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Abstract 
In this paper we show that the author’s Two Nonzero Lemma (TNCL) can be 
applied to present a simple proof for a very useful equality which was first 
proved by Karl Gustafson in 1968. Gustafson used Hilbert space methods, in-
cluding convexity of the Hilbert space norm, to prove this identity which was 
the basis of his matrix trigonometry. By applying TNCL, we will reduce the 
problem to a simple problem of ordinary calculus. 
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1. Introduction 

Given a positive matrix T , in 1968 Gustafson proved  
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0

1

inf n

n

T I λ λ
λ λ∈>

−
∈ − =

+
                    (1) 

where  

1 2 3 nλ λ λ λ≥ ≥ ≥                      (2) 

are eigenvalues of T  such that 1λ  and nλ  are the largest and the smallest 
eigenvalues of T  respectively. Please see [1] [2] [3]. 

The equality (1) played an important role in establishing what Gustafson calls 
“operator trigonometry”. In fact, for a positive matrix T  he defined sinT  to 
be 
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T T I λ λ
λ λ∈>
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+
                  (3) 

He proved (1) by using the convexity of the Hilbert space norm and other 
Hilbert space properties. 
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Later, in his investigation on problems of antieigenvalue theory, this author 
discovered a useful lemma which he calls the Two Nonzero Component Lemma 
or TNCL, for short (see [4] [5] [6]). The antieigenvalue of an accretive operator 
T  acting on a complex Hilbert space is defined to be  

( ) ( )
1 0

1

Re ,
inf
Tf

f

Tf f
T

Tf
µ µ

≠
=

= =                   (4) 

For positive matrices, there is a relationship between the antieigenvalue of T  
and SinT . In a series of papers this author applied his TNCL to compute 
antieigenvalues of different types of operators, including normal operators. He 
also applied TNCL to compute other types of antieigenvalue quantities such as 
total antieigenvalues, higher order antieigenvalues,and joint antieigenvalues. 
Furthermore, he applied TNCL to solve some optimization problems in statistics, 
econometrics, and resource allocations. Please see [5]-[11]. Although this 
Lemma is implicitly used in all of the author's earlier papers up to 2008, it was 
not until 2008 that he stated a formal description of the Lemma in his paper 
titled, “Antieigenvalue Techniques in Statistics.” Below is the statement of the 
lemma. For an early proof of the lemma please see the author’s work in [5]. 

Lemma 1 (The Two Nonzero Component Lemma) Let 1l
+  be the set of all 

sequences with nonnegative terms in the Banach Space 1l . That is, let  

( ){ }1 1, 0i il t l t+ = = ≥t                       (5) 

Let  

( )1 2, , , mF x x x                         (6) 

be a function from mR  to R . Assume ( ) k
k i ig c t= ∑t  for ( ) 1

k
ic l+ , 1l

+t , and 
1 k m≤ ≤ . Then the minimizing vectors for the function  

( ) ( ) ( )( )1 2, , , mF g g gt t t                    (7) 

on the convex set ( ){ }1 : 1i iC t l t= =∑  have at most two nonzero components.  
What make the proof of the Lemma possible are the following two facts: First, 

the convexity of the set  

( ){ }1 : 1i iC t l t+= =∑                       (8) 

Second, a special property that the functions  

( ) ( ) ( )( )1 2, , , .mF g g gt t t                    (9) 

involved possess. If we set  

( ) ( ) ( ) ( )( )1 2 3 1 2, , , , , , ,mD t t t F g g g= t t t              (10) 

then all restrictions of the form  

( )1 2 1 1, , , 0, ,i iD t t t t− +                       (11) 

of  

( )1 2 3, , ,D t t t                            (12) 

have the same algebraic form as ( )1 2 3, , ,D t t t   itself. For example if  
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( ) 1 1 2 2
1 2 22 2

1 1 2 2 3 3

, , , n n
n

t t tD t t t
t t t
β β β

λ λ λ
+ + +

=
+ + +







               (13) 

then we have  

( ) 2 2
2 22

2 2 3 3

0, , , n n
n

t tD t t
t t

β β
λ λ

+ +
=

+ +







                  (14) 

which has the same algebraic form as  

( ) 1 1 2 2
1 2 22 2

1 1 2 2 3 3

, , , n n
n

t t tD t t t
t t t
β β β

λ λ λ
+ + +

=
+ + +







               (15) 

Indeed, for any j , 1 j n≤ < ; all restrictions of the function 

( ) 1 1 2 2
1 2 22 2

1 1 2 2 3 3

, , , n n
n

t t tD t t t
t t t
β β β

λ λ λ
+ + +

=
+ + +







               (16) 

obtained by setting an arbitrary set of j  components of ( )1 2, , , nD t t t  equal 
to zeros have the same algebraic form as ( )1 2, , , nD t t t . Obviously, not all 
functions have this property. For instance, for the function ( )1 2 1 1 2, 2G t t t t t= + , 
( )1 1, 0G t t= , which does not have the same algebraic form as ( )1 2,G t t . 
In the next section we prove that Gustafson’s identity (1) can be obtained 

using this author’s the Two Nonzero Component Lemma or TNCL. Our proof is 
elementary (comparing to Gustafson’s proof) in the sense that we use only 
TNCL and techniques of calculus. 

2. A Proof of (1) Based on TNCL 

Theorem 2 Let T  be a positive matrix where  

1 2 3 nλ λ λ λ≥ ≥ ≥  

are eigenvalues of T  such that 1λ  and nλ  are the largest and the smallest 
eigenvalues of T , then 

1
0

1

inf n

n

T I λ λ
λ λ∈>

−
∈ − =

+
                    (17) 

Proof. Note that if we square the left hand side of (17) we get  

( ) 2

0 1
inf sup

x
T I x

∈> =
∈ −                      (18) 

Thus, we need to show 

( ) ( )
( )

2
2 1

20 1 1

inf sup n

x n

T I x
λ λ

λ λ∈> =

−
∈ − =

+
                (19) 

Now to follow notations usually used in differential calculus, let’s substitute 
∈  with y  and consider 

( ) 2

0 1
inf sup

x
yT I x

∈> =
−                       (20) 

instead. With this change of notation. now we apply spectral theorem to the 
positive matrix T  and assume  
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( )1 2, , , nx x x x=   

are components of x  with respect to an orthogonal basis corresponding to  

1 2 3, , nλ λ λ λ  

Therefore, we can rewrite (20) as 

( )2 2

0 1 1
inf sup 1

n

i iy x i
y xλ

> = =

−∑                    (21) 

Applying TNCL we can assume any optimizing vector  

( )1 2, , , nx x x x=   

is so that only two of its components, say 1x  and jx  are nonzero and the rest 
of them are zero. Keeping that in mind, for such optimizing vectors x  (21) will 
be reduced to 

( ) ( )
22

22 2 2

0
1

inf sup 1 1
j

i i jy
xi x

y x y xjλ λ
>

+ =

− + −           (22) 

To compute (22), let’s do some change of variables first. Substitute a  for iλ , 
b  for jλ , and x  for 2xi . (22) then becomes 

( ) ( ) ( )2 2

0 0 1
inf sup 1 1 1
y x

ya x yb x
> ≤ ≤

 − + − −              (23) 

For a fixed x  we compute the inf  in (23) with respect to y  first. 
Consider the expression 

( ) ( ) ( )2 21 1 1ya x yb x− + − −                 (24) 

We next find the derivative of (24) with respect to y  and set it equal to zero  
2 2 22 2 2 2 2 2 0b y b ax bx a xy b xy− − + + − =            (25) 

and then solve it for y . The solution is  

( )
2 2 2

a b ax bx
y

a x b x b
+ −

=
− +

                    (26) 

Assume a b>  and note that the second derivative of (24) is  
2 2 2b a x b x+ −                       (27) 

which is positive. This shows  

( )
2 2 2

a b ax bx
y

a x b x b
+ −

=
− +

                    (28) 

is indeed a minimizing value. If we substitute y  from (26) in 24) and simplify 
we get  

( )2
2 2 2

1xx a b
a x b x b

−
− −

− +
                  (29) 

The derivative of (29) with respect to x  is 

( )
( )

( )
2

2 2 2 2 2 2
22 2 2

2
a b

a x b x b x b
a x b x b

−
− − + −

− +
          (30) 

To find the optimizing value x , we solve the following equation with respect 
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to x . 
2 2 2 2 2 22 0a x b x b x b− + − =                  (31) 

The solution of (31) is 

bx
a b

=
+

                         (32) 

If we substitute the value of x  from (32) in (29) and simplify we get 

( )
( )

2

2

a b
a b
−

+
                         (33) 

The second derivative of (29) is  

( )
( )

2
2 2

32 2 2
2

a b
a b

a x b x b

−
−

− +
                 (34) 

which is negative, under our assumption that a b> . This indicates that x  
given by (32) is indeed a maximizing vector. Thus we have proved  

0
inf i j

i j

T I
λ λ
λ λ∈>

−
∈ − =

+
                   (35) 

Finally, we show that 1i =  and j n= . To show this note that 

1

1

j

i j i

ji j

i

λ
λ λ λ

λλ λ
λ

−
−

=
+

−
                      (36) 

Now define  

( ) 1
1

tf t
t

− =  + 
                       (37) 

and notice that  

( )
( )2

2
1

f t
t
−′ =
+

                       (38) 

Hence ( )f t  is decreasing and 
1

1

j

i j i

ji j

i

λ
λ λ λ

λλ λ
λ

−
−

=
+

−
 has the largest value when 

j

i

λ
λ

 takes the smallest value. That is when j n=  and 1i = . 

Remark 3 The equality (35) is valid even if T  is an infinite dimensional 
positive operator acting on a separable Hilbert space. The reason is that TNCL is 
valid both when ( )it t=  has a finite or infinite number of components. 
However, in the case of an infinite dimensional positive operator, we do not 
know for what pair of i  and j  (35) holds.  

3. Conclusion  

We showed that TNCL can be used to prove an identity which was proved by 
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Karl Gustafson in 1968. This identity was part of his min-max theorem. The 
identity was the basis of operator trigonometry. The original proof was based on 
Hilbert space techniques and convexity of operator norm. Using TNCM we 
reduced the problem to a very simple problem in elementary calculus. This 
indeed shows the power of this dimension reducing optimization lemma which 
is used by this author in many of his previous work. The lemma not only proved 
equality (1) but, as we noted in the remark above, it extended it to the case of 
positive operators on an infinite dimensional Hilbert space.  
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