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Abstract 
In this paper, we use the generalized hypergeometric series method the high- 
order inverse moments and high-order inverse factorial moments of the ge-
neralized geometric distribution, the Katz distribution, the Lagrangian Katz 
distribution, generalized Polya-Eggenberger distribution of the first kind and 
so on. 
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1. Introduction 

The moment is one of the most widely used features of probability of random 
variables. The moments of random variables have been widely used in many 
important fields such as finance, probability theory, statistics and so on. So the 
calculation of the moment is very important. The inverse moment is a hot re-
search direction in recent years. Inverse moment plays an important role in risk 
assessment, insurance and finance, and it is an important concept in probability. 
The study of the inverse moments originates from random sampling, x  is the  

number of observations 1 2, , xz z z  with mean 1 2, , xz z z
Z

x
=



 
if  

( )1,2iz i x=   is independent and identically distributed random variable, the 

variance is 2σ ,when x  is a constant, the variance of z  is 
2

x
σ

, but when the 

x  is a random variable, the variance of z  was 2 1E
x

σ  
 
 

, at this point in the  
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sampling problem of inverse moment are introduced. Generally, the distribution 
of x  is mainly the Poisson distribution, binomial distribution and so on. 

The research on inverse moments of the binomial distribution and the Pois-
son distribution has been a long history. In 1945, Frederick F. Stephan studied 
the inverse moments of first and second order of the binomial distribution (see 
[1]). Grab and Stephan calculated tables of reciprocals for binomial and Poisson 
distribution as well as derive a recurrence relation. They also derived an exact 
expression for the first inverse moment (see [2]). Govindarajulu in 1963 a recur-
sive formula moments of binomial distribution has been obtained (see [3]). In 
1972, Chao and Strawderman (see [4]) considered slightly different inverse mo-  

ments defined as 
( )

1
rE

x a

 
 
 + 

 which are frequently easier to calculate. 

At present, more and more scholars are interested in the study of inverse 
moment, and have a wealth of research results mainly binomial distribution, 
Poisson distribution, negative binomial distribution, logarithmic distribution 
(see [5]). In this paper describes the use of generalized hypergeometric series in-
verse moments and factorial inverse moment distribution of some. It mainly in-
cludes Janardan discussed the distribution of the generalized Polya-Eggenberger 
distribution of the first kind, and the special value of the parameters (see [6]). 

In the next, we will give some definitions necessarily. 
Definition 1: Suppose X is a generalized geometric random variable with pa-

rameters λ , having probability mass function  
1 2( ) (1 ) , 1, 2, ,x

xP x xλ λ λ−= − =                  (1) 

where 0 1λ< <  
Definition 2: Suppose X is a generalized Polya-Eggenberger of the first kind 

random variable with parameters , , ,a b c β  having probability mass function 

( ) ( ), 1 , 0,1, 2, ,
a xb

x cx

a a xb xcP a xca xb x xc

β β β
++ + = − = +  +  

        (2) 

where 0, 0, 0,0 1.a c b c β> > + ≥ < <  
Definition 3: Suppose X is a Katz random variable with parameters , ,a β  

having probability mass function 

( ) ( )
1

, 1 , 0,1,2, ,
a

x
x

a x
P a x

x
βββ β β

 + − = − =  
 

             (3) 

where 0,0 1.a β> < <  
Definition 4: Suppose X is a Lagrangian Katz random variable with parame-

ters , , ,a b β  having probability mass function 

( ) ( ), 1 , 0,1, 2, ,
a xb

x
x

a a xb x
P a xa xb x x

β β
β β ββ β β

β β

+
 + + = − =  + +  


     (4) 
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where 0, 0,0 1.a b β β> + ≥ < <  
The definition of generalized hypergeometric series: 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 1 2

1 2 1 2

0 1 21 2

2
1 1 2 2

1 1 2 2

, , , , , , ; , , , , ,

1
!

1 1 1
  

1 1 1 2!

p q p q

kk k n k k k
pn n pn

k k k kk k
n qqn n n

kk k
p p

kk k
q q

F a k a k a k b k b k b k z

a a a z a a a
z

b b bb b b n

a a a a a a z

b b b b b b

∞

=

  

⋅
= = +

⋅

 + + +        + +
 + + +        

∑

 















 

where ( ) ( ) ( ) ( ) ( ) ( )0
1 2 1 , 1, 1, 2, , .k k k k k k

i i i i i in
n i pλ λ λ λ λ λ= + + + − = =   

If 1k =  then 
( ) ( ) ( )
( ) ( ) ( )

1 2

0 1 2

.
!

n
pn n n

p q
n qn n n

a a a zF
nb b b

∞

=

= ∑




 is hypergeometric series. 

2. The Inverse Moments of Some Discrete Distributions 

In this section, we use a generalized hypergeometric series to obtain the inverse 
moments of some discrete distributions.  

Theorem 2.1: Suppose x  is a generalized geometric random variable with 
parameters λ , for 0 1λ< < , then the inverse moment of thk  order is given by 

( ) ( )
( )

( ) ( )
2

2 1
1

1, , 2; 2, ;
1

k
kE X A F A k A k

A
λ

λ− −
+ = + +  +

 

where 0A ≥ . 
Proof. By definition 1, then 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )

( ) ( )
( ) ( )

( )
( )

( ) ( )
( )

( )
( )

( ) ( )

21

1

2 2 22

2 2

2

0

2

2 1

11

1 2 1 3 1
1 2 3

1 2 3 1 22( 1)1
1! 2!1 2 2 3

1 21
!1 2

1
1, , 2; 2, ; .

1

k x
k

x

k k k

k kk

k k k k

k n
n n

k k
n n

k

E X A x
x A

A A A

A AA
A A A A

A
nA A

F A k A k
A

λ λ

λ λ λ λ λ

λ λ λ

λ λ

λ
λ

∞
− −

=

∞

=

+ = −
+

− − −
= + + +

+ + +

 − ⋅ + ++ = + + + 
+ + + +  

+−
= ⋅

+ +

−
= + +  +

∑

∑



  

Note: when 1k = , the inverse moment of first order is given by 

( ) ( ) [ ]
2

1
2 1

1
1,2; 2;

1
E X A F A A

A
λ

λ− −
+ = + +

+  

Theorem 2.2: Suppose x  is a generalized Polya-Eggenberger of the first kind 
random variable with parameters , , , ,a b c β  for 0, 0, 0,0 1.a c b c β> > + ≥ < <  
then we have the inverse moment of thk  order is given by 
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( )

( )

( )
( ) ( ) ( ) ( )

1

3 21

1 1
1 , ,1; 2, , 2; 1

1

a b
c b

c
k

E X A
a

a n b cc F A A k
cA

β β
β β

−

+

+

−  + + + 
= + + −  

+    

 

where 0, 0,1,2A n≥ =   
Proof. By definition 2, then 

( ) ( )
( )

( )
( )

( )
( )

( )

( )
( )

( )

1

1

1 11

1 !
11

! !

21 1
11 1 1

1 2 2!

3 31 1 2
 

a xbk x c
k

x

a xb
x c

k
x

k

a b b
c c

k k

k

a xb xaE X A c
a xbc x Axx

c
a xb x

a c
a xbc x Ax

c
a bA

a c
c A A

a b a bA
c c

β β

β β

β β β β

+∞
−

=

+∞

=

+

+ + + = − +    ++   
 

+ + − 
 = −

+  +
 
 

 + + +   = − + −
+ + ⋅


+ +   + + +  

   +

∑

∑

( )
( )

( )
( )

( )

( )
( )

( ) ( )

( ) ( )
( )

( )

( )
( ) ( )

2
2

2
2

3 2

1
3 3!

21 1 1 111 1
1!1 2 2

3 31 2 1 2 2 1 1
 

2!3 2 3 2

1 1
1, , ,1;

1

b
c

k

k b
a b c

c
k k

k k b
c

k k

a b
c

k

A

a bA
a c
c A A

a b a bA A
c c

A A

a
a n b cc F A k

cA

β β

β β
β β

β β

β β

+

+


 − + 

+ ⋅ 


 + + + ⋅  −  = − + ⋅
+ + ⋅


+ +    + + + + ⋅ ⋅    −    + ⋅ + 

+ + ⋅ ⋅ 


− + + + 
= +   +  





( ) ( )2, , 2; 1 .
b
cA k β β

 
+ − 

  

 

Note: when 1k = , the inverse moment of first order is given by 

( )

( ) ( ) ( )

1

3 2

1 1
1, ,1; 2,2; 1 .

1

a b
c b

c

E X A
a

a n b cc F A A
A c

β β
β β

−

+

+

−  + + + 
= + + −  +    

 

Let 0, 1b k= =  in theorem 2.2, then inverse moment of first order of the 
Polya-Eggenberger distribution is 

( )
( )

1
3 2

1
1, ,1; 2,2; .

1

a
c

a
a ccE X A F A A

A c

β β
β−

−  +  + = + +  +   
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Let 1, 1, 1b c k= − = =  in theorem 2.2, then inverse moment of first order of 
the binomial distribution is 

1
1

3 2
(1 )( ) 1, ( ),1; 2,2; .

1 1

aaE X A F A a n A
A

β β β
β

−
−  −

+ = + − + + − 
 

Let 1, 1, 1c k b γ= = = −  in theorem 2.2, then can get the theorem 1 in the [5] 
1

1 1
3 2

(1 )( ) 1, ( 1) ,1; 2,2; (1 ) .
1

aaE X A F A a n n A
A

γ
γβ β γ β β

+ −
− −−  + = + + + − + − +

 

Let 0, , , 1bc k
a c

αβα θ→ = = =  in theorem 2.2, then inverse moment of first 

order of the generalized Possion distribution is 

[ ](1 )
1

2 2
1 ( 1)

( ) 1,1; 2,2; .
1

neE X A F A A
A e

θ α

θα

θ αθ − +
−  + +

+ = + + +  
 

Corollary 2.1: Suppose x  is a Katz random variable with parameters , ,α β  
for 0,0 1.α β> < <  then the inverse moment of order is given by 

3 2
(1 )( ) ( 1, ), ,1;( 2, ), 2; .
( 1)

a

k
k

a aE X A F A k A k
A

ββ β β
β

−   − +
+ = + +  +   

 

where 0, 0,1,2A n≥ =   
Proof. Let 0,b c β= =  in theorem 2.2, By definition 3, then 

3 2
(1 )( ) ( 1, ), ,1;( 2, ), 2; .
( 1)

a

k
k

a aE X A F A k A k
A

ββ β β
β

−   − +
+ = + +  +   

 

Note: when 1k = , the inverse moment of first order is given by 

1
3 2

(1 )( ) 1, ,1; 2,2;
1

a

a aE X A F A A
A

ββ β β
β

−   − +
+ = + +  +   

 

Corollary 2.2: Suppose x  is a Lagrangian Katz random variable with para-
meters , , ,a b β  for 0, 0,0 1a b β β> + ≥ < < , then the inverse moment of kth 
order is given by 

( )

3 2
(1 ) ( 1)( 1, ), ,1;( 2, ), 2; (1 )
( 1)

k

a b
b

k

E X A

a a n bF A k A k
A

β
ββ β β β

β

−

+

+

  − + + +
= + + −  +    

 

where 0, 0,1,2A n≥ =   
Proof. Let c β=  in theorem 2.2, by definition 4, then 

( )

3 2
(1 ) ( 1)( 1, ), ,1;( 2, ), 2; (1 )
( 1)

k

a b
b

k

E X A

a a n bF A k A k
A

β
ββ β β β

β

−

+

+

  − + + +
= + + −  +    

 

Note: when 1k = , the inverse moment of first order is given by 

thk
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1
3 2

(1 ) ( 1)( ) 1, ,1; 2,2; (1 )
1

a b
ba a n bE X A F A A

A

β
ββ β β β

β

+

−
  − + + +

+ = + + −  +    
 

3. The Factorial Inverse Moments of Some Discrete  
Distributions 

In this section, we use generalized hypergeometric series to obtain the inverse 
factorial moments of some discrete distributions. 

Theorem 3.1: Suppose x  is a generalized geometric random variable with 
parameters λ , for 0 1λ< < , then the factorial inverse moment of thk  order is 
given by 

[ ]
[ ]

2

1 1
1

(1 )( ) (2, 1);( 2, ); .
( 1)!

kl

k
i

E x i F k l k
l

λ λ
−

=

− + = + +  + 
∏  

where .l Z +∈  
Proof. By definition 1, then 

( )

( )

( )
( )
( )
( )

21

11 1

21

1

2 2

2 2

1( ) 1

!1
( )!

1 2 (2!) 3 (3!)1
( 2) ( 2) ( 3)1 !

1 2 2 2 3 3 21
1! 2!( 2) ( 2) ( 3)1 !

k kl l
x

xi i

k
x

x

k k

k k k k

k k k

k k k k

E x i x
x i

xx
l x

l l ll

l l ll

λ λ

λ λ

λ λ λ

λ λ λ

∞
−

== =

∞
−

=

   + = −    +  

 
= −  + 

−  ⋅ ⋅
= + + + 

+ + ++    

−  ⋅ ⋅ ⋅ ⋅
= + + ⋅ +

+ + ++   

∑∏ ∏

∑





( )
( )

[ ]

( )
( )

[ ]

2

2 1

2

1 1

1
(2, ), 2;( 2, );

1 !

1
(2, 1);( 2, ); .

1 !

k

k

F k l k
l

F k l k
l

λ
λ

λ
λ





−
= +

+  

−
= + +

+  

 

Note: when 1k = , the factorial inverse moment of first order is given by 

[ ]
1 2

1 1
1

(1 )( ) (2, 2); 2; .
( 1)!

l

i
E x i F l

l
λ λ

−

=

− + = +  + 
∏  

Theorem 3.2: Suppose x  is a generalized Polya-Eggenberger of the first kind 
random variable with parameters , , , ,a b c β  for 0, 0, 0,0 1,a c b c β> > + ≥ < <  
then we have the factorial inverse moment of thk  order is given by 

1

3 2

( )

(1 ) ( 1)(2, ), ,1;( 2, ), 2; (1 ) .
[( 1)!]

kl

i

a b
c b

c
k

E x i

a
a n b cc F k l k

cl

β β
β β

−

=

+

 +  

−  + + + = + −  +   

∏

 

where , .l Z n N+∈ ∈  
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Proof. By definition 2, then 

11 1

1

1 1( ) (1 )

1 !
!(1 ) ,

( )! !

2(2!) 1
1(1 ) 1

[( 1)!] ( 2

k ka xbl ll
x c

xi i

ka xbl
x c

x

k
a xb

c
k

a xb xaE x i ca xbc x ix x
c

a xb x
a xc

a xbc l xx
c

a b
a c
c l l

β β

β β

β β

− +

== =

+

=

+

+ +    + = −     + +      +   
 

+ + −    = −  + +    
 

+ + 
 = − +

+ +

∑∏ ∏

∑

2
2

_

3 2

(1 )
) 2!

3 3(3!) 1 2
 (1 )

( 2) ( 3) 3!

(1 ) ( 1)(2, ), ,1;( 2, ), 2; (1 ) .
[( 1)!]

b
c

k

k
b

c
k k

a b
c

b
c

k

a b a b
c c

l l

a
a n b cc F k l k

cl

β β

β β

β β
β β

+


 − ⋅


+ +   + +     + − + 
+ + ⋅ 



−  + + + = + −  +   



 

Note: when 1k = , the factorial inverse moment of first order is  

1

2 1
1

(1 ) ( 1)( ) ,1; 2; (1 )
( 1)!

a b
c bl

c

i

a
a n b ccE x i F l

l c

β β
β β

+

−

=

−  + + +   + = + −    +     
∏  

Let 0, 1b k= =  in theorem 3.2, then factorial inverse moment of first order 
of the Polya-Eggenberger distribution is 

1

2 1
1

(1 )
( ) ,1; 2;

( 1)!

a
c

l

i

a
a ccE x i F l

l c

β β
β

−

=

−  +    + = +    +     
∏  

Let 1, 1, 1b c k= − = =  in theorem 3.2, then factorial inverse moment of first 
order of the binomial distribution is 

1 1

2 1
1

(1 )( ) ( ),1; 2;
( 1)! 1

al

i

aE x i F a n l
l

β β β
β

− −

=

 − + = − +   + −   
∏  

Let 1, 1, 1c k b γ= = = −  in theorem 3,.2, then can get the theorem 6 in the 
[5] 

1 1
1

2 1
1

(1 )( ) ( 1) ,1; 2; (1 )
( 1)!

al

i

aE x i F a n n l
l

γ
γβ β γ β β

− + −
−

=

−   + = + + − + −   + 
∏  

Let 0, , , 1bc k
a c

αβα θ→ = = =  in theorem 3.2, then factorial inverse moment 

of first order of the generalized Possion distribution is 
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θ α

θα

θ αθ
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∏  
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Corollary 3.1: Suppose x  is a Katz random variable with parameters , ,α β  
for 0,0 1.α β> < <  then the factorial inverse moment of thk  order is given by 
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l

ββ β β
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  − + + = +      +    
∏  

where .l Z +∈  
Proof. Let 0,b c β= =  in theorem 3.2, by definition 3, then 
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3 2

1

(1 )( ) (2, ), ,1;( 2, ), 2; .
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kl

k
i

a aE x i F k l k
l

ββ β β
β

−

=

  − + + = +      +    
∏  

Note: when 1k = , the factorial inverse moment of first order is given by 
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(1 )( ) ,1; 2; .
( 1)!
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ββ β β
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=

  − + + = +    +    
∏  

Corollary 3.2: Suppose x  is a Lagrangian Katz random variable with para-
meters , , ,a b β for 0, 0,0 1a b β β> + ≥ < < , then the factorial inverse moment 
of thk  order is given by 
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where , .l Z n N+∈ ∈  
Proof. Let c β=  in theorem 3.2, by definition 4, then 
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Note: when 1k = , the inverse factorial moment of first order is given by 
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1
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∏  
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