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Abstract 
We present a numerical method based on genetic algorithm combined with a 
fictitious domain method for a shape optimization problem governed by an 
elliptic equation with Dirichlet boundary condition. The technique of the 
immersed boundary method is incorporated into the framework of the ficti-
tious domain method for solving the state equations. Contrary to the conven-
tional methods, our method does not make use of the finite element discreti-
zation with obstacle fitted meshes. It conduces to overcoming difficulties 
arising from re-meshing operations in the optimization process. The method 
can lead to a reduction in computational effort and is easily programmable. It 
is applied to a shape reconstruction problem in the airfoil design. Numerical 
experiments demonstrate the efficiency of the proposed approach. 
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1. Introduction 

The aim of shape optimization is to find a shape Ω such that the structure 
represented by Ω behaves in an appropriate way. Usually this goal is realized by 
the minimization of a suitable cost functional J over an admissible family   of 
domains, in which all possible candidates are included. Schematically, shape op-
timization problem can be expressed as follows:  
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where ( )u Ω  is the solution of a state equation. In this paper, the state equation 
is formulated by an elliptic equation with Dirichlet boundary condition. Shape 
optimization problems have been extensively studied from the mathematical 
point of view [1]. Our paper deals with their practical aspects. The practical 
shape optimization problem in this paper is a reconstruction problem, in which 
the target is to find the shape of airfoil when the pressure distribution on it is 
given. 

Our optimization is performed by using genetic algorithm (GA) [2] [3]. GA is 
very popular at present for its simplicity and ability to handle large scale prob-
lems. It is a global optimization method, and can be used to solve non-smooth 
optimization problems. Because GA is based on cost functional evaluations. The 
state equations need to be repeatedly solved on different domain changing dur-
ing shape optimization computations. 

The numerical solution of partial differential equations describing the fluid 
flow is usually done by performing spatial and temporal discretization. The spa-
tial representation must take into account for the boundaries of the computa-
tional domain and then make use of a discrete representation via meshing. Solv-
ing the flow around objects with complex shapes may involve extensive meshing 
work that has to be repeated each time a change in the geometry is needed. Im-
portant benefit would be reached if we are able to solve the flow without the 
need of generating a mesh that fits the shape of the immersed objects. Most flow 
solvers are based on body-conforming grids (i.e. the external boundary and sur-
faces of immersed bodies are represented by the mesh faces), but there is an in-
creased interest in solution algorithms for non-body-conforming grids. Such 
methods are presented under a variety of names: immersed boundary (IB), im-
mersed interface, embedded mesh, fictitious domain, all having in common the 
fact that the spatial discretization is done over a single domain containing both 
fluid and solid regions and where mesh points are not necessarily located on the 
fluid-solid interface. 

We use the Lagrange multiplier-based fictitious domain method [4] [5] for 
solving the state equation in the shape optimization problem. The fictitious do-
main method based approach in the shape optimization problem can be found 
in [6] [7]. Furthermore in order to avoid costly and sometimes extremely diffi-
cult meshing work on body-fitted geometries, we incorporate the technique of 
the IB method into the framework of the fictitious domain method. 

The IB method was initially introduced by Peskin [8] [9] for finite differences 
applied to fluid-structure interactions. The method received particular attention 
in recent years [10] [11] [12]. Peskin’s IB method was developed for the comput- 
er simulation of general problems involving a transient incompressible viscous 
fluid containing an immersed elastic interface, which may have time-dependent 
geometry or elastic properties, or both. The IB method is at the same time a ma-
thematical formulation and a numerical scheme. The mathematical formulation 
is based on the use of Eulerian variables to describe the dynamic of fluid and of 
Lagrange variables along the moving structure. The force exerted by the struc-
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ture on the fluid is taken into account by means of a Dirac delta function con-
structed according to certain principles. The main idea is to use a regular Eule-
rian mesh for the fluid dynamics simulation, coupled with a Lagrangian repre-
sentation of the immersed boundary. The advantage of this method is that the 
fluid domain can have a simple shape, so that structured grids can be used. The 
Lagrangian mesh is independent of the Eulerian mesh. The interaction between 
the fluid and the immersed boundary is modeled by using a well-chosen discrete 
approximation to the Dirac delta function. 

In our approach, all domains Ω∈  are embedded into a fictitious domain 
Ω̂  with a simple shape (e.g. a box). It is easy to construct a triangularization of 
such a domain. The triangularization is fixed, i.e., it does not change during an 
optimization computation. All computations for solving the state problem are 
performed in Ω̂  with the same stiffness matrix, which also does not change 
and consequently can be computed and stored for ever. The method has the ad-
vantage of avoiding the need for re-meshing procedures in the optimization 
process. The necessary information on the geometry is encoded in an additional 
variable, contributing only to the right hand side of the state equations. We show 
that the resulting model can be very efficient for optimization computations. 
Numerical experiments demonstrate the efficiency of the proposed approach. 

The paper is organized as follows. In Section 2, the state equation is presented 
by an elliptic equation with Dirichlet boundary condition. We describe its algo-
rithm based on boundary Lagrangian fictitious domain method. We incorporate 
the technique of the immersed boundary method into the framework of the fic-
titious domain method. In Section 3, we consider the airfoil design for the two- 
dimension incompressible inviscid uniform flows. We describe the mathematical 
formulation of a shape optimization problem. In Section 4, we do numerical ex-
periments to show that our proposed method is feasible and effective for solving 
the shape optimization problem. 

2. Fictitious Domain Based Approach  

On a domain 2RΩ⊂ , assume problem [P] with u  being the solution of the 
following elliptic equation with Dirichlet boundary condition:  

0

1

in ,
on ,
on

r

u u f
u g
u g

α ν
γ

− ∆ = Ω
=
= Γ

                       (1) 

where domain Ω is the exterior of an obstacle B with boundary rγ  (see Figure 
1), rγ∂Ω = Γ∪ , and Γ is the boundary of a rectangle. The rγ  is defined by the 
design variable r , r U∈ , where U is the set of admissible design parameters.  

We require that the set U is compact. Coefficient , 0ρ ν ≥ , ( )
1
2

0 rg H γ∈ , 

( )
1
2

1g H∈ Γ , ( )2f L∈ Ω . For simplicity, rγ  is sometimes denoted by γ .  

Since the solution ( )u x , x∈Ω , dependents on parameter r , it is also denoted 
by ( ),u x r , x∈Ω , r U∈  or simply ( )u r , r U∈ . 
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Figure 1. A domain around an obstacle. 

 
According to the boundary Lagrangian fictitious domain method [5], the Di-

richlet boundary condition on γ  is enforced by using Lagrangian multiplier on 
the boundary. We can consider the problem in the extended rectangular domain 
Ω̂ : ˆ BΩ = ∪Ω . Problem (1) is equivalent to the following variational problem: 

Find ( )
1
2,gu V Hλ γ

−
∈ ∈ , such that  

( )ˆ 0ˆ, d d ,a u z f z z z V
γ
λ γ

Ω Ω
= + ∀ ∈∫ ∫x                 (2) 

( ) ( )
1
2

0 d 0u g H
γ
µ γ µ γ

−
− = ∀ ∈∫                  (3) 

where ( ){ }1
1

ˆ , ongV z z H z g= ∈ Ω = Γ , ( ){ }1
0

ˆ , 0 onV z z H z= ∈ Ω = Γ ,  
( ) ( )ˆ ˆ, da u z uz u z xα ν

Ω Ω
= + ∇ ⋅∇∫ . The u  and f  are the extensions of u  and 

f  in Ω̂ , respectively, and |u uΩ= , |f fΩ= . 
The problem (2)-(3) can be solved by GCG iterative method. We describe the 

algorithm presented by [13] as follows: 
Algorithm 0: 
Step 0: Initialization. 

• Set initial Lagrangian multipliers: ( )0 2Lλ γ∈  and a number 0ε ≥  small 
enough for the convergence criterion. 

• Find 0
gu V∈  by  

( )0 0
ˆ 0ˆ, d d , .a u z f z z z V

γ
λ γ

Ω Ω
= + ∀ ∈∫ ∫x                (4) 

• Calculate ( )0 2g L γ∈  by  

( ) ( )0 0 2
0d d , .g u g L

γ γ
µ γ µ γ µ γ= − ∀ ∈∫ ∫  

• Set the initial descent direction 0 0w g= . 
To obtain 1nλ + , 1nu + , 1ng +  and 1nw +  from nλ , nu , ng  and nw , one 

proceeds as follows: 
Step 1: Find descent direction. 

• Solve 
n

u  by  

( ) 0ˆ , d , .
n na u z w z z V

γ
γ

Ω
= ∀ ∈∫                  (5) 

• Calculate nρ  by  
2

d d .
nn n

n g u w
γ γ

ρ γ γ= ∫ ∫                     (6) 

• Find the new solution by  
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1 ,
nn n

nu u uρ+ = −   
1 .n n n

nwλ λ ρ+ = −  

• Calculate the new gradient ( )1 2ng L γ+ ∈  by  

( )1 2d d d , .
nn n

ng g u L
γ γ γ

µ γ µ γ ρ µ γ µ γ+ = − ∀ ∈∫ ∫ ∫   

Step 2: Construct convergence criterion and update descent direction. 
If 

2 21 0d dng g
γ γ

γ γ ε+ ≤∫ ∫ , then take the solution being 1nλ λ += ,  
1nu u += . Otherwise  

2 21 d d ,n n
n g g

γ γ
γ γ γ+= ∫ ∫  

1 1 .n n n
nw g wγ+ += +  

Set 1n n= +  and return to Step 1. 
It can be seen from the above algorithm that we need calculate elliptic varia-

tional problems (4) and (5). Conventionally we solve them by the finite element 
method. In the computation procedure of the finite element discretizations, the 
mesh of the extended domain is constructed from a rectangular triangulated 
mesh by locally fitting this mesh to the irregular obstacle boundary. The conven-
tional finite element discretizations result the problem in the solution of huge 
algebraic system of equations and will meet the trouble of computing the boun-
dary integrals. In order to avoid these difficulties and solve more efficiently the 
extended problem, we will incorporate the technique of the immersed boundary 
method into the framework of the fictitious domain method. The main idea is to 
use Dirac delta function to improve the computation procedure of the discreti-
zations. We describe the algorithm presented by [13] as follows. 

We construct a regular Eulerian mesh on Ω̂   

( ){ }0 0
ˆ , , 0 ,k ij ijx x x ih y jh i j IΩ = = + + ≤ ≤  

where h  is the mesh width (for convenience, kept the same both in x - and in 
y -directions). Assume the configuration of the simple closed cure γ  is given 

in a parametric form ( )X s , 0 s L≤ ≤ . The discretization of the boundary γ  
employs a Lagrangian mesh, represented as a finite collection of Lagrangian 
points kX , Jk ≤≤0 , apart from each other by a distance s∆ , usually taken 
as being /2h . 

Let ( )δ ⋅  be a Dirac delta function. In the following calculation procedure, 
δ  is approximated by the distribution function hδ . The choice here is given by 
the product (see [10])  

( ) ( ) ( )h h hd x d yδ =x  

where  

( )
0.25 1 cos , 2 ,

2
0, > 2 .

h

z z h
h hd z

z h

π   + ≤   =    



 

Using the above Dirac delta function we can transfer the weak forms of the 
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partial differential equations (4) and (5) to the strong forms and then solve them 
by Fast Poisson Solvers such as the fast Fourier transform or cyclic reduction. In 
mathematical view, we need the following Lemma (see [14]). 

Lemma 1. Assume that the simple closed cure γ , the configuration of which 
is given in a parametric form ( )X s , 0 s L≤ ≤  is Liplischit continuous,  

( )2 0,f L L∈ . Then F  defined by  

( ) ( ) ( )( )0
d

L
F x f s x X s s xδ= − ∀ ∈Ω∫  

is a distribution function belonging to 1( )H − Ω  defined as follows: for all  
1
0 ( )v H∈ Ω   

( ) ( )( )11
0 ( )( ) 0

, d
L

HH
F v f s v X s s− ΩΩ

= ∫  

By Lemma 1, we can write the right hand in (5) as following form:  

1 1
0

ˆ ˆ( ) ( )
d ,n n

H H
z W z

γ
ω γ − Ω Ω

=∫  

where  

( ) ( ) ( )( )0
ˆd .

Ln nW s X s sω δ= − ∀ ∈Ω∫x x x              (7) 

That is, nω  calculated over the Lagrangian points are distributed over the Eu-
lerian points by (7). Thus we can write (5) in the strong form below:  

ˆin .
n n nu u Wα ν− ∆ = Ω                       (8) 

In the same way, (4) also can be written in the strong form below:  
0

0 0
ˆin ,u u f Rα ν− ∆ = + Ω                    (9) 

where  

( ) ( ) ( )( )0 0
0

ˆd .
L

R s X s sλ δ= − ∀ ∈Ω∫x x x            (10) 

Note that (8) and (9) are defined in the rectangular domain Ω̂ . We can solve 
their discrete forms by Fast Poisson Equation Solvers such as the fast Fourier 
transfer or cyclic reduction on Cartesian mesh ˆ

kΩ . In order to calculate  
d

n nu w
γ

γ∫   in (6), we calculate 
n

u  over Lagrangian points kX , 1 k N≤ ≤  by 
n

u  over neighboring Eulerian points obtained by (8). We use the following 
formula due to the property of ( )δ ⋅  (see [10]),  

( )( ) ( ) ( )( )ˆ d .
n n

u X s u X sδ
Ω

= −∫ x x x                 (11) 

The discrete form of (7) is  

( ) ( ) ˆ .n n
ij k h ij k ij h

k
W X sω δ= − ∆ ∀ ∈Ω∑x x x             (12) 

The discrete form of (10) is  

( ) ( )0 0 ˆ .ij k h ij k ij h
k

R X sλ δ= − ∆ ∀ ∈Ω∑x x x              (13) 

The discrete form of (11) is  

( ) 2 1 .
n n
k ij h ij k

ij
u u X h k Nδ= − ∀ ≤ ≤∑ x                 (14) 
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Based on the above analysis, we have the discrete algorithm of GCG for solving 
(2)-(3) as follows: 

Algorithm 1: 
Step 0: Initialization. 
1) Distributed 0λ  over the Lagrangian points to the Eulerian points by (13). 
2) Calculate (9) for 0u  over the neighboring Eulerian points of the boundary 

γ . 
3) Calculate 0u  over Lagrangian points by 0u  over neighboring Eulerian 

points by using  

( )0 0 2= 1 .k ij h ij k
ij

u u X h k Nδ − ∀ ≤ ≤∑ x              (15) 

4) Calculate 0g  over Lagrangian points by  
0 0

0 1 .k k kg u g k N= − ≤ ≤  

5) Set the initial descent direction 0 0
k kw g= , 1 n N≤ ≤ . 

To obtain 1nλ + , 1nu + , 1ng +  and 1nw +  from nλ , nu , ng  and nw , one 
proceeds as follows: 

Step 1: Find descent direction. 
1) Distributed 

nω  over the Lagrangian points to the Eulerian points by (12). 
2) Solve (8) for 

n
u  over the neighboring Eulerian points of the boundary γ . 

3) Calculate 
n

u  over Lagrangian points by 
n

u  over neighboring Eulerian 
points by using (14). 

4) Calculate nρ  by  
2

.

n
k

k
n n n

k k
k

g s

u w s
ρ

∆
=

∆

∑

∑ 

 

5) Let  
1 , 1 .n n n

k k n kw n Nλ λ ρ+ = − ≤ ≤  

6) Calculate the new gradient 1ng +  by  

1 , 1 .
nn n n
kk k kg g u k Nρ+ = − ≤ ≤  

Step 2: Construct convergence criterion and update descent direction. For 

given 0ε ≥  small enough, if 
2 21 0n

k k
k k

g s g s ε+ ∆ ∆ ≤∑ ∑ , then take 1nλ λ +=  

over the Lagrangian points, and calculate its correspondent solution u  by us-
ing  

, inu u f Rα ν− ∆ = + Ω  

where  

( ) ( ) .ij k h ij k ij h
k

R X s xλ δ= − ∆ ∀ ∈Ω∑x x  

Otherwise  
2 21 ,n n

n k k
k k

g gγ += ∑ ∑  
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1 1 , 1 .n n n
k k n kw g w k Nγ+ += + ≤ ≤  

Set 1n n= +  and return to Step 1. 
It can be seen from steps 4, 5, and 6 in Step 1 that the calculations are done 

over the Lagrangian points and we need solve (8) only for 
n

u  over the neigh-
boring Eulerian points of the boundary γ  when we use FFT. Thus the above 
approach can lead to a significant reduction in computational effort and memo-
ry requirement. It need not make use of the finite element discretizations. The 
main advantage of the proposed method is that in the optimization process Eu-
lerian mesh on Ω̂  is fixed unlike in many of the other approaches such as ob-
stacle fitted meshes and solution procedure is often efficient. The proposed me-
thod has a simple structure and is easily programmable.  

3. Shape Optimization Problem 

Our shape optimization problem is a shape reconstruction problem. We con-
sider the airfoil design for the two-dimension incompressible inviscid uniform 
flows. We want to find the shape of an airfoil 0γ  when the pressure coefficient 

0
pC  on 0γ  is known. Below we will give the formulation of this problem. 
Suppose the uniform flow around an arbitrary airfoil B is from the left toward 

the right and of velocity profile 1U∞ = . For the discretization computation, this 
exterior problem is truncated by introducing an artificial boundary Γ  which is 
a rectangle. The domain Ω  is the rectangle excluding the airfoil B with boun-
dary γ , whose leading edge is in origin (see Figure 1). By formulating this 
problem for stream function u , the corresponding partial differential equation 
with Dirichlet boundary condition is: 

0 in ,
0 on ,

on .

u
u
u y

γ
−∆ = Ω
=
= Γ

                       (16) 

In order to solve the shape optimization problem numerically, the boundary 
γ  must be parametrized using a finite number of design parameters. Let the 
vector of design parameter ( )1 2, , , m

ma a a R= ∈r   define the boundary curve 
γ . One possible way to perform it is to use the Bezier curves; see [15], for exam-
ple. These Bezier curves are just polynomial functions expressed in the Bernstein 
polynomial basis. The design parameters (or variables) are given by the nodal 
coordinates of the control points defining the Bezier curves. Since the design 
parameter r defining uniquely γ , in the following, the cost functional is as-
sumed to be of the form ( ),J u r . We discretize the shape of airfoil γ  using 
one Bezier curve for upper part of airfoil and another Bezier curve for lower 
part. The x -coordinates of the control points are evenly spaced between 0 and 
1. The control points on leading edge and on the trailing edge are fixed and the 
other control points are moving in the y -direction. The y -coordinates of 
these control points except the control points on the leading edge and on the 
trailing edge are chosen to be the design parameters r. We have seven design va-
riables in the symmetric case and fourteen design variables in the unsymmetric 
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case. As a symmetric example, Figure 2 illustrates the Bezier curve for the upper 
side of the NACA0012 profile. Nine circles in the figure are Bezier control 
points.  

For given γ  corresponding design parameters r, pressure coefficient distri-
bution on γ  is:  

( )( )
( ) ( )

( )

22

2

, ,
, , 1 , , ,p

u ux y x y
x y

C u x y x y
U

γ
∞

 ∂ ∂  +   ∂ ∂   = − ∈r  

where u  solves (16). 
Now, the reconstruction problem reads: find the design parameter 0r  cor-

responding 0γ  when the pressure coefficient 0
pC  on 0γ  is known. We have 

chosen to formulate our reconstruction problem as a minimization problem, 
where we minimize an objective function J  measuring the difference between 

( )( ),pC u x r  and the desired pressure coefficient 0
pC . We define objective func-

tion to be  

( ) ( )( ) ( )0, , d .p pO
J u C u C x x= −∫r x r                (17) 

The reconstruction problem in a minimization problem form reads:  

( ) ( )
0

0 0

Find such that
, , ,

U
J u J u U

∈
≤ ∀ ∈
r

r r r
                 (18) 

where U is the set of admissible design parameters. We require that U is com-
pact and U∈r , where the design parameter r corresponds the boundary γ .  

4. Numerical Experiments  

First we do numerical experiments to demonstrate the efficiency of the algo-
rithm in section 2. We use the Algorithm 1 to solve station Equation (16) which 
simulate the two-dimension incompressible inviscid uniform flows around an 
arbitrary given airfoil B. 
 

 
Figure 2. The Bezier curve for the upper side of the NACA0012 profile. 
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We take the fictitious domain [ ] [ ]ˆ 0.5,1.5 0.5,0.5BΩ = ∪Ω = − × − . The test 
problem has been solved with rectangular Eulerian mesh 80 × 80 nodes. Figure 
3(a) shows the Lagrangian grids and Eulerian grids which have been used to 
calculate solutions for (16). In Figure 3(b), the plots in solid lines represent 
streamline obtained by the algorithm based on the immersed boundary.  

Next we solve the reconstruction problem (18). We take the NACA0012 air-
foil as 0γ . As we stated in section 3, the shape of airfoil γ  is discretized using 
one Bezier curve for upper part of airfoil and another Bezier curve for lower 
part. Since the airfoil is symmetric during the optimization, we can take seven 
design variables in the optimization process. In order to keep the design accept-
able, we have added box constrains for design variables. Hence, there is a lower 
limit and upper limit for all variables. We require that they satisfy the constraints 

0.5 0.5ka− ≤ ≤ , 1,2, ,7k =  . The set of admissible designs U contains all  
 

 
(a) 

 
(b) 

Figure 3. (a) Zoom view of Eulerian mesh, Lagrangian mesh and the used neighboring 
Eulerian points of the boundary; (b) Streamline visualization: numerical solution is dis-
played in solid lines. 
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Figure 4. The target design and the design obtained as the 
result of optimization. 

 
domains which are possible to obtain by using this parametrization and con-
straints. 

We run genetic algorithm (GA) to find seven design variables 0r  in (18). The 
major structure of this GA (see for example [6]) is as follows: 1) Evaluation of 
fitness functions, 2) Roulette wheel selection, 3) Crossover, 4) Mutation. And we 
used the following parameters: Population size 20, Crosseover probability 0.3, 
Mutation probability 0.2. The above steps were repeated until the stopping crite-
rion was satisfied. In our case the algorithm ended after a constant number of 
evaluations of the fitness function. The algorithm is based on function evalua-
tions which are implemented by repeatedly solving the state Equations (16). Af-
ter 2400 times of function evaluations we reached the result of optimization 
problem (18):  

(
)

0 1.266 1, 7.284 2,2.572 1, 1.261 1,

1.384 1, 7.238 3,2.788 2 .

e e e e

e e e

= − − − − − −

− − − −

r
 

In Figure 4, Line 2 is the target design and Line 1 is the final design obtained 
as the result of optimization. The euclidean distance between the two lines is 
0.5e−2. The computations were run on a personal computer with Intel core CPU 
@ 2.30 GHz and 2.0 GB RAM. One optimization takes about 5 minutes of CPU 
time.  

Conclusion 

The results of numerical experiments show that our proposed method is feasible 
and effective for the optimal shape design problem. 
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