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Abstract

In this works, by using the modified viscosity approximation method asso-
ciated with Meir-Keeler contractions, we proved the convergence theorem for
solving the fixed point problem of a nonexpansive semigroup and generalized
mixed equilibrium problems in Hilbert spaces.
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1. Introduction

As you know, there are many problems that are reduced to find solutions of
equilibrium problems which cover variational inequalities, fixed point problems,
saddle point problems, complementarity problems as special cases. Equilibrium
problem which was first introduced by Blum and Oettli [1] has been extensively
studied as effective and powerful tools for a wide class of real world problems,
which arises in economics, finance, image reconstruction, ecology, transporta-
tion network and related optimization problems.

From now on, we assume that H is a real Hilbert space with inner product
(v and norm |||| ,and K isa nonempty closed convex subsetof H. R is
denoted by the set of real numbers. Let G:KxK — R be a bifunction. Blum
and Oettli [1] consider the equilibrium problem of finding X € K such that

G(x,¥)=0,VyeK. (1.1)

The solution set of problem (1.1) is denoted by EP(G), ie,
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EP(G)={xeK:G(x,y)>0,Vy e K}

Recently the so-called generalized mixed equilibrium problem has been inves-
tigated by many authors [2] [3]. The generalized mixed equilibrium problem is
to find X e K. such that

G(x,¥)+o(y) +{(AX, y —X) 2 p(X), Vy € K, (1.2)

where A:K — H is a mapping and ¢:K — RU{+x} is a real valued func-
tion. We use GMEP(G, A, ¢) to denote the solution set of generalized mixed

equilibrium problem Ze.,

GMEP(G, A, p) = {x e K:G(X, y) +(AX, Yy = X) + o(y) —(X) 20, Vy e K}.

The problem (1.2) is very general in the sense that it includes, as special cases,
optimization problems, variational inequality problem, minimax problems, the
Nash equilibrium problems in noncooperative games and others (see [4] [5] [6]
(7] [8] [9] [10] [11] [12]).

Special Cases: The following problems are the special cases of problem (1.2).

1)If A=0 then (1.2)is equivalent to finding X € K such that

G(xy)+o(y) -9(x) 20, vy e K, (1.3)

is called mixed equilibrium problems.
2)If G=0 then (1.2) is equivalent to finding X € K such that

(A Y =) +9(y)-¢(x) 20, vy e K, (1.4)
is called mixed variational inequality of Browder type [13].
3)If ¢=0 then (1.2)is equivalent to find X e K such that
G(X,¥Y)+{AX,y—x)>0,VyeK, (1.5)

is called generalized equilibrium problems (shortly, (GEP)). We denote GEP(G,A)
the solution set of problem (GEP).

4)If A=0 and ¢ =0 then (1.2) is equivalent to (1.1).

5) Let G(X,y)=(AX,y—x), forall X,yeK.Then we see that (1.1) is reduc-
es to the following classical variational inequalities for finding X e K such that

(AX,y—Xx)>0,VyeK. (1.6)

It is known that X e K is a solution to (1.6) if and only if X is a fixed point
of the mapping P (I —pA), where p>0 is a constant and 7 is an identity

mapping.
Let T:K — K be a mapping from K into itself. Let denote F(T) the set
of fixed points of the mapping T. A mapping T is said to be nonexpansive if

Tx=Ty|<|x-y|,vx,y e K.
A mapping T is said to be contractive if there exists a constant « €[0,1) such
that

Tx=Ty|<a|x-y|, vx, y e K.

A mapping T iscalled o -inverse strongly monotone if there exists a constant
a >0 such that
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(Tx=Ty,x—y) > a||TX—Ty||2 X,y eK.
Remark 1.1 Every ¢« -inverse strongly monotone mapping is monotone and

1. . .
— -Lipschitz continuous.
a

In 1967, Halpern [14] introduced the following iterative method for a nonex-

pansive mapping T :K — K in a real Hilbert space, for finding x € K and

Xpu = U+ (1— ) TX,, n>1 (1.7)

where {o,}<(0,1) and ueK isfixed.
Moudafi [15] introduced the viscosity approximation method for a nonex-

pansive mapping T as follows: For finding x, e K and

X = F (%)) + (1=, ) TX,,n>1 (1.8)

where {¢,}<(0,1) and f isa contraction mapping.

A viscosity approximation method with Meir-Keeler contraction was first stu-
died by Suzuki [16]. Very recently Petrusel and Yao [17] studied the following
viscosity approximation method with a generalized contraction: for finding

X, €K and

Xn+1 = an+l f (Xn ) + (1_ an+1)Tn+1Xn' nz O’

where {¢,}<(0,1) and {T },, isafamily of nonexpansive mappingson K.
Takahashi and Takahashi [18] introduced the following iterative scheme for
solving a generalized equilibrium problems and a fixed point problems of a

nonexpansive mapping T ina Hilbert spaces H : Finding x,ue K and
u, € K such that

G(u,, y)+<Axn,y—un>+I%(y—un,un -x,)20,yeK, (1.9)

n

Xoir = BoXo + (1= B,)T [ @ u+(1-a, )u, |, n=1,

where {¢,}<(0,2),{8,}<(0,1),{r,} = (0,0) and A is an ¢« -inverse strongly
monotone mapping. They proved that the sequence {X,} generated by (1.9)
strongly converges to an element in F(T) "GEP(G, A) under suitable condi-
tions.

In this paper, from the recent works [19] [20] [21] [22] [23] [24] [25] [26], we
introduced an iterative scheme by the modified viscosity approximation method
associated with Meir-Keeler contraction (see [27]) for solving the generalized
mixed equilibrium problems and fixed point problem of a nonexpansive semi-
group in Hilbert spaces, and also we discussed a convergence theorem. Finally
we apply our main results for commutative nonexpansive mappings and semi-

group of strongly continuous mappings.

2. Preliminaries

Let S be a semigroup and ¢”(S) be the Banach space of all bounded real
valued functionals on S with superimum norm. For each s e S, we define the
left and right translation operators |, and r, on ¢*(S) by (I, f)(t)= f(st)
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and (r,f)(t)=f(ts) foreach teS and f €/(7(S), respectively. Let X bea
subspace of /”(S) containing 1. An element x in the dual space X* of X
is said to be a mean on X if ||,u|| = u(l) =1. We denote the value of u at the
function f by u(f). According to the time and circumstances, we write the
value u(f) by sz (f(t)) or ‘[f (t)du(t) . It is well known that 4 is a mean
of X ifandonlyifforeach f X,

isrgg f(s) < u(f)<supf(s).

seS

Let Xbe a translation invariant subspace of ¢*(S) (ie, I X <X and
rrX c X foreach se$S) containing 1. Then a mean x on X is said to be left
invariant (resp. right invariant) if u(l,f)=u(f) (resp. u(r,f)=pu(f)) for each
seS and feX.A mean gon Xis said to be invariant if 4 is both left and
right invariant [28] [29]. S'is said to be left (resp. right) amenable if X has a left
(resp. right) invariant mean. S'is amenable if Sis left and right amenable [30]. In
this case £*(S) also has an invariant mean. It is known that ¢*(S) is amena-
ble when Sis commutative semigroup or solvable group. However the free group
or semigroup of two generators is not left or right amenable (see [31]). A net

{1,} of mean on Xis said to be left regular if

I, = 12, =0,

lim
(24

foreach seS, where I, isthe adjoint operator of .

Let K beanonempty closed convex subset of H . A family
S={T(s):seS} is called a nonexpansive semigroup on S if for each S€S,
the mapping T(S): K — K is nonexpansive and T(st) =T (S)T(t) for each
s,teS (see [30] [30]). We denote by F(S) the set of common fixed point of
S,ie,

FS)=F(T(s))=(){xeK:T(s)x=x}.

seS seS

Assume that B, is a open ball of radius r centered at 0 and COA is a
closed convex hull of Ac H.For €¢>0 and amapping T:D — H, the set of
€ -approximate fixed points of T will be denoted by F (T,D), ie,

F.(T,D)={xeD:|x-Tx|<¢|.

Lemma 2.1 [32] Let f be a function of a semigroup S into a Banach
space E such that the weak closure of {f (t):te S} is weakly compact and X
a subspace of (”(S) containing all the function t — {f(t),x") with X €E".
Then for any pe X" there exists a unique element f, in E such that for all
X eE",

(£, ) =m (F@0.X).
Moreoverif y isameanon X then

[f®dut)eco{f(t):tes}.

We can write 1, by [f(t)du(t).
Lemma 2.2 [32] Let K be a closed convex subset of a Hilbert space H.Let
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S={T(s):seS} be a nonexpansive semigroup from K into itself such that
F(S)=J, X beasubspaceof (*(S) containing I, the mapping
t > (T @)X, y) bean elementof X foreach xeK and yeH and u bea
meanon X .Ifwewrite T ,X instead of €T (t)xdu(t), then the following state-
ments hold.

1) T, isanonexpansive mapping from K into K,

2) T,x=x foreach xeF(S),

3) T,x ea{T(t)X:t €S}, foreach xeK

4) if p is left invariant then T, is a nonexpansive retraction from K into
F(S).

Let K be a nonempty closed convex subset of a real Hilbert space H . Then
for any XeH there exists a unique nearest point in K, denoted by B, (x)
such that forall yeK,

[x=Rc el <=y,

where P, is the metric projection of H onto K. We also know that for
XeH and zeK,z=P/x ifandonlyifforall yeK,
(X—2,y—12)<0.

A mapping y:R, -> R, is said to be an L -function if w(0)=0,p(t)>0
for each t>0 and for every S>0 there exists U>S such that y(t)<s for
all te[s,u]. Asa consequence, every L -function y satisfies y(t) <t for each
t>0.

Definition 2.3 Let (X,d) be a metric space. A mapping f:X — X issaid
tobea

1) (w,L)-contractionif w:R, >R, isan L -function and
d(f(x), f(y)) <w(d(x,y))

forall x,ye X with x=y;

2) Meir-Keeler type mapping if for each €>0 there exists & =0(¢) >0 such
that for each x,ye X with d(x,y)<e+J we have d ( f(x), f(y)) <e (see
(33] [34]).

Theorem 2.4 [34] Let (X,d) be a complete metric space and f :X — X
is a Meir-Keeler type mapping. Then f has a unique fixed point.

Theorem 2.5 [35] Let (X,d) be a complete metric space and f :X — X
is a mapping. Then the following statements are equivalent.

1) T isa Meir-Keeler type mapping,

2) there exists an L -function y:R, > R, such that f isa (y,L) -con-
traction.

Theorem 2.6 [16] Let K be a convex subset of a Banach space E and let

f:K > K be a Meir-Keeler type mapping. Then for each € >0 there exists
r e (0,1) such that for each X,y e K with ||X— y|| >¢ we have

[FCO=f () <rlx=y-

Proposition 2.7 [31] Let K be a convex subset of a Banach space E, T
be a nonexpansive mapping on K and f:K — K be a Meir-Keeler type
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mapping. Then the following statements hold:

1) Tof isaMeir-Keeler type mapping on K.

2) For each a€(0,1), the mapping X —> af(X)+(A-a)T(x) is a Meir-
Keeler type mapping on K.

Lemma 2.8 [36] Assume that {a,} is a sequence of nonnegative real number
such that

an+1 < (1_pn)an +pn5n’ n 21'

where {p,} isasequencein (0,1) and {5,} isasequencein R satistying
1) Z:le h =%
2) limsup, .5, <0 or D" | p,6, <.

Then lim__ a, =0.

Lemma 2.9 [37] Let {x,} and {z,} be bounded sequences in a Banach space
E such that

Xou1 = = 5,)Z, + B, %, Vn 21,

where {f.} isareal sequencein (0,1) with
O0<liminf g, <limsup g, <1.
n—oo

n—oo

If

lim SUD(| Zog— Zn||_||xn+l - Xﬂ”) <0,
nN—oo

then

lim |z, —x,||=0.

nN—oo

Lemma 2.10 [38] Let O< p<t,<q<1 forall n>1. Suppose that {X,} and

{y.} aresequencesin H such that

limsup|x,||<r, limsuplly,|<r
nN—o0 n—w

and

lij?o"tnxn +(1_tn)yn|| =r

for some r>0. Then we have
timx, -y, =0.

Lemma 2.11 [39] Let K be a nonempty closed convex subset of a real Hilbert
space H and T:K — K be a nonexpansive mapping with F(T) = &. Then
| =T is demiclosed at zero, that is, for all sequence {X.}c K with X, —y
and ||Xn -Tx, || — 0 Jjtfollows that y =Ty.

For solving the equilibrium problem we assume that bifunction G satisfies
the following conditions:

(A1) G(x,x)=0,vxeK;

(A2) G is monotone, Ze, G(X,y)+G(y,X)<0,VX,yeK;

(A3) foreach x,y,zeK, lim_,G(tz+(1-t)x,y) <G(x,Y);

(A4) foreach xe K, y—>G(XYy) isconvex and lower semicontinuous.

Lemma 2.12 [1] Let K be a nonempty closed convex subset of a real Hilbert
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space H and G be a bifunction from KxK to R satistying (A1)-(A4). Then
forany r>0 and XeH, thereexists 7€ K such that

G(z, y)+1<y—z,2—x> >0,vyeK.
r
Further, if

Trx:{ZG K :G(z,y)+l<y—z,z—x>20,Vye K},
r

then we have the followings:
1) T, issingle-valued,

2) T, Iisfirmly nonexpansive, ie., for any X,y e H
"Trx _Tr y”2 < <TrX _Tr Y, X— y>-

3) F(T,)=EP(G);
4) EP(G) is closed and convex.
Lemma 2.13 [18] Let H,K,G and T,X be asin Lemma 2.12. Then we have

[Tox=T.x[* ss—_t<Tsx—Ttx,Tsx—x>,
s
forall s,t>0 and xeH.

3. Main Results

Theorem 3.1 Let K be a nonempty closed convex subset of a Hilbert space H .
Let S be a semigroup, S={T(t):teS} be a nonexpansive semigroup on S,
G:KxK —> R be a bifunction satistying (A1)-(A4) and A:K—>H bean « -
inverse strongly monotone mapping with
F =F(S)NnGMEP(G, A ¢) = D.

Let ¢:K > RuU{+w} be a proper lower semicontinuous and convex function,
X be a left invariant subspace of (*(S) such that 1€ X and the function
t > (T{)X,y) bean element of X foreach Xx,yeK. Let {u,} be aleft regular
sequence of means on X such that ||,un+1 — U, || —0 as n>w and f:K->K
be a Meir-Keeler contraction. Let {x,} be the sequence generated by x €K

and

u, € K such that

1
G(un' y)+<AXn’y_un>+r_<y_un!un _Xn>+¢(y)_(o(un) 2Oivye K,

n

Xn+1 = ﬂnxn +ﬂr:Tyn [an f (Xn) + (1_an)un]+ﬂr:,en’ n 21’

where {e,} is bounded sequence in K, {a }{8.},{B.} and {B} are real
number sequences in (0,1) and {r,} = (0,00) satisfying the conditions:

(C1) B, +pB.+p/=1 0<a<p <h<l

(C2) lim,, o, =0, 3" a =

(C3) O<liminf__ «, <limsup,_,, a, <1

(C4) O<liminf _, r <limsup, , r <2a,>" | B1]< o, lim

n—wo’'n —

n—w | lha—h |: 0.

Then the sequence {X.} strongly convergesto peF which is also solves the

following variational inequality problem:
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(f(p)-p,a-p)<0,vqeF. (.1
Proof. We give the several steps for the proof.
Step 1: First we show that {X} is bounded. Put u, =T (X, —1,AX,) and
y,=a,f(x,)+(1—e,)u, forall n>1. Thenfor we F, wehave

u, —W||2 =T (%, —rAX)-T, (w-r, AW)"2

<[|(%, 1, A%,) — (W1, Aw)|
<[[(x, —w) -1, (Ax, - AW)||2
<%, =W - 2r,(x, —w, Ax, — Aw) + 12| Ax, — A’ (3.2)
<|%, W —2r.a|| Ax, — Aw|” + 2 | Ax, — Aw]
<[, —w + 1. (r, — 2a) | Ax, — Aw]
<l -
Set T,=a,1 +(1-¢,)T ,then T, isnonexpansiveand F(T,)=F(T).Hence
we have

s =]

< B[ =W+ By [T, ¥ —W”+/3n”
< Bulpa = wll+ B2y =Wl + 7 e —w|
< B, % =W+ By (@, | F (%) W]+ A—a,) |u, —w])+ B
< B, % — W+ B (a, | F (%) — f (W)[|+a, || f (W) —w]|+ (L—a,) || x, —w])
+Brllen —w
< B, [ = wl+ 5 (%, — W) + 2 [ £ (W)~ W]+ (0=, ) [, — ]
+ il —w
<%, = W=, (8" 1| %, = WD) + e, B (7 (| £ (w) —wiD) + 37
< max {[x, — w77 (| £ (w) - w]). e, - w}.

e, - W||

e, —w|

e, —W|

By induction, we can prove that

P < ma sl (£ ) - o, ] w21

Hence the sequence {X,} is bounded. So {f(x,)}{u.}.{y,} and {T, y,} are
all bounded.
Step 2: We next show that
AL”Q:HXM -x,[|=0.

Observe that
r|1i~r>To10||T/‘n+1 yn _T/ln yn =0. (33)
Indeed
[T Yo =T, sup T Vo= Yoo z)‘

=W3|(ym)s (T(8)Ynr2) = (1) (T ()Y, 2)

<ty = 11, IISSUEIIT O}
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Since {y,} isboundedand lim, ||,un+l - U, || =0, (3.3) holds. Since
u, = Trn (Xn - AXn) and Unys = Trn+l (X

||un+1 _un" =T, (X it AXn+1) _Trn (Xn - rnAXn)

My VN4l n+l
<

—r.,AX ), we have

n+1

Trml (Xn+1 - r-na-lAXm-l) _Trnﬂ (Xn - Axn)

+

T, (% —LAX) =T, (X, —1,AX,)

< ||(Xn+1 - rn+lAXn+1) - (Xn - Axn)” +

T (X —LAX) =T, (X, —1,AX,)

(3.4)
< ||(Xn+1 - rn+lAXn+l) - (Xn - rnJrlen)" + "(Xn - rn+1AXn) - (Xn - AXn)"

+ Trm1 (x, —r,AX,) —Trn (x, —r, AX,)

<

Xni1 — Xq " + |rn+1 - rn|||AXn " +

L (x, —r,AX,) -T. (x, —r,AX,)

From yn =a, f (Xn) + (1_ an)un and yn+1 =0 f (Xn+l) + (1_ an+1)un+1’ we have
yn+1 - yn =0y f (Xn+l) + (1_an+1)un+1 _(an f (Xn) + (1_an)un)
= an+1( f (Xn+1) - un+1) + o (un - f (Xn)) + (un+1 _un)1

it follows that

[¥aia = Yall < s (1 O+ Juneal)) + e (Jua + [ £ 0 + Juns =ua - 3:5)
We see that
T/’n+1 Yna _T/ln Yn < T/”n+l Yna _T/lml Yl | T.”n+1 Yn _Tﬂn Ya (3 6)
<[V =Yl # [Tap Yo =T Ya -
Combining (3.4) and (3.5) with (3.6), we obtain
T Yot = T Yo < o (IF O |+ [l + o (Jua |+ )]
s =X+ [ = [ A
+ Trml (Xn - AXn) _Trn (Xn - r‘nAXn) + ||T‘un+1 Yn _Tyn Yal|-
Using Lemma 2.13, (3.3),(C1) and (%), then we have
Iir:LSSp("Tyml You _Tpn Yol — ||Xn+1 =X ") <0.
From this inequality and (C3), it follows from Lemma 2.9 that
lim [T v =% =0. (3.7)
It implies that
lim [ %1 =%, = 0. (3.8)

Step 3: Next we prove that forall teS,

lim [x,., =T (t)x,[| =0.

n+1
Put
M = max{[lx—wl. ™ (| £ (w) - w]). Je, -}

Set D={yeK :||y—W|| <M}. It is easily seen that D is a nonempty bounded
closed convex subset of K. Further {x },{y,} and {u,} arein D. To complete
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our proof, we follows that proof line as in [30]. From [40], for every €>0 there
exists 0 >0 suchthatforall teS,

coF, (T(t); D)+ B, < F (T(t); D). (3.9)
From Corollary 1.1 in [40], there exists a natural number N such that for all

t,seS,yeD,

<0. (3.10)

‘—ZT(t S)y - T(t)[ ZT(t S)Yj

Since {u,} isleft regular,for teS thereexists n, € N such that

. o
T E
T 2(M )

forall n>n, andi=12,:--,N. Therefore, we have forall nx>n,,

sup

T, Y- f ZT(ts)ydun<s)

=supsup (1), {7 (5).2) -G (2 T2

i (3.11)
gz, T (9)92)~{ ) (7 5).2)

< max (M +||W||)s§

We observe from Lemma 2.2 (iii) that

jﬁ%T (t's)yd, (s)eE{NLiT (t)T(s)y:se s}. (3.12)

+1i%

Combining (3.10), (3.12) and (3.12), we have for all ye D,n>nj,
1 i 1 N :
Tﬂny:j—N +1§T(t s)yd,un(s)+(T”ny—J‘—N +1§T(t s)ydyn(s)J

— 1 & .
eco{mZT(t )T(s)y.s € S}+ Bg (3.13)
< COF, (T (t); D) +B,.
3

Let teS and e >0. Then there exists 6 >0 which satisfies (3.9). From (C3)
there exist a,be(0,1) such that 0<a< g <b<1l. From (3.7) there exists

o= T Yol < <%, for all n>k,. So
from (3.9) and (3.13), we have
X +1 :ﬂnxn +ﬂ|;T,un yn +ﬂr:,en
= B % +(1= BT, Yo+ BL(6 =T, V)
=T, Yo+ 5, (xn -T, yn)+ ”(e -T. yn)
e coF, (T (t);D)+B, +B, +B,
3 3 3

c CoF, (T (t);D)+B, = F,(T(t); D).

e, —T#n A
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035: Scientific Research Publishing 285



J. K. Kim et al.

Hence limsup,_, ||xn =T(t)x, || <e. Since €>0 isarbitrary,

lim [x, =T (t)x, | =0.

Step 4: We next show that
lim u, —x, [ =0. (3.14)

n—oo

Using inequality (3.2), we obtain

[%oos =Wl < %0~ + 1 T, v ] + e, —wf
< Sl =il + By i + 7
< Al "+ e £ (x) ~w + @ ax) o, = )+ e, - w
<Ayl + 1

+ =) ([~ Wl + 1 (1, ~ 20 | A, - Awlf) )+

f (Xn)_W"2
+ B (-, ), (r,—2a)|| Ax, — AW + B e, —w .

e, —w||2

£ (%) -w| (3.15)

e, —w||2

< ||xrI —W||2 +Bla,

which implies that
’ 2
ﬂn (1_an)rn (Za - r.n)"AXn - AW"

< [y =l [l + | £ (x) "+ 7,

From (C1)-(C4) and (3.8), we obtain
lim || Ax, — Aw|| = 0. (3.16)

N>

Since T, is firmly nonexpansive,

lu, —w||2 =|T. (%, —rA%)-T, (w- I’nAW)HZ

< (X, =1 AX, —(W—1,AW),u, —w)
=0, =0, - (o= A+,
0% = 1 Ax) = (w1, Aw) - U, ~w)f)
< (I =+ =l =[5, ~u) - A, - A
<~ +f, o P, -
+20, (X, —U,, A, — Aw) — 7| Ax, — AW||2).
Therefore

Juy =" <, = =, ~ o,

+2r, (X, — Uy, Ax, — Aw)—r? | Ax, - Aw].

Then we have

%
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2
||Xn+1 - W||2 < ﬂn "Xn _W"2 + ﬂr: T/zn Yn _WH + ﬂr:' € - W"2
< Bl =wl + iy, = o + 7 e, —wlf
< Bl =W + B | £ 06) =W + @=at,) Ju, Wl ) + 7, —wif

< Bl —wif + 1| £ 00,) —wf

+ (1—an)(||xn W[ =%, — U, |+ 20, (%, — Uy, AX, — Aw) — 2| Ax, - AW"Z))
+ B, -
<[ =+, [ .0) w4, —u [

+2(-a,)r, ||xn —un||||Axn - Aw||+ﬂn" e, —W||2 ,

which yields
Bt =l <%y =" =[xy =l £ 0) — wlf
+2808, %, —u, [l A%, — Awl|+ e, "
Hence, from (C2), (C3) and (3.16) we obtain
!i_[r;||un —X,]| =0. (3.17)

Since y, =a,f(x,)+(1-,)u,, wehave y —u, =, (f(x,)—u,) andhence
lim|y, —u,||=0. (3.18)

On the other hand, by Proposition 2.7 (i), we know that P.f isa Meir-Keeler
contraction. From Theorem 2.4, there exists a unique element p such that
P-f(p) = p which is equivalent to
(f(P-p.a-p)<0.vgeF.
Step 5: We next show that
limsup(f(p)-p.y,—p)<0.

n—ow

To see this, we chose a subsequence {y, } of {y,} such that
limsup(f(p)=p,y, - p)=lim(f(p)-p.y, —p)-

Since {X,} is a bounded, K is closed and H is reflexive, there exists a point
7€ K such that X, —Z€ K. From (3.17) and (3.18) there exists a corres-
ponding subsequence {u, } of {u} (resp. {y, } of {y,}) such that

U, —zeK (resp. y, —z€K). Wenextshow that ze GMEP(G, A, ¢). Since
u, =T, (X, —1,AX,). We can write

G(un'y)+<AXn’y_un>+ri<y_un’un _Xn>+(o(y)_¢(un)201vye K.

n

From (A2), we have

(AX,, y—un>+i<y—un,un =X 2G(y,u,)-o(y)+e(u,) >0,y e K.
I

n

Then

K3
036"
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<AX”k’y_u"k>+%<y_unk,unk _Xnk> (3.19)

2G(y,unk)—go(y)+(p(unk)20,Vye K.

Put y, =ty+(@1-t)z, for te(0,1] and yeK.Since yeK and zeK,
Yy, € K. So from (3.19) we have

<y1 _Unk’AyI>Z<yl _unk’Ayt>_<yt _unk'AXnk>_<yt Un unkl‘_xnk >

Nk

+G (Yo ty )+ () -¢(u,,)
:<yt —unk,Ayt _Aunk>+<y: _Unk,AUnk —AXnk>

_<yt —unk,Unkr— Xo >+G(yvunk)+¢(yt)_¢(unk)

Nk

U, —X
2<yt—unk,Aunk—Axnk>—<yt_unk] nkr nk>

Nk

+G(yt,unk)+¢(yt)_¢’(“nk)

From (A4), we have
Ve =2, AY) 2 G(Y,, 2) + o(Y,) — 9(2). (3.20)
From (A1)-(A4) and (3.20), we have
0=G(y:, y)
<tG(y,, y)+(1-t)G(y,, 2)d
<IG(y, y) + A=ty — 2, Ay)
<tG(y,, y) + A=ty =2, Ay,).
It follows that
0<tG(y,, )+ A~y -2, Ay,),
letting t -0 by (A43), we have
0<G(z,y)+(y—12,Az),Vy e K.
Hence zeGMEP(G, A ). Itis easily seen that z € F(S). Indeed, since
Xo, — 2 and ||Xn -T ()X, ||—>O, for all teS, we conclude from Lemma 2.1

that ze F(S). Consequently, we have zeF =F(S)nGMEP(G, A ¢) and

hence
limsup(f (p) - p,y, - p)=lim ((p)~p.y,, - P)

=(f(p)-p,z-p) (3.21)
<0.

Step 6: Now we are in a position to show that X isa fixed pointof T .

Let lim ||Xn —W|| =d > 0. Then we have
limfx,., - w|
= tim| 4, (%, —w 7(e, =T, u ) )+ (1= 5,) (T, U W+ B2 (8, -T, 4, ))”

=d.

K2
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We note that

limsup

n—o

< limsup||x, -
n—o

X, —W+ﬁn"(en —Tﬂnun)

<d
and

Ilmsup

”n
o u, W+ﬂn(e _Ty un)

< Ilmsup"T# u, —W||+Iimsupﬂn" e,
n—o " —0

<limsup|u, —w]+limsup 8. |e, —u,| < d.
n—w n—w

It follows from Lemma 2.10 that

lim =0. (3.22)
On the other hand, we have
T X0 = %ol [ ST, X
T, Un = Xa|[-
It follows from (3.17) and (3.22) that
lim =0. (3.23)

Therefore xe F(T). Let {an} be an another subsequence of {x,} converg-
ingto X, with X, # X.Similarly, we can find x, € F(T). Hence we have

d=

||_ liminf ||x —x0||

i i—w N joo

< liminf ||x —x"

]—)OC

This is a contradiction. Hence we have X =X,.

Step 7: We finally show that x, > p as n—>o.

Suppose that {X,} does not strongly converge to p e F . Then there exists
€>0 and a subsequence {an} of {x,} such that “an - p“ > ¢ forall
j€{0,-1--}. By Proposition 2.7, for this ¢ there exists r e(0,1) such that

‘f(xnj)—f(p)‘gr

(f(xnj)—p)+(1—anj)(unj—p)
u, —p” +2a, <f(xnj)—p,ynj—p>

X, —p” +2a, <f(x_)—f(p),yn_—p>+2an_<f(p)—p,ynj—p>

X —pll.
=
So we have

2

b =0 =

IA

ey

]

f1-a)
f1-a)
(1-a,)
(1-a)

IN

IN

1- o,

X, —p” +2a, r

—pH+2a <f(p) P Yo, —p>

- pH )+2anj <f(p)— Py Yo, — p>-

IN

ol s ol -
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This implies that

2
yn,—p“ (1 a_]ln;an,-r an_p“2+1fanr:jr<f(p)_p,ynj—p>.
Hence
2 2 2 2
o1 =P < By (%o, — +,Bn’j Tﬂnj Yo, +ﬂn",- e
< By, %o, — 2+,Bn’j Yo, ~ 2+ﬁn”j e, — i
+a r 2 20, P
<f, [x, - +ﬂn1{ e R T (T(0) =Py, —p) 4 e
nj
2(1 20, B,
oof e | a?“ L N
2 ’
b %{ LR e IE R S
20-r)a, By [ @,
s{l— J —pH o {2(1_10 xnj—p“uﬁﬁ(p)—p,ynj—p>}
o b of o o)
[ 20-n)a, 4 . 20-0a B | @ A (- ajr) ,
T e AU T | PYre )*2( e i, 1P
1-a, r)pB’

+ﬁ<f(p)—p,ynj—p>—m enj—pz

Using (3.21) and (C2), we can conclude by Lemma 2.8 that Xo, = P as
j > oo . This is a contradiction and hence the sequence {X,} converges to
p € F . Thus we completes the proof. ]
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