
Open Journal of Optimization, 2017, 6, 1-10 
http://www.scirp.org/journal/ojop 

ISSN Online: 2325-7091 
ISSN Print: 2325-7105 

DOI: 10.4236/ojop.2017.61001  February 14, 2017 

 
 
 

A New Approach for Solving Linear Fractional 
Programming Problems with Duality Concept 

Farhana Ahmed Simi1, Md. Shahjalal Talukder2 

1Department of Mathematics, Dhaka University, Dhaka, Bangladesh 
2Department of Natural Sciences, Daffodil International University, Dhaka, Bangladesh  

  
 
 

Abstract 
Most of the current methods for solving linear fractional programming (LFP) 
problems depend on the simplex type method. In this paper, we present a new 
approach for solving linear fractional programming problem in which the ob-
jective function is a linear fractional function, while constraint functions are 
in the form of linear inequalities. This approach does not depend on the 
simplex type method. Here first we transform this LFP problem into linear 
programming (LP) problem and hence solve this problem algebraically using 
the concept of duality. Two simple examples to illustrate our algorithm are 
given. And also we compare this approach with other available methods for 
solving LFP problems. 
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1. Introduction 

The linear fractional programming (LFP) problem has attracted the interest of 
many researches due to its application in many important fields such as produc-
tion planning, financial and corporate planning, health care and hospital planning. 

Several methods were suggested for solving LFP problem such as the variable 
transformation method introduced by Charnes and Cooper [1] and the updated 
objective function method introduced by Bitran and Novaes [2]. The first me-
thod transforms the LFP problem into an equivalent linear programming prob-
lem and uses the variable transformation , 0y tx t= ≥  in such a way that  
dt β γ+ =  where 0γ ≠  is a specified number and transform LFP to an LP 
problem. And the second method solves a sequence of linear programming pro- 
blems depending on updating the local gradient of the fractional objective func-
tion at successive points. But to solve this sequence of problems, sometimes may 
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need much iteration. Also some aspects concerning duality and sensitivity anal-
ysis in linear fractional program were discussed by Bitran and Magnant [3] and 
Singh [4], in his paper made a useful study about the optimality condition in 
fractional programming. Assuming the positivity of denominator of the objec-
tive function of LFP over the feasible region, Swarup [5] extended the well- 
known simplex method to solve the LFP. This process cannot continue infinitely, 
since there is only a finite number of basis and in non-degenerate case, no basis 
can ever be repeated, since F is increased at every step and the same basis cannot 
yield two different values of F. While at the same time the maximum value of the 
objective function occurs at of the basic feasible solution. Recently, Tantawy [6] 
has suggested a feasible direction approach and the main idea behind this me-
thod for solving LFP problems is to move through the feasible region via a se-
quence of points in the direction that improves the objective function. Tantawy [7] 
also proposed a duality approach to solve a linear fractional programming prob-
lem. Tantawy [8] develops another technique for solving LFP which can be used 
for sensitivity analysis. Effati and Pakdaman [9] propose a method for solving in-
terval-valued linear fractional programming problem. A method for solving multi 
objective linear plus linear fractional programming problem based on Taylor se-
ries approximation is proposed by Pramanik et al. [10]. Tantawy and Sallam [11] 
also propose a new method for solving linear programming problems. 

In this paper, our main intent is to develop an approach for solving linear 
fractional programming problem which does not depend on the simplex type 
method because method based on vertex information may have difficulties as the 
problem size increases; this method may prove to be less sensitive to problem 
size. In this paper, first of all, a linear fractional programming problem is trans-
formed into linear programming problem by choosing an initial feasible point 
and hence solves this problem algebraically using the concept of duality. 

2. Definition and Method of Solving LFP 

A linear fractional programming problem occurs when a linear fractional func-
tion is to be maximized and the problem can be formulated mathematically as 
follows: 

Maximize ( )
T

.T

c xF x
d x

γ
β

+
=

+
 

Subject to,  
{ }: , 0x X x Ax b x∈ = ≤ ≥                     (1) 

where c, d and nx∈ , A is an ( )m n n+  matrix, m nb +∈  and γ  and β  
are scalars.  

We point out that the nonnegative conditions are included in the set of con-
straints and that T 0d x β+ >  has to be satisfied over the compact set X. 

To transform the LFP problem into LP problem, we choose a feasible point 
*x  of the compact set X. Then 

( )
T *

* *
T *

c xF F x
d x

γ
β

+
= =

+
                    (2) 
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is a given constant vector computed at a given feasible point *x . Thus the level 
curve of objective function for (1) can be written as  

( )T * T *c F d x Fβ γ− = −  

Hence the linear programming problem is as follows: 
Maximize ( ) ( )T * Tx c F d xϕ = −  
Subject to,  

{ }: , 0x X x Ax b x∈ = ≤ ≥                    (3) 

Proposition 

If *x  solves the LFP problem (1) with objective function values *F  then *x  
solves the LP problem defined by (3) with objective function value * *Fϕ β γ= − . 

Now rewrite the LP problem (3) in the form 
Maximize ( ) TH x C x=  
Subject to,  

{ }:x X x Ax b∈ = ≤                       (4) 

where, TC  is a matrix whose row is represented by ( )T * Tc F d−  and , nC x∈ , 
A  is a ( )m n n+ ×  matrix, .m nb +∈  we point out that the nonnegative con-

ditions are included in the set of constraints. 
Now consider the dual problem for the linear program (4) in the form 
Minimize Tw u b=  
Subject to,  

T T , 0u A C u= ≥                         (5) 

Since the set of constraints of this dual problem is written in the matrix form 
hence we can multiply both side by a matrix ( )1 2T T T= , where ( ) 1T

1T C C C
−

=  
and the columns of the matrix 2T  constitute the bases of { }T: 0x C x = . 

Thus this implies  
T

1 1u AT = , T
2 0u AT =  and 0u ≥ .                (6) 

If we define ( )l m n× +  matrix P  of nonnegative entries such that  

2 0PAT = , then (6) can be written as  
T 1, 0v G v= ≥                        (7) 

where 1G PAT=  and T Tv P u= , Equation (7) will play an important role for 
finding the optimal solution of the LP problem (4). Using the Equation (7) the 
equivalent LP problem of (5) can be written as 

Minimize Tw v g=  
Subject to,  

T 1,  0v G v= ≥                        (8) 

with T T
1, ,G PAT g Pb v P u= = = , the linear programming (8) has the dual pro-

gramming problem in just one unknown Z in the form. 
Maximize Z  
Subject to,  
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,  0GZ g Z≤ ≥                        (9) 

Note: The set of constraints of the above linear programming problem will 
give the maximum value *Z  and also will define only one active constraint for 
this optimal value. We have to note that from the complementary slackness 
theorem the corresponding dual variable will be positive and the remaining dual 
variables will be zeros for the corresponding non active constraints. 

3. Algorithm for Solving LFP Problems 

The method for solving LFP problems summarize as follows: 
 Step 1: Select a feasible point *x  and using Equation (2) to compute *F . 
 Step 2: Find the level curve of objective function  

( )T * T *c F d x Fβ γ− = −  

Hence find the LP problem (2) which can be rewritten as (3). 
 Step 3: Compute ( ) 1T

1T C C C
−

= , and the matrix 2T  as the bases of  

{ }T: 0x C x = . 
 Step 4: Find the matrix P  of nonnegative entries such that 2 0PAT =  and 

hence compute 1,  G PAT g Pb= = . 
 Step 5: Find the LP problem (8) and dual of this LP (9). Use the LP (9) to find 

the optimal value *Z  and also determine the corresponding active con-
straints and use the constraint of (8) to compute Tv . 

 Step 6: Find the dual variables T Tu v P= , for each positive variable  
, 1, 2, ,iu i m=   find the corresponding active set of constraint of the matrix 

A . 
 Step 7: Solve a n n×  system of linear equations for these set of active con-

straints (a subset from a m n+  constraints) to get the optimal solution of LP 
problem (4) and hence for the LFP problem (1). 

4. Computational Process 

Choose *x  in such a way that  

{ }* * *:x X x Ax b∈ = ≤  

( )
T *

* *
T *

c xF F x
d x

γ
β

+
← ←

+
 

T * 0.d x β+ >  

The level curve is ( )T * T *c F d x Fβ γ− = − . 
Then ( ) ( )T * Tx c F d xϕ ← −  or ( ) TH x C x← ; ( )T T * T ;C c F d← −  

( ) { }1T T
1 2;  : 0T C C C T x C x

−
← ← = ; 

Find P  such that 2 0PAT = . 
Compute 1,G PAT g Pb← ← ; 
Formulate, Maximize Z  
Subject to, ,   0.GZ g Z≤ ≥  
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Find *Z  and corresponding active constraint and compute Tv  for  
T 1v G = ; 
Then T Tu v P← ; hence find Tx  from corresponding n n×  active con-

straints satisfied by positive Tu ; 
Compute *H  and *F . 

5. Numerical Examples 

Here we illustrate two examples to demonstrate our method. 
Example 1: Consider the linear fractional programming (LFP) problem 

Maximize ( ) 2

1

1
3

xF x
x
+

=
+

 

Subject to,  

1 2 1x x− + ≤  

2 2x ≤  

1 22 1x x+ ≤  

1 5x ≤  

1 2, 0.x x ≥  

Solution: 

Step 1: Let * 1
1

x  
=  
 

, then * 1 1 1
1 3 2

F +
= =

+
 and hence we have 

( ) ( ) ( ) 1T * T
1 2

2

1 10 1 1 0
2 2

x
c F d x x x

x
 
  

 
− = − = − + 

 
 

Step 2: Therefore we have the following LP problem 

Maximize ( ) 1 2
1
2

H x x x= − +  

Subject to,  

1 2 1x x− + ≤  

2 2x ≤  

1 22 1x x+ ≤  

1 5x ≤  

1 0x− ≤  

2 0x− ≤  

Dual problem for this LP problem is 
Minimize ( ) 1 2 3 42 7 5w x u u u u= + + +  
Subject to,  

1 3 4 5
1
2

u u u u− + + − =  

1 2 3 62 1u u u u+ + − =  

1 2 3 4 5 6, , , , , 0u u u u u u ≥  
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Step 3: Compute 

1

1

21 1 1
1 4 512 2 2

42 51 1 1
5

T

−    −       − − −         = − = =                          

. 

And the matrix 2

2
1

T  
=  
 

. 

Step 4: Compute nonnegative matrix P  such that 2 0PAT = , 

1 1 0 0 0 0
1 0 0 1 0 1
0 1 0 0 0 1
0 0 1 0 2 0
0 0 0 1 1 0
0 0 1 0 1 2

P

 
 
 
 

=  
 
 
  
 

. 

Also compute 1

1 1 0 0 0 0 1 1 2
1 0 0 1 0 1 0 1 0

10 1 0 0 0 1 1 2 0
,2

0 0 1 0 2 0 1 0 21
0 0 0 1 1 0 1 0 0
0 0 1 0 1 2 0 1 0

G PAT

−    
    
         − = = =               −
        −    

 

1 1 0 0 0 0 1 3
1 0 0 1 0 1 2 6
0 1 0 0 0 1 1 2
0 0 1 0 2 0 5 7
0 0 0 1 1 0 0 5
0 0 1 0 1 2 0 7

g Pb

    
    
    
    

= = =    
    
    
        
    

 

Step 5: We get the LP problem of the form 
Maximize Z  
Subject to, 

2 3Z ≤  

0 6Z ≤  

0 2Z ≤  

2 7Z ≤  

0 5Z ≤  

0 7Z ≤  

For this LP problem we get that the first constraint is the only active con-
straint and this active constraint shows that the maximum optimal value is  

* 3
2

Z = . Corresponding this active constraint of (8), we get the dual variables 

T 1 ,0,0,0,0,0 .
2

v  =  
 

 

Step 6: Compute T T 1 1, ,0,0,0,0
2 2

u v P  = =  
 

 with objective value * 3
2

w = .  
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This indicates that in the original set of constraints the first and the second con-
straints are the only active constraints. 

Step 7: Solve the system of linear equations 

1 2 1x x− + =  

2 2x =  

We get the optimal solution * 1
2

x  
=  
 

 of the LP problem with objective value 

* 3
2

H = . 

Finally we get our desired optimal solution of the given LFP problem is  

* 1
2

x  
=  
 

 with the optimal value * 3
4

F = . 

Example 2: Consider the linear fractional programming (LFP) problem 

Maximize ( ) 1 2

1 2

5 3
5 2 1

x xF x
x x

+
=

+ +
 

Subject to,  

1 23 5 15x x+ ≤  

1 25 2 10x x+ ≤  

1 2, 0x x ≥  

Solution: 

Step 1: Let * 1
1

x  
=  
 

, then * 5 3 1
5 2 1

F +
= =

+ +
 and hence we have 

( ) ( ) ( ) 1T * T
2

2

5 3 1* 5 2
x

c F d x x
x

 
− = − =    

 
 

Step 2: Therefore we have the following LP problem 
Maximize ( ) 2H x x=  
Subject to,  

1 23 5 15x x+ ≤  

1 25 2 10x x+ ≤  

1 0x− ≤  

2 0x− ≤  

Dual problem for this LP problem is 
Minimize ( ) 1 215 10w x u u= +  
Subject to,  

1 2 33 5 0u u u+ − =  

1 2 45 2 1u u u+ − =  

1 2 3 4, , , 0u u u u ≥  

Step 3: Compute ( )
1

1

0 0 0
0 1

1 1 1
T

−
      

= =      
      

. 
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And the matrix 2

1
0

T  
=  
 

. 

Step 4: Compute nonnegative matrix P  such that 2 0PAT = , 

1 0 3 0
0 1 5 0
0 1 6 1
0 0 1 1

P

 
 
 =
 
 
 

. 

Also compute 1

1 0 3 0 3 5 5
0 1 5 0 5 2 0 2

,
0 1 6 1 1 0 1 1
0 0 1 1 0 1 1

G PAT

    
         = = =     −      

− −    

 

1 0 3 0 15 15
0 1 5 0 10 10
0 1 6 1 0 10
0 0 1 1 0 0

g Pb

    
    
    = = =
    
    
    

 

Step 5: We get the LP problem of the form 
Maximize Z  
Subject to, 

5 15Z ≤  

2 10Z ≤  

10Z ≤  

0Z− ≤  

For this LP problem we get that the first constraint is the only active con-
straint and this active constraint shows that the maximum optimal value is 

* 3Z = . Corresponding to this active constraint of (8), we get the dual variables  
T 1 ,0,0,0,0,0 .

5
v  =  

 
 

Step 6: Compute T T 1 3,0, ,0,0,0
5 5

u v P  = =  
 

 with objective value * 3w = .  

This indicates that in the original set of constraints the first and the third con-
straints are the only active constraints. 

Step 7: Solve the system of linear equations 

1 23 5 15x x− + =  

1 0x =  

We get the optimal solution * 0
3

x  
=  
 

 of the LP problem with objective value 

* 3H = . 
Finally we get our desired optimal solution of the given LFP problem is 

* 0
3

x  
=  
 

 with the optimal value * 9
7

F = . 
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Table 1. Results of existing and our methods for Example 1 and Example 2. 

 Bitran and Novea Swarup Tantawy Our Method 

Example 1 
3 iterations with  

lots of calculations 
3 iterations with  

clumsy calculations 
2 iterations 

1 iterations with 
simple calculations 

Example 2 3 iterations 3 iterations 2 iterations 1 iterations 

 
Now different methods can be compared with our method and all the me-

thods give the same results for Example 1 and Example 2. Table 1 shows the re-
sults of number of iterations that are required for our method and the existing 
methods for these Examples. 

6. Comparison 

In this Section, we find that our method is better than any other available me-
thod. The reason can be given as follows: 
 Any type of LFP problem can be solved by this method. 
 The LFP problem can be transformed into LP problem easily with initial 

guess. 
 In this method, problems are solved by algebraically with duality concept. So 

that it’s computational steps are so easy from other methods. 
 The final result converges quickly in this method. 
 In some cases of numerator and denominator, other existing methods are 

failed but our method is able to solve any kind of problem easily.  

7. Conclusion 

In this paper, we give an approach for solving linear fractional programming 
problems. The proposed method differs from the earlier methods as it is based 
upon solving the problem algebraically using the concept of duality. This me-
thod does not depend on the simplex type method which searches along the 
boundary from one feasible vertex to an adjacent vertex until the optimal solu-
tion is found. In some certain problems, the number of vertices is quite large, 
hence the simplex method would be prohibitively expensive in computer time if 
any substantial fraction of the vertices had to be evaluated. But our proposed 
method appears simple to solve any linear fractional programming problem of 
any size. 
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