G G Ν  p p Ν  E E Ν  eT T Ν

= = = =
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∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
       (9) 

where M is the total number of expansion functions used for describing each va-
riables, Nm is mth expansion function for the element i, j and , , ,,  ,  ,i j i j i j

m m mu wρ  
, , , , ,,  ,  ,i j i j i j i j i j

x m z m m m mG G E  p eT  are respectively the coefficients of the variables ρ , u, 
w, xG , zG , E, p e T correspondent to the mth expansion function for the ele-
ment ij of the mesh. It is emphasized that depending on the degree of the expan-
sion, or of the number of expansion functions used the solution, the accuracy of 
the solution can be adjusted. 

The solution of the conservation Equations is easier if a local (element) coor-
dinate system is used. This local coordinate system also allows easily modifying 
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the method to use irregular geometries without great modifications. The local 
space coordinates are denoted by ξ and η. The correspondence of the coordi-
nates ξ and η with the Cartesian coordinates, x and z, for the element i, j of the 
mesh is given by: 

( ),2 i j

i, j

x  x
ξ

Δx

−
=                        (10) 

( )
2  i, j

i, j

z z
η

Δz

−
=                       (11) 

It is observed that both ξ and η change from −1 to +1 inside each element. 
Asmentioned the coordinates ξ and η are local coordinates of each element. The 
derivatives of ξ and η with respect to the x and z coordinates are given by: 

2

i, j

ξ
x Δx
∂

=
∂

                        (12) 

i,j

2
z z
η∂
=

∂ ∆
                        (13) 

The weighting functions (Pm) follow the consistent Petrov-Galerkin formula-
tion given by [3]. Thus for each element i,j of the mesh the weighting functions 
are given by: 

,  
2 2

i j m m
ij ijm m

N Nt tP N u w
x z

∂ ∂∆ ∆
= + +

∂ ∂
             (14) 

Equations (1) to (8) are manipulated using several steps. 1) First the variables 
are substitute by the expansions given by Equation (9). 2) The equations are 
weighted and integrated inside each element of computational domain. 3) The 
time derivatives of the variables are approximation by a backward difference. 4) 
The Green’s Theorem is used to transform the diffusion terms of the momentum 
and energy equations into first order terms. 5) The equations are written in ma-
tricial form for each element i,j of the solution domain. After this process the fi-
nal equations are given by Equations (15) to (22) presented next. 

Continuity Equation: 
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Momentum Equation in the x direction: 
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Momentum Equation in the z direction: 
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Energy Equation: 
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Mass velocity Equation in the x direction: 
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Mass velocity Equation in the z direction: 
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State Equation: 
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Total energy Equation: 
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The hierarchical expansion functions used in this work are based on the Le-
gendre Polynomials adjusted in the rectangular elements in a very convenient 
form. The association of the expansion functions to the elements is performed in 
such a way to define corner, side and area functions. The expansion functions 
associate with the sides and the area of the elements can have the necessary or 
the desired degree. In this work the expansion functions are prepared to use de-
grees from one to six. The Gauss-Quadrature method is used to calculate the in-
tegrals involved in Equations (15) to (22). It is emphasized that even so the 
maximum degree of the expansion functions adopted in this work is limited to 
six it is possible to increased the expansion degree. This may be necessary for 
problems that demand fine solution details. 

Figure 1 presents a typical rectangular element and the parameters associated 
with the corners (1, 2, 3, 4), sides (Lx e Lz), and area (An) functions. 

Note that for Equations (15) to (22) be used to solve a flow problem it is ne-
cessary that the Equations for neighbor elements are put together to have only 
one equation for each variable of the solution domain. In [4] gave the details 
concerning this agglutination process. 

3. Results 

For the application of the numerical method proposed a computer code was de-
veloped to simulate flow problems. With the objective to apply and analyze the 
numerical method proposed in this work some known cases of the literature are 
simulated. These cases are the following: tests of consistency and stability, prob-
lem of the temperature step and problem of the oblique shock. The fluid used in 
these cases is air with the following the viscosity (μ = 2 × 10−5 kg/ms) and the 
thermal conductivity (k = 2 × 10−2 J/msK) are considered constants.  
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Figure 1. Two-dimension rectangular element and itsassociated parameters. 

 
Consistency and stability test. The first case simulated consists on the veri-

fication of consistency and stability of the numerical method. This verification is 
performed with the simulation of a normal shock wave in supersonic flow. It is 
important to emphasize that in this test the shock wave is not dynamically cap-
ture. This means that the shock wave reproduced is only a reproduction of the 
boundary conditions used for the problem.  

Figure 2 presents the computational domain for this problem. The boundary 
conditions for the lower left side, that characterize region 1, represent the flow 
conditions before the shock. The boundary conditions for the lower right side, 
that characterize region 2, represent the flow conditions after the shock. The 
dotted line represents the position of the normal shock that divides the domain 
in the two regions. 

The boundary conditions for region 1 (before the shock) are: temperature, T1 
= 300 k; pressure, p1 = 1 bar; velocity in the x direction, u1 = 694 m/s (normal 
velocity with respect to the shock line); and velocity in the zdirection, w1 = 0 m/s 
(tangential velocity with respect to the shock line). The boundary conditions for 
region 2 (after the shock) are: temperature, T2 = 506.4 k; pressure, p2 = 4.2 bar; 
velocity in x, u2 = 260.2 m/s (normal velocity with respect to the shock line);and 
velocity in z, w2 = 0 m/s (tangential velocity with respect to the shock line). The 
boundary conditions for the velocities, pressure and temperature for region 2 
(after the shock) are obtained by the jump equations given by [5]. Figure 3 
presents the results calculated for the normal velocity with respect to the shock. 
The interface colors represent velocity ranges whose values can be seen in the 
scale of the graph. 

This test was simulated with three different meshes. One mesh contains 100 
cells, the other contains 400 cells, and the last mesh contains 1600 cells. The  
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Figure 2. Computational domain (1.2 m × 1.2 m) of the test of convergence and stability. 
 

 
Figure 3. Result of the velocity normal to the shock for the normal shock problem. The 
computational meshused is composed of 1600 cells in the direction z to degree 2 of the 
expansion of polynomials. 

 
result shown in Figure 3 is obtained with the 1600 cells mesh. Note, as it was ex-
pected, that as the number of cells in the mesh increases the numerical solution 
approaches the correct solution, mainly near the interface between regions 1 and 2. 

Temperature step problem. The second case analyzed verifies the problem of 
numerical diffusion, or false diffusion, that may artificially created by the nu-
merical method. This case consists on the simulation of a temperature disconti-
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nuity (step) in a supersonic flow. The temperature step is formed by the boun-
dary conditions imposed by problem. The problem of false diffusion is verified 
mainly in convection predominant problems. Figure 4 shows the computational 
domain used for this problem. 

The boundary conditions imposed for this problem consists on specifying the 
flow conditions in the left and lower sides. For the left side, region 1, the boun-
dary conditions are: temperature, T1 = 310 k; pressure, p1 = 1 bar; velocity in x, 
u1 = 500 m/s; and velocity in z, w1 = 500 m/s. For the lower side, region 2, the 
boundary conditions are given by: temperature, T2 = 290 k; pressure, p2 = 1bar; 
velocity in x, u2 = 500 m/s; and velocity in z, w2 = 500 m/s. Note that, with the 
purpose to generate the temperature step, the boundary condition for the tem-
perature differs 20 k between the left and the lower sides. 

The fluid properties used in this case are: non-viscous fluid, that is µ = 0, and 
thermal conductivity, k = 0. Zero viscosity and zero thermal conductive elimi-
nate the phenomena of diffusion both in the momentum and in the energy equ-
ations. Thus, any diffusion that may appear in the solution is caused by numeri-
cal problems. This makes easy to detect the problem of false diffusion. 

The boundary condition used for the fluid velocity in the left and lower sides 
of the solution domain in this case is equal. Thus an interface at 45˚ between the 
two temperature regions must appear in the solution. Note that the boundary 
conditions for the components of the velocity vector in the left and lower sides 
may be different. Using different velocity components in the left and lower sides 
changes the angle of the different fluid conditions with respect to the x direction 

 

 
Figure 4. Computational domain (2.0 m × 2.0 m) for the step temperature problem. 
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and, therefore, the relative direction between the mesh and the fluid flow. The 
case analyzed in this section has an angle of 45˚, but [4] presents the results for 
other case with different angles. 

Figure 5 shows the behavior of the temperature in regions 1 and 2 and the in-
terface of the supersonic flow imposed by the boundary conditions. For this test 
a 100 cells mesh was used with different degrees of expansion. First, second, 
third and fourth order expansion degrees were used. As expected, the result ob-
tained with the fourth order expansion is the one that better approximates the 
correct solution. The small fluctuation in the temperature of region 2 is due to 
difficult and slow convergence of the numerical method. 

Oblique shock wave. This problem consists on a supersonic flow that hits on 
a body surface obliquely, forming an oblique shock wave. The objective of this 
problem is to dynamic capture a straight line oblique shock wave with non nat-
ural solution, or forced solution (intense shock). Other cases of oblique shock 
waves were simulated with the method developed, such as, the capture of a 
straight line oblique shock wave with natural solution (weak shock) and, the 
capture of a curve and dislocated shock wave resulting from the oblique shock of 
a fluid with and obstacle. In this paper only the intense shock wave is present, 
the other cases can be seen in [4]. 

Figure 6 shows the solution domain used for this problem. The boundary 
condition for the left side and the first 2/3 of the lower side (region 1) of the so-
lution domain is Mach number, M1 = 2.9, and the direction of the flow with re-
spect to the body surface forms an angle θ1 = 11.3˚. The boundary conditions for 
the right side and the last 1/3 of lower side (region 2) of the solution domain is a 
pressure, p2 = 9.6 bar. 

 

 

Figure 5. Results for the temperature in the temperature step problem. The computa- 
tional mesh has 100 cellsin the x and z directions andthe variable expansion have fourth 
order degree. 
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Note that the natural solution for an oblique shock wave would be obtained by 
imposing only the flow velocity at the borders of region 1. Due to the imposition 
of the pressure at the borders of region 2 the forced solution (intense shock solu-
tion) is obtained. In the forced solution the angle of inclination of the formed 
shock wave is greater than that for the case of the natural solution. 

The computational mesh used for this case is the same used in previous case, 
i.e., nine elements in both x and z directions, with ∆ x = ∆ z = 0.33 m. The 
steady state solution is obtained running a false transient with a time step, ∆ t = 
10−5 s. A second degree expansion is used for the problem variables. 

According to [6] (table of oblique shock, appendix D), with M1 = 2.9, θ1 = 
11.3˚ and pressure p2 = 9.6 bar, the resulting oblique shock wave has an angle of 
inclination with respect to the x direction, β, equals to 85˚. These conditions 
form the forced solution (intense shock solution) for an oblique shock problem. 
The objective of this test is then to verify if the method developed is capable of 
capturing the shock wave with the right inclination as given by the theoretical 
result presented by [6]. Figure 7 shows the results of this test where the red color 
represents the region before the shock, the blue after the shock and the yellow 
the interface of the shock. 

As expected the results of Figure 7 show an oblique shock wave. The shock 
wave formed is not a perfect straight line, as expected from the theoretical solu-
tion, and its inclination angle is 79, 5˚ with respect to the x direction (the correct 
theoretical angle is 85˚). The error in the inclination angle is caused by the 
boundary condition imposed on the superior boundary located at z = 1 m, which 
has the conditions for the flow before the shock. Note that the curve formed in 

 

 
Figure 6. Computational domain (1.0 m × 1.0 m) for the oblique shock problemwith for- 
ced solution. 
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Figure 7. Result of the flow velocity showing the capture oblique straight line shock wave 
(forced solution). 

 

the shock wave near the superior boundary is also caused by this problem with 
the boundary conditions. The mesh used for this problem had 9 cells and the 
expansion degree was the second order.  

As mentioned before, many others cases including consistency and stability 
tests and oblique and normal shocks were simulated with the method developed 
and they are presented in [4]. 

4. Conclusion 

Simulations of supersonic flows, incident obliquely on a body, it was realized to 
verify the capacity of the numerical method developed in to simulate, adequate-
ly, compressible fluid flow in high velocity and to capture shock wave. Through 
the done analysis, in function of the results obtained in the simulations realized, 
it can be concluded that the objective of this work was reached in satisfactory 
way, because the results obtained with the numerical method developed in this 
work, it was qualitatively and quantitatively goods, when compared with the found 
theoretical results in literature. 
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Nomenclature 

,
ij
m nA , Expansion matrix, 

,
ij
m nb , Vector, 

cv, Specific heat at constant volume, 

,
ij
m nC , Integral of volume, 

CFD, Computational Fluid Dynamics, 

,
ij
m nD , Integral of volume, 

e, Specific internal energy, 
fx, fy e fz, Field forces, 
i, Position of elements in x, 
j, Position of elements in z, 
K, Thermal conductivity, 
Lx, Length of element in x, 
Lz, Length of element in z, 
Nm, Expansion function, 
p, pression, 
Pm, Weighting function, 
Q, Generation of internal energy, 
R, Gas constant, 
SUPG, Streamline Upwind Petrov-Galerkin, 
t, Time, 
T, Temperature, 
u, Velocity in x, 
u1, Velocity in x before shock, 
u2, Velocity in x after shock, 
v, Velocity in y, 
V, Volume, 
x, y e z, Spatial coordinates, 
w, Velocity in z. 
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Greek Symbols 

,
ij
m nα , Integral of volume, 

,
ij
m nβ , Integral of volume, 

,
ij
m nγ , Integral of volume, 

Δ, Difference operator, 
∂, Differential operator, 
Φ, Dissipation function, 
μ, Dynamic viscosity, 
τ xx, τ xy, τ xz, τ yx , τ yy, τ yz, τ zx, τ zy, τ zz, Shear stress, 
ρ, Specific mass of fluid, 
ξ, Coordinate, 
η, Coordinate, 

,
ij
m nΩ , Integral of volume, 

,
ij
m nθ , Integral of volume, 

,
ij
m nψ , Integral of volume. 
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