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Abstract 
In this paper, an adaptive feedback controller is proposed to achieve the fi-
nite-time stability of dynamical system. In the proposed scheme, the feedback 
gain of the adaptive feedback controller is automatically tuned according to 
the adaptation law in order to stabilize unstable fixed points of the system. 
Based on the Lyapunov function method and the finite-time stability theory, 
we get a sufficient condition for the finite-time stability. Finally, simulation 
results show the effectiveness and feasibility of the proposed finite-time con-
troller. 
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1. Introduction 

In the last two decades, chaos has been a hot topic due to its varied application 
in many fields, such as information processing, secure communication, power 
converters, biological system, engineering science, etc. Since Ott, Grebogi, and 
Yorke (OGY) [1] proposed the first approach of chaos control, and there are 
many variations reports based on the OGY method [2] [3] [4] [5], creating an 
entire new research domain in chaos. An important problem in chaos stabiliza-
tion is how to design a controller to stabilize the chaotic system. In fact, there is 
a wide variety of control methods to approach stabilization or synchronization 
of chaotic systems, including sliding model control [6] [7], adaptive control [8] 
[9] [10] [11] [12], optimal control [13] [14] and feedback control [15] [16] [17] 
and other control methods [18] [19] [20]. 

All of the methods mentioned above have been proposed to guarantee the 
asymptotic stability of chaotic system, but these methods cannot guarantee the 
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stability of chaotic systems in a finite time. However, in many cases, we hope the 
chaotic system achieves stability in a finite time. Finite-time control is a useful 
technique for achieving finite-time stability. Moreover, the finite-time control 
technique has been demonstrated better rejection and robustness [21]. 

Recently, due to its useful applications in many areas, a lot of research work 
was done about the chaotic system stability based on the finite-time control 
technique. In Ref. [22], Hong and Wang proposed a continuous finite-time con-
trol design method to solve the finite-time stabilization problem for a class of 
nonlinear control systems and a class of finite-time stabilizing controller for li-
near systems appears in [23]. In Ref. [24], the researchers proposed a family of 
continuous time-invariant finite-time stabilizing controllers for double integra-
tor. The most important problem in the study of finite-time chaos stabilization is 
how to design a physically available and simple controller to guarantee the stabi-
lization of chaotic system in a finite time. However, in most of previous studies, 
the finite-time controller which they choose is too special and complicate to be 
physically practical. In addition, some of the finite-time controllers have a linear 
feedback part, but we know that the feedback constant is difficult to find. 

Motivated by the above analysis, we propose a physically available and simple 
adaptive feedback controller to achieve the finite-time stability of chaotic system. 
Comparing to previous approaches, we employ a time-varying feedback gain in 
the controller which automatically converges to suitable constants, which make 
the controller simpler and lead to the speed of asymptotic stability of the system 
faster. Otherwise, the estimation of the convergence time is also given. The fi-
nite-time control technique has demonstrated better disturbance rejection and 
robustness against uncertainties. Based on the finite-time stability theory and the 
Lyapunov function method, sufficient condition for finite-time stabilization is 
obtained. Finally, some numerical examples are examined to illustrate the effec-
tiveness of the analytical result. 

The rest of this paper is organized as follows. In Section 2, we give some pre-
liminary knowledge. In Section 3, the main result is derived based on Lyapunov 
function method and finite-time stability theory. In Section 4, numerical simula-
tions are given to show the effectiveness of the theoretical result. Finally, a con-
clusion is drawn in Section 5. 

2. Preliminary Knowledge 

Consider a dynamical system described by:  

( ) ( ) ( )( ) ,x t Ax t f x t= +                      (1) 

where ( ) ( ) ( ) ( )( )T
1 2, , , n

nx t x t x t x t R= ∈
 is the state vector of the dynamical 

system, ( ) ( ) ( ) ( )( )T
1 2, , , : n n

nf x f x f x f x R R= →
 is a continuously differen-

tiable nonlinear vector function. To stabilize the chaotic orbits in (1) to a fixed 
point, we consider the adaptive feedback control method. The controlled system 
(1) can be rewritten as:  

( ) ( ) ( )( ) ( ) ,x t Ax t f x t u t= + +                   (2) 
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where ( ) nu t R∈  is the input. 
Throughout this paper we require the differentiable nonlinear vector function 
( )( )f x t  satisfies the following assumption:  

Assumption 1. For function ( )f x  there exists a positive constant l  such 
that  

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )T T
, , .mx t y t f x t f y t x t y t l x t y t x y R − − ≤ − − ∀ ∈             (3) 

Remark 1. Condition (3) is usually called global Lipschitz condition, and l  
is called Lipschitz constant. It should be pointed out that Condition (3) is very 
general, most well-known dynamical systems, such as Chua’s circuit, Rössler- 
like system, Genesio system, and hyperchaotic Lü system, satisfy Assumption 
1.  

In order to get our main result in the next section, we state here the definition 
of finite time stability and two lemmas.  

Definition 1. System (2) can be finite time stabilized if there exists a constant 
0T > , such that  

( ) ( )lim 0,
t T

x t s t
→

− =
 

and ( ) ( )x t s t=  if t T> , where T  is called the setting time and ( )s t  is a 
solution of an isolated node, satisfying ( ) ( ) ( )( )s t As t f s t= + .  

Lemma 1. [25] Assume that a continuous, positive-definite function ( )V t  
satisfies the following differential inequality: 

( ) ( ) ,V t V tβλ≤ −

 
where 0,  0 1λ β> < <  are all constants. Then, for any given 0t , ( )0V t  satis-
fies the following inequality: 

( ) ( ) ( ) ( )1 1
0 0 0 11 ,  ,V t V t t t t t tβ β λ β− −≤ − − − ≤ ≤  

and 

( ) 10,   ,V t t t= ∀ ≥  
with 1t  given by  

( )
( )

1
0

1 0 .
1

V t
t t

β

λ β

−

= +
−  

Lemma 2. [26] Let 1 2, , , 0na a a >  and 0 r p< < . Then  
1 1

1 1
.

p rn n
p r
i i

i i
a a

= =

   ≤   
   
∑ ∑

 

3. Main Result 

In order to study the finite-time stability of dynamical system (2), we define the 
synchronization error ( ) ( ) ( )e t x t s t= − , then the stability of system (2) can be 
translated into the analysis of the finite-time stability of error system (4). The 
error system is described by:  

( ) ( ) ( )( ) ( )( ) ( ).e t Ae t f x t f s t u t= + − +               (4) 
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In this paper, we designed the controller as follows:  

( ) ( ) ( ) ( )( ) sign ,u t k t e t e tη = − +                  (5) 

where η  is a constant and 1η ≥ ,  
( )( ) ( )( ) ( )( ) ( )( ) T

1 2sign sign ,sign , ,sign ne t e t e t e t =   . The feedback gain ( )k t  
is adapted according to the following update law:  

( ) ( )2 ,k t e tγ= −                         (6) 

where γ  is a arbitrary positive number. In this paper, for a better presentation, 
we set 1γ = , for other cases the extension is straightforward.  

Theorem 1. Suppose that the Assumption (1) holds and there exists a sufficiently 

large positive constant L  such that ( )max
sL l λ> +  , where 

T

2
s A A+
= . then  

system (2) can be stabilized in a finite-time under the following adaptive feed-
back controller (5). 

Proof. Take the Lyapunov function  

( ) ( ) ( ) ( ) 2T1 1 ,
2 2

V t e t e t k t L= + +                   (7) 

where L  is a constant bigger that l . Differentiating the function V  along the 
solution of the system (2),  

( ) ( ) ( ) ( ) ( )T .V t e t e t k t L k t= + +  




                 (8) 

Substituting ( )e t  and ( )k t  (given by (5) and (6)) into the right-hand of 
Equation (8), we have  

( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )T 2 .V t e t Ae t f x t f s t u t k t L e t = + − + − +   
    (9) 

Note that  

( ) ( ) ( ) ( ) ( )T T
max .se t Ae t e t e tλ≤                  (10) 

Under Assumption 1, from (5) and (10), we obtain  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )T T T T
max sign .sV t e t e t le t e t Le t e t e t e tλ η≤ + − −   (11) 

Moreover, we notice that ( ) ( )( ) ( )T signe t e t e t= , we can get  

( ) ( )( ) ( ) ( ) ( )T
max .sV t L l e t e t e tλ η≤ − − − − 

 
If ( )max

sL l λ> +  , we have  

( ) .V e tη≤ −                         (12) 

From Lemma 2, the following inequality is established  

( ) ( )
1
22

1 1
.

n n

i i
i i

e t e t
= =

 ≥   
∑ ∑

 
Thus, we obtain from (12) that  

( ) ( ) ( )
1

122 21
1

2 ,
n

i
i

V t e t Vη η
=

 ≤ − −  
∑

                (13) 
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where ( ) ( )T
1

1 .
2

V e t e t=  It is to see that 1V V≤ . 

Furthermore, from (13), V  is non-increasing. Therefore, there exists a upper 
bound V ∗ , such that  

1 .V V V ∗≤ ≤  

Let ( ) 1 1
Vt
V

θ ∗= ≤ , then  

( ) ( ) 1.t V t V Vθ θ ∗≤ =  
Finally, we have  

( ) ( )
1 1
2 2ˆ2 2 ,V t t V Vη θ η θ≤ − = −                 (14) 

where ( )ˆ min
t

tθ θ= . 
According to Lemma 1, we have  

( ) 0,    V t t T≡ ∀ ≥  
which further results in  

( ) 0,    e t t T≡ ∀ ≥  
and the settling time  

( )
1
2

0
0

2
,

ˆ
V t

T t
η θ

= +                       (15) 

where ( ) ( ) ( ) ( )( )2T
0 0 0 0 2.V t e t e t k t L = + +  

 This means that, for any arbi-
trary initial value ( )0e t , system (4) can be stabilized by the above controller 
within the time T . This obviously implies the dynamical system (2) can be sta-
bilized by controller (5). This completes the proof.                        

Remark 2. In Theorem 1, for the case ( ) 0e t = , we assume that ( )k t L≡ − , 
which can guarantee the positive definiteness of the Lyapunov function in (7). In 
fact, without this hypothesis, the feedback gain ( )k t  will also converge to other 
suitable constants when ( ) 0e t = . Thus, in practical engineering process, the 
feedback gain ( )k t  can only adapted according to the updated law in (6). Con-
sequently, the design of controller in (5) is independent of the Lipchitz constant 
of the chaotic system.  

4. Simulation Results  

In this section, two examples are used to illustrate the feasibility and effective-
ness of the above theoretical result. 

Example 1: In the first example, we take Chua’s circuit as the first example, 
which is governed by the following three-dimensional differential equations 
[27]:  

( )
( )

1 1

2

3

0
1 1 1 0 ,
0 0 0

p pb p x x
x x Ax f x

q x

ψ− −    
   = − + +   

    −    



         (16) 
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where ( )T 3
1 2 3, ,x x x x R= ∈  is the state vector,  

( ) ( )( )1 1 10.5 1 1 .x p b a x xψ = − + − −  In all of the simulations, we always choose 
the system parameters of the Chua’s circuit as 10,  14.87,  1.27,p q a= = = − , 

0.68b = −  which causes the Chua’s circuit to exhibit a double-scroll chaotic at- 

tractor. It is easy to compute that 
T

max 7.857
2

A Aλ
 +

= 
 

. Take  

( ) ( )2.95 1 1s s sϕ = + − − . It is easy to verify that ( ) ( )1 2 1 2s s s sϕ ϕ− ≤ − . 

Applying (16) we have  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

T
1 1 1 1

T .

x y f x f y p b a x y x y

p b a x y x y

ϕ ϕ− − = − − −

≤ − − −  
Therefore the Assumption 1 is satisfied with ( ) 5.9l p b a= − = . Here we take 

14L = , it is easy to see the condition ( )max
sL l λ> +   is satisfied. Take 1η = , 

we simulate the evolution of the system (16) according to the controller defined 
in (5). According to Theorem 1, system (2) can be stabilized in a finite time. 
Figure 1 shows the temporal evolution of the Chua’s circuit, where the initial 
values of the system are taken as ( )1, 3,2− , respectively. By computing (15) with 
matlab, we get 1.7864T = . It can be observed that the finite-time stable is 
achieved successfully by the proposed control scheme (5). The simulation matches 
the theoretical result perfectly. The temporal evolutions of variable strengths 
( )1,2,3ik i =  are also simulated in this paper, the initial values are set as zero. 

From Figure 2 we can see that feedback strengths ik  reach some certain con-
stants when the system is stabilized. 

Example 2: To show the generality of the presented method, the second ex-
ample is the hyperchaotic Rössler system [28]:  

( )

1

2

3 1 3

4

0 1 1 0 0
1 0 1 0

,
0 0 0 0
0 0 0

x
x

x Ax f x
x x x
x

α
θ

δ ζ

−     
    
    = + +
    +
    

−    



         (17) 

where ( )T 4
1 2 3 4, , ,x x x x x R= ∈  is the state vector. 

The system has a hyperchaotic attractor with two positive Lyapunov expo-
nents. Similarly, for the hyperchaotic Rössler system, we choose the initial con-
ditions of the system (2) are rand but the feedback strengths ik  are set as zero. 
The system parameters set as 0.25α = , 0.5δ = , 0.05ζ =  and 3θ = . Figure 
3 shows the temporal evolution of hyperchaotic Rössler system, and Figure 4 
shows the temporal evolutions of the corresponding feedback strengths ik . From 
Figure 3 one can find that the system (17) can be achieved stabilization within a 
finite time under the controller of (5).  

The above numerical examples show that the stabilization of chaotic or 
hyperchaotic system can be quickly achieved by the present controller in the 
form of (5). In addition, we also simulated the time-varying feedback gains ik , 
we can find that the feedback gains are automatically converge to suitable con-
stants. Moreover, by comparing the converged feedback strengths and the  
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Figure 1. Trajectories of the Chua’s circuit system with adaptive controller (5). 

 

 

Figure 2. Feedback strength ( )1,2,3ik i =  of adaptive controller (5) for dynamical sys-

tem (2).  
 

 
Figure 3. Trajectories of the hyperchaotic Rössler system with adaptive controller (5). 
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Figure 4. Feedback strength ( )1,2,3,4ik i =  of adaptive controller (5) for dynamical 

system (2).  
 

corresponding feedback signals, we find that the coupling is indeed small in the 
above two examples.  

5. Conclusion 

In this paper, we have investigated the stabilization of chaotic system based on 
the finite-time stability theory of differential equations, and proposed a simple, 
systematic and rigorous adaptive feedback control method to stabilize finite- 
dimensional chaotic systems within a finite time. In comparison with previous 
methods, the proposed scheme is simple to implement in practice. Numerical 
simulations are provided to illustrate the effectiveness of the method. The present 
study does not consider the effect of time delays, however, research is being 
pursued in this direction. 
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