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Abstract 
Characterization of unknown groundwater contaminant sources in terms of 
location, magnitude and duration of source activity is a complex problem. In 
this study, to increase the efficiency and accuracy of source characterization 
an alternative methodology to the methodologies proposed earlier is devel-
oped. This methodology, Adaptive Surrogate Modeling Based Optimization 
(ASMBO) uses the capabilities of Self Organizing Map (SOM) algorithm to 
design the surrogate models and adaptive surrogate models for source cha-
racterization. The most important advantage of this methodology is its direct 
utilization for groundwater contaminant characterization without the neces-
sity of utilizing a linked simulation optimization model. The validation of the 
SOM based surrogate models and SOM based adaptive surrogate models de-
monstrates that the quantity and quality of initial sample sizes have crucial 
role on the accuracy of solutions as the designed monitoring locations. The 
performance evaluation results of the proposed methodology are obtained 
using error free and erroneous concentration measurement data. These results 
demonstrate that the developed methodology could approximate groundwater 
flow and transport simulation models, and substitute the optimization model 
for characterization of unknown groundwater contaminant sources in terms 
of location, magnitude and duration of source activity. 
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1. Introduction 

Groundwater has a fundamental role in human life as being one of the main re-
newable sources of fresh water. Unfortunately, in recent decades, because of in-
creasing anthropogenic activities and improper management worldwide, ground- 
water is subjected to several kinds of pollutants such as seepage from: chemical 
and petrochemical infrastructure; waste water collection systems; industrial, 
mining and agriculture fields. However, usually groundwater contamination 
remains undetected for a long time and is often detected accidently by changing 
qualities of regional surface water or by chemical analysis of water collected 
from drinking water wells. Therefore, identifying the unknown characteristics of 
these contaminant sources and remediation of contaminated groundwater is a 
necessity. On the other hand, identifying unknown groundwater contaminant 
source characteristics (contaminant magnitudes, locations and time releases) 
usually are time consuming and inaccurate because of the uncertainties in the 
available hydrogeologic information and sparsity of measurement data. Also, the 
solutions may be non-unique because of high sensitivity to the monitoring data 
and model parameters. The methodologies proposed earlier to identify unknown 
groundwater contaminant characteristics can be classified into two major groups: 
methods based on statistical estimation, and methods based on optimization ap-
proaches. An extensive literature review of these methodologies can be found in 
[1]-[6]. In the approaches based on optimization, the most effective method to 
tackle this problem is the linked simulation optimization approach. The linked 
simulation optimization procedures consist of two main components: 1) models 
for simulation of groundwater flow and contaminant transport processes, 2) op-
timization model with an optimization algorithm. Some of the optimization al-
gorithms utilized are linear programming and multiple regressions technique [7]; 
a nonlinear optimization model with embedding technique [8] [9] [10]; Genetic 
Algorithm (GA) [11] and [12]; the Artificial Neural Network (ANN) [13] and 
[14]; a hybrid methodology based on GA [15] and [16]; the classical nonlinear 
optimization algorithm [17]; Simulated Annealing (SA) [18] [19] [20] [21] and 
Adaptive Simulated Annealing (ASA) [22], Genetic Programming (GP) [23] and 
[24]; ASA in conjunction with uncertainty modeling [25] and [26]. Applica-  
tion of these methodologies to real-world cases is generally computationally time 
intensive, and may need days or weeks of CPU time to obtain an optimal solu-
tion.  

Therefore, Surrogate Modeling Based Optimization (SMBO) methodologies 
have been proposed to reduce these enormous computing costs and time asso-
ciated with repeated runs of the numerical simulation models within the opti-
mization algorithm. Surrogate models based on ANN, GA, Kriging, and regres-
sion techniques have been proposed as approximate simulators of the physical 
processes [27]. Surrogate models are trained by using numerical simulation 
models. Once trained, the surrogate model can approximate the physical process 
simulation. Therefore, linked simulation optimization models linking with com- 
putationally intensive numerical simulation models can be replaced by optimi-
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zation simulation models linked using surrogate models [12]. Using surrogate 
models can substantially reduce computational time, as the linked simulation 
optimization models require a repeated solution of the simulation models. 
Therefore, replacing the numerical simulation models by surrogate models can 
result in very substantial computational efficiency and feasibility [28]. In the 
present study, an alternative approach to the linked simulation optimization 
model and SMBO for optimal characterization of unknown groundwater con-
taminant sources is proposed and evaluated for potential applicability. In this 
methodology, the linked simulation optimization model is replaced by a trained 
Self Organizing Map (SOM) based surrogate model or adaptive surrogate model 
to characterize unknown groundwater contaminant sources. This methodology: 
Adaptive Surrogate Modeling Based Optimization (ASMBO) uses the capabili-
ties of SOM algorithm to design the surrogate models, and adaptive surrogate 
models to improve the efficiency of solving the inverse problem of source cha-
racterization. The surrogate models approximate the groundwater flow and 
transport simulation models and the ASMBO eliminates the need for using a 
formal optimization model for source characterization in terms of location, 
magnitude and duration of source activity. The specific, main objective of this 
study is to develop an efficient methodology to characterize unknown ground-
water contaminant sources especially where measurement data are sparse and 
erroneous. 

2. Methodology 
2.1. Groundwater Flow and Transport Simulation Models 

In this study, the numerical simulation model MODFLOW is utilized to simu-
late groundwater flow process in a contaminated aquifer. The governing equa-
tion in this numerical simulation model can be represented by Equation (1). 
This equation describes three-dimensional movement of groundwater in non- 
equilibrium, anisotropic and heterogeneous conditions [29]. Analytical solution 
of Equation (1), except in a few simple cases, is very difficult. Therefore, to solve 
Equation (1), different numerical models are applied to reach approximate solu-
tions. MODFLOW uses the finite-difference method to solve Equation (1).  

xx yy zz s
h h h hK K K W S

x x y y z z t
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + ± =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

        (1) 

where: 

xxK , yyK , and zzK  are the hydraulic conductivity along the x, y, and z 
coordinate axes, (L/T); 

h is the potentiometric head (L); 
W is a volumetric flux per unit volume from aquifer as sources (sinks), the 

negative value represents withdrawal of the groundwater system and vice versa 
(T−1); 

SS is the specific storage of the porous media (L−1);  
t is time (T). 
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Moreover, for simulating the three dimensional transports of contaminants in 
groundwater MT3DMS is utilized. The governing equation of MT3DMS can be 
described by Equation (2), which is a partial differential equation and considers 
the fate and transport of contaminants of species k in a 3-D, transient ground-
water flow system [30].  

( ) ( )
k k

k k
ij i s s n

j j i

C CD v C q C R
t x x x

θ
θ θ

∂  ∂ ∂ ∂
= − + +  ∂ ∂ ∂ ∂ 

∑        (2) 

where 
θ  is porosity of the subsurface medium, dimensionless; 

kC  is the concentration of species k which dissolved in groundwater, ML−3; 
t is time; 

,i jx x  is the distance along the respective Cartesian coordinate axis, L; 

ijD  is the hydrodynamic dispersion coefficient tensor, L2T−1; 

iv  is the seepage velocity, LT−1; 

sq  is volumetric flow rate per unit volume of groundwater system which 
represent fluid source (positive) and sinks (negative), T−1; 

k
sC  is the concentration of the source or sink flux for species k, ML−3; and 

nR∑  is the chemical reaction term, ML−3∙T−1. 

In this equation, advection, dispersion and chemical reaction of contaminants 
in groundwater are considered. To solve this equation, the seepage velocity that  

is related to the Darcy flux through the relationship i
i

q
v

θ
= , should be known. 

Therefore, calculating the hydraulic head using MODFLOW is necessary. 

2.2. Self-Organizing Map 

The Self Organizing Map (SOM) is an algorithm introduced by Kohonen to vi-
sualize multidimensional data. This algorithm visualizes complex non-linear sta-
tistical multidimensional data problems usually into two dimensional display [31] 
and [32]. This algorithm transforms the high dimensional data to low dimen-
sional data by preserving the main characteristics and relationships of the input 
data [33]. Therefore, the capabilities of SOM algorithm in reducing the dimen-
sions and visualizing of data leads this algorithm to be widely used in various 
complex fields of sciences such as: statistics, data mining, machine learning sig-
nal processing, financial analyses, chemistry and social networks [32] and [34].  

The SOM algorithm consists of a set of processing units, “neurons”, which are 
commonly arranged in a 2-dimensional rectangular or hexagonal grid. These 
neurons are accompanied with a location and a weight vector that connects in-
put to output by stating an initial random weight in several iterations to reach a 
stable map. In other words, this algorithm tries to cluster training data based on 
similarity and topology without any external supervision [35]. The main steps of 
Kohonen’s SOM algorithm are initialization, competition, cooperation and 
adaptation [35] [36] [37] [38], which are described as follows:  

1) Initialization: in this step, it is assumed that the set of input data with N 
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units is represented by X: { }: 1, 2, ,iX i N= … . If the output space is defined   
as M neurons Y: { }: 1, 2, ,jY j M= … ; then, each neuron in the output space  
will map to the corresponding units in the input space. The connection weight 
vector between input units i and output neurons j can be written as jW :

}{ : 1, , ; 1, ,jiW j M i N= … = … .  
2) Competition: for each input pattern Xi, the output neurons compete to 

declare the winner neuron. The winner neuron or Best Matching Unit (BMU) is 
the closest neuron or most similar one to the input vector. The discriminant 
function used for this step can be defined by Equation (3) which is a squared 
Euclidean distance between the input vector X and weight vector jW . 

( ) ( )( )2

1min 1, ,N
j i jiid x x w i N

=
= − ∀ = …∑             (3) 

3) Cooperation: according to the results of neurobiological studies there is a 
lateral interaction within a set of excited neuron and the winner neuron. This 
interaction decays with distance. Therefore, the winning neuron and its topo-
logical neighbours update all weights according to Equation (4) and are moved 
to decrease their distance with the input units. 

( ) ( ) ( ) ( ),,ji ji i j iW w t t K j t X W tη  = + −               (4) 

where ( )tη : is the learning rate at iteration t; and ( ),K j t  is a suitable neigh-
bourhood function. 

4) Adaptation: the excited neurons decrease their discriminant function values 
to reach an appropriate alignment to the input pattern. For this step, the process 
repeats steps 2 to 4 until the feature map stops changing. 

The SOM algorithm visualizes nonlinear relationship of high dimensional da-
ta into low dimensional display by preserving the main characteristics of input 
data. This algorithm is capable of not only clustering and visualizing high di-
mensional data but, also is capable of generalization. In other words, SOM can 
interpolate between the initial data and predict missing values of the system’s 
vectors [33]. Figure 1(a) illustrates the process of SOM algorithm in clustering  
 

 
(a) 

 
(b) 

Figure 1. (a) The SOM algorithm for clustering and visualization; (b) The prediction 
process for missing components of system’s new input vectors. 
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and visualization. Figure 1(b) shows how this algorithm is utilized for predict-
ing the missing components of a new vector (Z) of the system based on its 
known components. In this study, Z represents the vector of measured concen-
trations and unknown contaminant sources that need to be estimated. The soft-
ware “SOM Toolbox for Matlab 5” [39] is utilized for constructing the SOM 
based surrogate model and the SOM based adaptive surrogate model. 

2.3. Application of Adaptive Surrogate Model Based Optimization  
for Source Characterization 

Surrogate models function essentially by developing a relationship between the 
inputs and outputs of the system based on training of the model. If this model is 
constructed accurately, approximates can mimic the behavior of more sophisti-
cated simulation models at substantially reduced computational time [40]. Sev-
eral methodologies have been developed to improve the accuracy and efficiency 
of surrogate modelling such as: Adaptive Surrogate Model Based Optimization 
(ASMBO). This methodology utilizes adaptive training of the surrogate models 
[41] and has been suggested as an efficient methodology to solve time-consum- 
ing computer models. The main idea of this procedure is that the direct optimi-
zation is substituted by an iterative process comprised of construction, optimiza-
tion and updating of the surrogate model [42]. Moreover, by using adaptive 
sampling which is based on the preliminary results of surrogate model, the effi-
ciency of the surrogate models is increased. In ASMBO, after sampling a certain 
number of selected parameters sets in initial stage, additional sampling which 
can effectively increase the accuracy of the surrogate model results are added. An 
adaptive sampling methodology improves the speed of obtaining the accurate 
variable values [43]. In this study, a new type of ASMBO is developed to charac-
terize unknown groundwater contaminant sources. This developed methodology 
is SOM based surrogate model or SOM based adaptive surrogate model which is 
utilized to characterize unknown groundwater contaminant sources in terms of 
location, magnitude and activity time. Figure 2 illustrates the main stages of 
constructing a SOM based surrogate model and SOM based adaptive surrogate 
model for source identification. These stages are briefly discussed in the follow-
ing paragraphs. 

1) Initial sampling: first, the main variables of the defined system as per their 
degree of importance, according to the preliminary experiments are chosen [44]. 
The main question in this stage is how we could design our surrogate models to 
accurately mimic the behavior of the defined system with limited numbers of 
inputs. Furthermore, Latin Hypercube Sampling (LHS) is appropriate and suita-
ble for this stage [45]. In this stage, it is crucial to ensure sampling is selected 
through all domains of input values and due to this characteristic LHS is utilized 
in this study. Also, the upper and lower bounds of these variables are assumed to 
be known.  

2) Generating training data: the numerical simulation models are solved to 
generate solution results for randomly generated initial samples in previous  
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Figure 2. Key elements of the Adaptive Surrogate Model based Optimization 
(ASMBO) procedure for source identification as an inverse method. 

 
stage. In this study, the groundwater flow and transport simulation models 
MODFLOW and MT3DMS (within GMS 7) are solved for randomly generated 
source fluxes.  

3) Construction of surrogate model: in this stage, Self-Organizing Map (SOM) 
is utilized as the surrogate model type to represent the response surface of the 
simulation model inputs-outputs values. The other main issue in this stage is 
how the selected variables are used to design the SOM based surrogate model. 

4) Testing and validation: this stage evaluates the potential applicability of the 
surrogate models. The new randomly generated sample sets that were not used 
in the training process are utilized in this stage. The results are applicable for 
modification of the surrogate model type and its design. The performance of the 
SOM based surrogate model is evaluated for two conditions: first, it is assumed 
that the contaminant concentration values at specific time and locations are 
known and the corresponding contaminant source fluxes at specified potential 
locations at specific time are considered as unknown variables to be estimated. 

Generating Training Data
Responses of Simulation Models

Construction of SOM based Surrogate 
Model

(Initializing Model Design and Traing)

Testing and Validation
Development of SOM based Surrogate 

Model

Goodness 
Criteria

N
ot

 S
at

is
fie

d

Sa
tis

fie
d

Surrogate Model based Optimization
Preliminary Source CharacterizationFo

r 
Im

pr
ov

in
g

R
es

ul
ts

Add New Sample Points
Based on Preliminary 

Estimation Results 

Adaptive Surrogate Model based 
Optimization

(Source Characterization)

Initial Sampling
Aquifer Data Input



S. Hazrati-Yadkoori, B. Datta 
 

200 

Second, the constructed SOM based surrogate model performance is also tested 
by estimating spatial and temporal concentration values at specified time and 
locations, assuming contaminant sources are known. 

In this stage, the BMU which has similar definition (Equation (3)) as the im-
plicit objective function of source identification problem is utilized to character-
ize unknown contaminant sources of testing sample sets as an inverse problem. 
The implicit objective function of source identification problem is defined to 
minimize the difference between estimated contaminant concentration values 
and observed contaminant concentration values at specific monitoring locations 
at specific time. The main constraints of optimization model are groundwater 
flow and transport simulation models. In this proposed methodology, the SOM 
based surrogate models represent approximate simulation of the physical 
processes. In other words, the obtained BMU of the SOM based surrogate model 
is utilized to find the unknown characteristics (magnitude, location and duration) 
of potential contaminant sources, hence eliminating the necessity of using any 
complex and explicit optimization model.  

5) SOM based surrogate model/stage 3: If the solution results are acceptable 
SOM based surrogate model is selected and it is ready for characterizing un-
known contaminant sources as an inverse problem by utilizing BMU; otherwise, 
go to stage 3 and change the design of surrogate model. 

6) Adaptive surrogate model: in this stage, to improve the SOM based surro-
gate model results, the adaptive sampling strategy is applied. There are several 
adaptive sampling methods such as: Maximizing Expected Improvement (MEI), 
Maximizing the Probability of Improvement (MPI) and Minimizing a Statistical 
Lower Bound (MSL). 

All of these three strategies lead the algorithm to go back and find the areas 
where the samples point are located. However, in this study instead of the men-
tioned strategies new samples based on obtained results of SOM based surrogate 
model are added to the initial sample sets. This essentially means that additional 
training patterns are generated utilizing the latest source characterization esti-
mates. Then the model is re-trained to effectively increase the accuracy of source 
identification results. 

2.4. Performance Evaluation  

In this study, performance of the developed methodology is evaluated utilizing 
synthetic hydrogeologic and geochemical data for an illustrative contaminated 
aquifer. The advantage in using synthetic data is that the unknown data errors in 
the measurement data can be quantified and need not be treated as unknown 
quantities for evaluation purpose. Normalized Absolute Error of Estimation 
(NAEE) is also utilized as a measure to calculate a normalized error of estima-
tion. Equation (5) represents NAEE [22]: 

( )
( ) ( )

( )
1 1 est act

1 1 act

NAEE % 100
S N j j

i ii j

S N j
ii j

q q

q
= =

= =

−
= ×
∑ ∑

∑ ∑
            (5) 
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where: 
S is the number of pollution source (s); 
N is the number of transport stress periods; 

( )
act

j
iq  is actual source flux at source number i in stress period j; 

( )
est

j
iq  is estimated source flux at source number i in stress period j. 

3. Performance Evaluation of the Developed Methodology 
3.1. Study Area 

The illustrative study area utilized for the performance evaluation of the pro-
posed methodology is a homogeneous aquifer which consists of one confined 
layer (Figure 3). Table 1 shows the aquifer characteristic values and dimensions 
of this study area. In this study area, the north and south boundaries are consi-
dered as specified head boundaries with 35 m and 25 m as specified head for 
north and south boundaries, respectively. Whereas, the east and west boundaries 
are variable heads. In this case, only a conservative contaminant is considered 
and three potential contaminant source locations are considered (S1, S2, and 
S3). The locations and actual contaminant fluxes of these three potential conta-
minant sources are presented in Table 2. There are six monitoring locations 
(ML1 to ML6) and two abstraction wells (W1 and W2); these important features 
are shown in Figure 3. The total time of simulation is divided into 5 different 
stress periods (SP1 to SP5). The first four stress periods are each of 183 days du-
ration, and the last stress period is of 2200 days duration. Potential contaminant 
sources are assumed to be active only in the first four stress periods. The ab-
straction rates for each stress period at the abstraction wells are presented in Ta-
ble 3. 
 
Table 1. Hydrogeologic characteristics of the study area. 

Parameter Unit Value 

Maximum length of study area m 1000 

Maximum width of study area m 1500 

Saturated thickness, b m 7.6 

Grid spacing in x-direction m 50 

Grid spacing in y-direction m 50 

Horizontal hydraulic conductivity m/d 18 

Porosity Dimensionless 0.25 

Longitudinal dispersivity m 35 

Ratio: H/L dispersivity Dimensionless 0.2 

Specific yield Dimensionless 0.2 

Confined storage coefficient Dimensionless 0.2 

Initial contaminant flux Kg/day 0 - 100 
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Figure 3. Illustrative study area represents potential contaminant source locations, ab- 
straction wells and monitoring locations. 
 
Table 2. The locations and actual contaminant fluxes of three potential contaminant 
sources. 

Potential contaminant source location  
(row, column) 

Contaminant fluxes (Kg/day) 

SP1 SP2 SP3 SP4 SP5 

S1 (5, 10) 0 0 0 0 0 

S2 (6, 13) 60 20 45 50 0 

S3 (7, 6) 80 58 22 30 0 

 
Table 3. Abstraction well locations and abstraction rates in different stress periods. 

ID Row Column 
Abstraction rate for each stress period (m3/day) 

1 2 3 4 5 

Abstraction well 1 10 4 −100.25 −100.25 −68 −16 −49 

Abstraction well 2 10 8 −100.25 −80.2 −96 −100.25 −88 

S1
S2

S3

ML6
W1 ML4 W2 ML2

ML5 ML3
ML1

ML

S
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Monitoring Locations

Potential Pollution Sources

Abstraction Wells

Constant Head Boundary

Constant Head Boundary
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3.2. Application of the SOM Based Surrogate Model for  
Source Identification 

In this study, SOM based surrogate models and SOM based adaptive surrogate 
models are utilized to characterize unknown groundwater contaminant sources 
as an inverse problem. The following steps are followed to select the best SOM 
based surrogate model among constructed models for illustrative study area; 
then, the SOM based adaptive surrogate model is developed.  

1) Scenarios for initial sampling: LHS is used to randomly generate two 
groups of 1000 initial sample sets. These sample sets are generated by assuming 
that all of these three potential sources are active through first four stress periods, 
SP1 to SP4. Also, three groups of 100 sample sets are generated by assuming that 
in each group at least one of the sources is inactive. The contaminant source 
fluxes are assumed to be in the range of 0 - 100 kg/day for all potential sources. 
For all of the generated sample sets, the three potential contaminant source 
fluxes at five different stress periods and their corresponding contaminant con-
centration magnitudes at specified monitoring locations and specific stress pe-
riods are selected as the variables of the surrogate models for this study area. 

2) Generating training data: the solution results of the numerical simulation 
models for generated initial sample sets are obtained in this step. The numerical 
flow and transport simulation models MODFLOW and MT3DMS (within GMS 
7) are solved to obtain adequate sample data for training and testing of the sur-
rogate models. Figure 4 shows a typical contaminant plume 732 days after start 
of the first source activity. The training data consist of randomly generated con-
taminant source fluxes and their corresponding contaminant concentration val-
ues at the specified monitoring locations at specified times. Table 4 represents a 
typical input for training of a SOM based surrogate model. This input consists of 
five sample sets. Each set consists of randomly generated contaminant source 
fluxes for three potential contaminant sources at four stress periods (SP1 to SP4). 
Also, it consists of corresponding contaminant concentration magnitudes at six 
monitoring locations (M1 to M6) at five stress periods (SP1 to SP5).  

3) Construction of the SOM based surrogate model: in this step, SOM algo-
rithm is utilized to create SOM based surrogate models. It is supposed that if 
SOM based surrogate models are constructed accurately, these models could 
properly approximate the groundwater flow and transport simulation models. 
 
Table 4. Typical input vectors for training a SOM based surrogate model. 

Source fluxes (Kg/day) Contaminant concentration (g/l) 

S1-SP … M1-SP … 

1 2 3 4 … 1 2 3 4 5 … 

42 44 41 97 … 0.00 0.03 0.09 0.14 0.00 … 

56 73 24 54 … 0.00 0.01 0.06 0.19 0.00 … 

39 76 74 23 … 0.00 0.06 0.13 0.15 0.00 … 

80 0 58 39 … 0.00 0.02 0.05 0.08 0.00 … 

0 0 0 0 … 0.00 0.05 0.11 0.18 0.00 … 
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Figure 4. A typical concentration plume 732 days after start of first source activity. 
 

4) Testing and validation of the SOM based surrogate model: the constructed 
SOM based surrogate models are tested by 100 new random sample sets. The 
contaminant source fluxes of these sample sets are generated randomly by using 
LHS method in the range of 0 - 100 kg/day. Then, the corresponding contami-
nant concentration values at monitoring locations are obtained by utilizing the 
simulation models. In this stage, different surrogate models representing differ-
ent numbers of initial sample sizes, and SOM map units are constructed and 
evaluated. The evaluation results lead to selection of the best candidate SOM 
based surrogate model among the constructed surrogate models for the illustra-
tive study area.  

As mentioned in the methodology section, because the definition of BMU of 
the SOM algorithm (Equation (3)) is similar to the definition of the implicit ob-
jective function of source identification problem. Therefore, the BMU of SOM 
algorithm is utilized for estimating unknown characteristics (magnitude, loca-
tion and duration) of potential contaminant sources. This algorithm by using the 
information of known components of the input vector estimated the unknown 
components of the input vector. In this study, this capability of the SOM algo-
rithm is utilized to characterize unknown groundwater contaminant sources as 
an inverse problem. It also utilized to estimate contaminant concentration values 
at specified location and time when the contaminant sources and their characte-
ristics are known.  

For performance evaluation of source characterization capabilities utilizing 
the trained SOM surrogate models, the contaminant concentration values at 
monitoring locations at specific times are considered as known variables of an 
input vector. This vector needs to have the same number of variables as the in-
put vectors of training phase. Table 5 represents a typical input for testing data 
when the SOM based surrogate model is utilized to characterize unknown con-
taminant sources as an inverse problem. In this table, magnitudes of contami-
nant concentration values at six monitoring locations (ML1 toML6) at five pe-
riods (SP1 to SP5) are assumed as known variables of the SOM based surrogate 
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Table 5. A typical input vector with missing data for testing a SOM based surrogate 
model. 

Source fluxes (Kg/day) Contaminant concentration (g/l) 

S1-SP S2-SP S3-SP M1-SP … 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 
 

         
0.00 0.04 0.10 0.14 0.00 … 

         
0.00 0.03 0.08 0.16 0.00 … 

         
0.00 0.05 0.13 0.16 0.00 … 

         
0.00 0.02 0.09 0.22 0.00 … 

         
0.01 0.06 0.15 0.24 0.00 … 

 
models. The contaminant source fluxes for three potential contaminant sources 
at four stress periods (SP1 to SP4) are assumed as unknown variables. The BMU 
is utilized to estimate these unknown variables. By searching for the BMU and 
using the information of known components of the input vector, the most simi-
lar vector is recognized. Therefore, missing values of the input vector are esti-
mated. 

5) The selected SOM based surrogate model: the selected SOM based surro-
gate model is used to characterize the unknown groundwater contaminated 
sources as an inverse problem and for further performance evaluation.  

6) SOM based adaptive surrogate model: It is supposed that SOM based adap-
tive surrogate models could improve the source characterization results. There-
fore, based on the preliminary results of the selected SOM based surrogate mod-
el (i.e., emphasizing the preliminary or latest source estimation results new sam-
ple patterns are randomly generated) the SOM based adaptive surrogate model is 
constructed for contaminated aquifer by adding new sample sets. 500 new sam-
ple sets are generated by utilizing LHS and considering the results obtained by 
utilizing SOM based surrogate model for source identification.  

3.3. Results 

For evaluating the effect of initial sample sets on the result of surrogate models, 
different surrogate models using different numbers of initial sample sets ranging 
1000 to 2300 are constructed. The concentration measurement data corres-
ponding to 6 existing monitoring locations are used to construct these surrogate 
models. The numbers of SOM map units are maintained constant (100 × 100 
units). The best results are obtained by using 2300 initial sample sets; the average 
NAEE for 100 sample sets is equal to 30.4 percent. Therefore, 2300 sample sets 
are used as the selected initial sample sets for constructing SOM based surrogate 
models with different SOM map units. The 2300 sample sets consist of a subset 
of 2000 sample sets for which, all of the potential contaminant sources are con-
sidered as active sources through SP1 to SP4. Also, it consisted of another subset 
of 300 sample sets which represent the scenario that in each set at least one of 
the sources is inactive. The results of this constructed SOM based surrogate 
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model for estimating contaminant concentrations at selected monitoring loca-
tions is shown in Figure 5. This figure compares the estimated concentration 
values against actual concentration values. 

Different SOM based surrogate models representing different numbers of 
SOM map units are also constructed. In these scenarios, the number of moni-
toring locations and the number of initial sample sets are maintained constant at 
6 and 2300, respectively. The solution results for source identification and esti-
mating contaminant concentration at monitoring locations are presented in Ta-
ble 6. The solution results except for SOM based surrogate model which is con-
structed by utilizing 50 × 50 map units demonstrate a consistency in the solution 
result, and the best results are reached by utilizing 130 × 130 map units. An im-
portant constraint in these evaluations of different scenarios is the CPU capacity, 
which is exceeded by increasing the number of SOM map units beyond 120 × 
120 (Figure 6). Therefore, the SOM based surrogate model which consisted of 
 

 
Figure 5. The results obtained from SOM based surrogate model for estimating the 
contaminant concentration values at selected monitoring locations (NAEE is equal to 15 
percent). 
 
Table 6. The performance evaluation of different scenarios representing different 
numbers of SOM map units. 
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Figure 6. Required times for developing different SOM based surrogate models repre- 
senting different numbers of SOM map units. 
 
2300 initial sample sets and 100*100 map units is selected as the best SOM based 
surrogate model among constructed SOM based surrogate models. 

The developed SOM based surrogate models could approximate the ground-
water flow and transport simulation models. These outcomes are achieved ac-
cording to the solution results obtained at model evaluation and model testing 
stages. The solution results presented earlier lead to the selection of the most 
suitable surrogate model among the constructed surrogate models for the illu-
strative study area. This model is constituted of 100 × 100 SOM map units that 
utilized the 2300 initial sample sets. These 2300 random initial sample sets used 
the information from three potential contaminant sources and the correspond-
ing contaminant concentration at 6 existing monitoring locations. The obtained 
solution results for contaminated study area by utilizing the measured contami-
nant concentration values at 6 existing monitoring locations are illustrated in 
Figure 7. This figure compares the estimated contaminant source fluxes against 
actual contaminant source fluxes at three potential sources (S1 to S3) at 5 speci-
fied stress periods (SP1 to SP5). 

The obtained results are not entirely satisfactory and the NAEE is equal to 31 
percent. However, the obtained results in this stage demonstrate that the S1 is an 
inactive source. This result also achieved by other constructed SOM based sur-
rogate. Therefore, in order to improve the accuracy of results, it may be neces-
sary to incorporate new samples, and possibly construct a SOM based adaptive 
surrogate model for unknown groundwater contaminant source identification. 
500 new sample sets are generated by utilizing LHS and considering that S1 is an 
inactive source. The solution results for SOM based adaptive surrogate models 
are illustrated in Figure 8. The illustrated solution results demonstrate signifi-
cant improvement by generating new samples. For example, the accuracy of 
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Figure 7. The results obtained from the selected SOM based surrogate models for source 
identification of actual contaminant source fluxes (NAEE is equal to 31 percent). 
 

 
Figure 8. The performance evaluation of the SOM based adaptive surrogate models and 
the selected SOM based surrogate model in terms of NAEE for characterizing unknown 
contaminant sources, the NAEE are equal to 20 and 31 percent, respectively. 
 
solution results of SOM based adaptive surrogate models increases by 11 percent 
when compared to the results obtained using the previously selected SOM based 
surrogate model. 

Moreover, for continuing the evaluation of the performance of the developed 
SOM based adaptive surrogate model and the previously selected SOM based 
surrogate model, synthetic erroneous concentration measurements data are uti-
lized for evaluation purpose. For this purpose, simulated contaminant concen-
trations are perturbed with varied amounts of random errors, i.e., 5, 10, 15, 20, 
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25 and 30 percent of simulated values. The simulated contaminant concentra-
tions measurements at monitoring locations are assumed to incorporate 5, 10, 15, 
20, 25 and 30 percent random errors. The following equation is utilized for syn-
thetically generating the perturbed concentration measurement values with 
random errors [22]. 

per S SC C a b C= + × ×                       (6) 

where 

perC  is perturbed concentration measurement values; 

SC  is simulated concentration values;  
a is maximum deviation expressed as a percentage; and  
b is a random fraction between +1 and −1 obtained by utilizing the LHS. 
The source characterization results obtained with these erroneous concentra-

tion measurements are shown in Figure 9. 
These solution results shown in Figure 9 demonstrate that the source charac-

terization performances do not substantially change for scenarios with error free, 
5 percent, 10 percent, 15 and 20 percent concentration measurement errors. 
Figure 9 also indicates that the accuracy of estimated source fluxes significantly 
decreased when the incorporated errors are 25 percent or larger. 

3.4. Discussion 

The performance evaluation results of the SOM based surrogate model are not 
entirely satisfactory. These very limited results show that it could approximate 
groundwater flow and transport simulation models properly. However, for in-
creasing the efficiency of developed methodology additional training with in-
corporation of different actual source location scenarios were developed. The 
evaluation results also indicated that the quantity and quality of initial sample 
sets and the number of SOM map units have a crucial rule in the efficiency of the  
 

 
Figure 9. The performance evaluation results of the SOM based surrogate models and 
SOM based adaptive surrogate models in terms of NAEE. 
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model (Table 6 and Figure 6). In order to improve the accuracy of the solution 
results, the following strategies are suggested: 

1) Using the concentration data at designed monitoring locations, designed 
for improving source characterization [24] [46] [47]. For example, for this study 
area if the contaminant concentration values of 20 monitoring locations which 
recorded larger concentrations are utilized; the results for SOM based surrogate 
model improved by 12 percent. Selections of adequate and relevant monitoring 
locations are necessary, especially if the contaminant plumes from some of the 
potential sources overlap.  

2) Exploring other methods to generate initial random sample sets; 
3) Utilizing optimal number of variables in the designing of surrogate models 

by selecting only those available monitoring locations which affect the accuracy 
of identifying pollution sources; and 

4) Applying sequential sampling method as in SOM based adaptive surrogate 
models by considering the previous stage results. 

It can be concluded that, SOM based surrogate model and SOM based adap-
tive surrogate model could be utilized to identify unknown characteristics of po-
tential contaminant source in contaminated aquifers. Also, these could be ap-
plied to estimate the contaminant concentration values at specified monitoring 
location if the contaminant sources are known. Especially, additional informa-
tion based on earlier estimates of the contaminant source characteristics scena-
rios if incorporated in the training stage; it can increase the efficiency in terms of 
more accurate estimation when new samples are added. This is essentially the 
adaptive surrogate model based optimization approach. One of the advantages 
of this methodology is the consistency of solution results for ideal (error free 
concentration measurements) and real (when contaminant concentration in-
corporate up to 20 percent erroneous data) scenarios. This observation may be 
relevant only when limited numbers of initial samples are utilized. Therefore, the 
selected method to generate relevant initial sample sets has important role on the 
solution results. Also, utilizing sufficient size of sample sets is necessary. 

4. Conclusions 

Different scenarios correspond to different surrogate models with various num-
bers of initial sample sizes and Self-Organizing Map (SOM) map units are con-
sidered. Also, the performance of the developed methodology is evaluated by 
utilizing the SOM based surrogate model, to identify potential contaminant 
sources, for an ideal scenario of error free concentration data, as well as scena-
rios with different degrees of erroneous concentration measurements data. In 
addition, an improved version of SOM based surrogate model, i.e. SOM based 
adaptive surrogate model (ASMBO) is constructed to characterize potential 
contaminant sources. Main conclusions that can be drawn from these limited 
performance evaluation results are: 

1) SOM based surrogate models are potentially efficient methods to approx-
imate groundwater flow and transport simulation models. The developed me-
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thodology can be used as an alternative methodology for unknown groundwater 
contaminant sources characterization, which can potentially eliminate the ne-
cessity of using other widely used methodologies, i.e., the linked simulation op-
timization methodology.  

2) The quality of initial sample size is important. This size should be adequate 
and cover the whole plausible range of contaminant source fluxes for all the po-
tential contaminant sources. 

3) The size of SOM map units is important. The best size should be selected 
due to the memory of PC used, number of variables, and initial sample sizes. 

4) The performance evaluation results do show comparatively large errors in 
terms of the specific error criteria utilized. However, a comparison of the source 
estimates and the actual source characteristics shows a good match.  

5) Most important conclusion is that the SOM based surrogate models may 
provide a feasible methodology for characterization/identification of unknown 
groundwater contaminant sources in terms of location, magnitude and duration 
of source activity, without the necessity of using a linked simulation optimiza-
tion model, when the ASMBO methodology is adopted. However, it appears 
likely that the accuracy of characterization may not be adequate in real life sce-
narios with multiple sources, complex hydrogeology of the aquifer, and parame-
ter estimation uncertainties. 

6) The SOM based models seem to perform satisfactorily when concentration 
measurement data are erroneous. 

7) The performance evaluation results presented in this study are very limited 
in scope and more rigorous evaluations are necessary to establish its applicability 
for source identification without using any optimal decision model. These per-
formance evaluation results are based on very limited scenarios. More rigorous 
performance evaluations incorporating: random heterogeneity of hydrogeologic 
parameters and considering more complex geochemical processes are necessary 
to establish the applicability of the proposed methodology. 
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