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Abstract 
Symmetric circulant matrices (or shortly symmetric circulants) are a very spe-
cial class of matrices sometimes arising in problems of discrete periodic con-
volutions with symmetric kernel. First, we collect major properties of symme-
tric circulants scattered through the literature. Second, we report two new ap-
plications of these matrices to isotropic Markov chain models and electrical 
impedance tomography on a homogeneous disk with equidistant electrodes. A 
new special function is introduced for computation of the Ohm’s matrix. The 
latter application is illustrated with estimation of the resistivity of gelatin us-
ing an electrical impedance tomography setup. 
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1. Introduction 

Electrical impedance tomography (EIT) and electrical capacitance tomography 
(ECT) are emerging engineering modalities designed to solve inverse problems 
by measuring electric signals on the periphery of the body and reconstructing 
the electromagnetic properties within the body. In its simplest 2D disk form, the 
problem reduces to relation of vector of voltages to vector of currents through a 
matrix, as in Ohm’s law. It was proven that this Ohm’s matrix is symmetric 
circulant. Although some properties of these matrices have been recently men- 
tioned in several papers including [1] and [2], no systematic study has been 
conducted including computation of eigenvectors and eigenvalues. The problem 
of computation of the elements of symmetric circulant matrix with equidistant 
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electrodes gives rise to a new special function. We also suggest application of 
symmetric circulants to model very special isotropic Markov chains. 

2. Properties Overview 

In a symmetric Toeplitz matrix, the elements of diagonal parallel to the main 
diagonal are the same. A circulant matrix, or shortly circulant, is a special 
Toeplitz matrix which does not change upon forward shift of its elements; a 
concise discussion of circulant matrices and their properties is found in [3] [4]. 
In the matrix form, we can express the shift as multiplication by a permutation 
matrix [5]. The n n×  shift matrix { }ijs=  is such that 1 , 11,  1n i is s += =  for 

1, , 1,i n= −  and 0 elsewhere. For example, the 4 × 4 shift matrix ( )4n =  has 
the form 

0 1 0 0
0 0 1 0

.
0 0 0 1
1 0 0 0

 
 
 =
 
 
 

                           (1) 

Davis [5] proves that a square matrix A  is circulant if and only if 
,=A A   

or equivalently 
1 .−=A A                           (2) 

Hereafter bold upper case is used for matrices and bold lowcase is used for 
vectors. The elements of a n n×  circulant matrix are defined by the n  ele- 
ments in the first row. The following properties of circulant matrices are well 
known: 1) A linear combination of circulants is a circulant, 2) the product of 
circulants is a circulant, 3) the inverse of a circulant is a circulant, 4) circulants 
have the same eigenvectors, 5) circulants commute. The proof and other pro- 
perties of circulants can be found in the books cited above. 

The object of the present paper is symmetric circulant matrix, or shortly 
Symmetric Circulant (SC). This very special class of Toeplitz matrices sometimes 
emerge in problems of discrete periodic convolutions with symmetric/spherical 
kernel [6] [7]. The properties of SC are scattered through the literature; below 
we summarize these properties with emphasis on the computation of their 
eigenvalues and eigenvectors. 

Below are examples of SC matrices for 4,5n =  and 6. 

,    ,    .

a b c d c b
a b c c b

a b c b b a b c d c
b a b c c

b a b c c b a b c d
c b a b c

c b a b d c b a b c
c c b a b

b c b a c d c b a b
b c c b a

b c d c b a

 
                                     

 

Since a SC matrix is Toeplitz and symmetric, the elements parallel to the main 
diagonal are the same on both sides of the diagonal. Since a SC matrix is cir- 
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culant, each row is constructed by the left shift of the previous row: the last 
element of the previous row moves to the first column with the rest of elements 
from the previous row to follow. The following theorem collects peculiar pro- 
perties of a SC matrix (the proof is either elementary or can be found elsewhere). 

Theorem 1. The following holds:  
1) The sum of elements in each row and column of a SC matrix is the same. 
2) A linear combination of SC matrices is a SC matrix. 
3) The inverse of a SC matrix is a SC matrix. 
4) The product of SC matrices is a SC matrix. 
5) Matrix T  is SC if and only if ij i jT t −=  and the sum of elements in each 

row is the same. 
6) The n n×  SC matrix is defined by ( )1 2n +    distinct elements, where 

    denotes the closest larger integer. 
7) SC matrices of the same size have the same eigenvectors.  
8) SC matrices commute, namely, if T1 and T2 are SC matrices, then 1 2 2 1TT T T= . 

Eigenvalues and Eigenvectors of Symmetric Circulant 

The eigenvalues and eigenvectors of SC matrices are real because the matrix is 
symmetric. If 0 1 1, , , nt t t −  are the elements in the first row then the eigenvalues 
are expressed as a linear combination: 

1

0

2πcos ,    1, 2 , .
n

i k
k

it k i n
n

ν
−

=

 = = 
 

∑                   (3) 

Using elementary trigonometry one can show that for an even n  the largest 
and the smallest eigenvalues are unique, but the rest repeat twice. For an odd n  
the largest eigenvalue is unique but the rest repeat twice. The last eigenvalue 
( )i n=  corresponds to the eigenvector 1 n . As follows from the previous 
theorem 

1 1,    1, 2, , ,n i it t i k− + += =   

so the number of unique eigenvalues is ( )1 2 .k n= +    
As was shown in [6] and [8] the i th eigenvector corresponding to the eigen- 

value (3) of any symmetric circulant matrix is 

2 2π πcos ,    1, 2 , ,
4i

i k i n
n n

 = − = 
 

p                 (4) 

where ( )0,1, , 1n ′= −k  . These vectors have unit norm and are pair wise 
orthogonal. As a word of caution, several authors including [9] and [10], mis- 
takenly reported the formula for the eigenvectors proportional to ( )cos 2πi nk . 
The adjustment π 4−  in formula (4) is due to the presence of repeated eigen- 
vectors in symmetric circulants. Many properties of SC matrices, such as those 
listed in Theorem 1, follow from the fact that SC matrices have the same eigen- 
vectors provided by formula (4). 

3. Applications 

The symmetric circulant matrix is not just a curious mathematical object; it has 
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several applications. For example, a SC matrix is used in physical applications [6] 
and image processing to describe the Karhunen-Loève type rotations of image 
templates [9] [11]. Generally, the SC matrix may be useful in modeling rotation- 
invariant systems in equilibrium. This claim is illustrated by the following 
example. 

3.1. Isotropic Markov Chain 

The Markov chain model describes a stochastic process, { }0 1 2, , ,X X X  , where 
each random variable tX  at time t may be in one of n  states { }1, 2, ,ix n=  . 
In a Markov chain, the probability distribution at time t is completely specified 
at time 1t − ; in other words, ( ) ( )0 1 1 1Pr , , , Prt t t tX X X X X X− −= . The con- 
ditional probabilities are called transition probabilities, 

( )1Pr ,t j t i ijX x X x p−= = =  

which reads as the probability to move to state jx  given that at the previous 
time it was at state ix . Note that these probabilities do not depend on time t . 
There are many excellent books on Markov chain models, see [12] [13] [14] 
among them. 

Definition 2. A Markov chain model is called isotropic if the transition pro- 
bability, ijp , is a function of i j− . 

The transition probability matrix of an isotropic Markov chain is symmetric 
and consequently doubly stochastic. That is, the sum of elements in each column 
is 1. An Isotropic Markov chain can be used to describe a random walk on the 
circle or globe as a model for virus or rumor spread. To be specific, we talk in 
terms of a random walk. Let n  points/states be specified by n  vector co- 
ordinates { }, 1, ,i i n=x  . We assume that the probability, ijp , of walking from 
state i  to state j  is a function of the distance i j−x x . A natural assump- 
tion is that ijp  is a decreasing function of the distance. Clearly, the transition- 
probability matrix is specified by n  numbers 0 1 1, , , .nt t t −  

Theorem 3. The matrix of transition probabilities of an isotropic Markov 
chain model is a symmetric circulant matrix.  

Proof. We simply refer to Theorem 1 #5 noting that the sum of elements in each 
row is 1, which also holds for the sum of any exhaustive set of probabilities.    

An important question is the stationary state of an isotropic Markov chain, 
the probability distribution of each state after an infinite number of steps, the 
long-run behavior of Markov chain, ( )Pr j jX x π= = , 1, 2, ,j n=  . These 
probabilities are called stationary probabilities. 

Theorem 4. The stationary probability distribution of an isotropic Markov 
chain with positive transition probabilities is uniform, 1j nπ = .  

Proof. The long-run (stationary) vector-row probability, ( )1 2, , , nπ π π=π  , 
is the solution to the equation =πP π , where P  is the n n×  matrix of 
transition probabilities [15]. Since P  is symmetric for an isotropic Markov 
chain, we conclude that π  is the eigenvector corresponding to the eigenvalue 1. 
Since 0kt >  for all 0,1, , 1k n= − , it follows from (3) that the maximum 
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eigenvalue is unique with i n= : 0 1.n
n kkv t

=
= =∑  The eigenvector correspond- 

ing to this value is 

( )2 π 2 π 1cos 2π cos 1 1,1, ,1 ,
4 4n n n n

    ′= − = =   
   

p k   

which means that the probability of stepping to each state is the same, 1 n . In 
fact, one can prove that the stationary probabilities are the same if the matrix of 
transition probabilities is symmetric.                                    

Using the previous interpretation with a virus epidemic on the globe, if the 
probability of infection is positive for each pair of locations ( ),j ix x , sooner of 
later all people get infected with equal probability. 

3.2. Laplace Equation on a Disk and Generalized Ohm’s Law 

The symmetric circulant matrix appears in Ohm’s law on a disk. From ele- 
mentary physics, we know that by Ohm’s law the difference of voltages at the 
ends of a wire, V , is the product of the resistivity of the wire, ρ , and the 
current C , 

.V Cρ=                             (5) 

What is Ohm’s law on a disk when L  currents and voltages are measured at 
a finite number of electrodes on the perimeter? Apparenly, the vectors of vol- 
tages and currents must be connected through a L L×  matrix with ρ  as the 
resistivity coefficient since the disk is homoheneous. We term this matrix the 
Ohm’s matrix, and as we show below this matrix is symmetric circulant if 
electrodes are placed at angles 2πi Lη + , 1, 2, ,i L=   where η  is any. 

The following formulation may be viewed a simplified scheme of electrical 
impedance tomography (EIT), when electromagnetic properties, such as re- 
sistivity and permittivity within the body, are reconstructed from measurements 
of current and voltage on the periphery of the body; more detail can be found in 
[16] [17] [18] [19]. 

We consider a homogeneous disk with resistivity ρ  of radius R . The cur- 
rent is applied at the circle with density ( )J θ , 0 2πθ< < . The system is in 
equilibrium, so we have ( )2π

0
d 0J θ θ =∫ . The resulting voltage V , as a function 

of radius r  and angle θ , in polar coordinates is governed by a Laplace equa- 
tion: 

( )2 , 0,    0 ,    0 2πV r r Rθ θ∇ = ≤ ≤ < ≤               (6) 

with the Neumann boundary condition 

( )1 d .
d r R

V J
R r

θ
=

=  

In reality, the current is applied at a finite number of electrodes and is zero 
elsewhere on the circle. Typically L  electrodes (usually an even number) are 
located on the circle centered at angles 2πi i Lθ = , 1, 2, ,i L=   with the same 
half-width, w , measured in radians (the width of the electrodes is fairly small, 
so they do not overlap). To simplify, we shall assume that the current density 
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flux is uniform over the electrode (the so called shunt model [20]). These 
assumptions specify the step function ( )J θ  as follows. 

( ) [ ]const for , ,  1, 2, ,
0                                                      elsewhere

i i iJ w w i L
J

θ θ θ
θ

 = ∈ − + =
= 




 

As shown in [1], the potential V  at angle θ  and distance r  from the 
center in the finite-electrode EIT system is given by the equation  

( ) ( ) ( )( )2
1 1

2 1, sin cos .
π

nL

i i
i n

R rV r J nw n
R n

ρθ θ θ
∞

= =

  = −  
   

∑ ∑            (7) 

Two examples of potential distribution on a disk using this formula is shown 
in Figure 1 with 4L = , 1R =  and ( )2 5π .w =  All currents are the same in 
absolute value but differ in sign (the inward arrows indicate negative current and 
the outward arrows indicate the positive current). In the example at left, the 
currents at the opposite electrodes have the opposite sign and in the example at 
right the currents are the same. Clearly, the two current scenarios create quite 
different voltage distributions in the disk. 

In Ohm’s law, we relate the voltage and current on the periphery of the 
conductor. From (7), we derive how voltages and currents at the electrodes are 
related, letting r R=  and jθ θ= , which yields 

( ) ( )( )2
1 1

1 sin cos ,
π

L

j i j i
i n

V C nw n
w n
ρ θ θ

∞

= =

 = −  
∑ ∑  

where ( )2i iC wR J=  is the current at electrode i  (the integral of the current 
density over the width of the electrode), and ( )1, , LC C ′=C   is the 1L×  
vector of currents. 

Finally, in the matrix form, Ohm’s law on a homogeneous disk with re- 
sistivity ρ  and L  equidistant electrodes placed at angles 2πi i Lθ =  for 

1, 2, ,i L=   is given by 

,ρ=V TC                               (8) 

where T  is the n n×  matrix with entries 

( ) ( )2
1

1 1 2πsin cos .
πij

n

nT nw i j
w Ln

∞

=

 = − 
 

∑                 (9) 

Compared to Ohm’s law on a wire (5), Ohm’s law on a disk (8) contains an 
L L×  matrix. This matrix (9) will be referred to as the Ohm’s matrix because it 
relates the vectors of voltages and currents. Below, we prove that this matrix is 
symmetric circulant. 

Theorem 5. The L L×  Ohm’s matrix with elements specified by (9) is a 
symmetric circulant matrix. 

Proof. It is easy to see that T is symmetric. The fact that the sum of elements 
in each row is constant follows from the fact that cos  is an even function and  

the sum ( )1

2πcosL
j

n i j
L=

 − 
 

∑  does not depend on i . To prove this we note 

that (a) 
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Figure 1. The voltage distribution on a homogeneous disk with four electrodes (shown 
on the circle as wide black segments). Arrows indicate the current supplied at the elec- 
trodes: All currents are the same but differ by sign. The inward arrows indicate negative 
and the outward arrows indicate positive current. 
 

( )2π 2πcos cos ,n ni j i j
L L

   − = −   
   

 

and (b) the set of unique values of { }, 1, 2,i j j L− =   does not depend on i  
and equal { }0,1, , L . Therefore, we deduce that 

( )
1

1 0

2π 2πcos cos
L L

j j

n ni j j
L L

−

= =

   − =   
   

∑ ∑  

and does not depend on i . Since ijA  is a function of i j− , as follows from 
Theorem 1 #4, matrix (9) is a SC matrix.                                 

The Ohm’s law matrix posesses unique properties and have been studied 
previously in connection with electrical impedance tomography [1] [21] [22] 
[23]. As we know from the previous section, there are ( )1 2uL L= +    unique 
elements of matrix T , denoted 0 1 1, , ,

uLt t t − . Their computation gives rise to a 
new special function, defined below. 

Definition 6. Function 

( ) ( )2
1

1 1 sin 2π
2π n

D x xn
n

∞

=

= ∑                           (10) 

( )
0

ln sin π d ln 2,   0 1
x

t t x x= − − < <∫               (11) 

is called the D-function. 
Note that we provide two forms of the function: the first is through Fourier 

series and the second is through an integral. The equality comes from a known 
fact: ( ) ( )1

1 cos 2π ln 2 ln sin πn n zn z∞ −
=

= − −∑  after integration from 0 to x . 
Interestingly, mathematics reference books list pairs of functions that are close 
in terms of expressions, but not this one. To the best of our knowledge, the D - 
function cannot be easily expressed as other known special functions. This 
function takes zero values at 0, 1/2 and 1 and is odd around 1 2x = . It is 
elementary to show that it takes its maximum at ( )1π arcsin 1 ln 2−  and mini- 
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mum at ( )11 π arcsin 1 ln 2 .−−  
By direct examination, it is easy to see that 

1 1 sign ,
2π 2π 2πk

k w k w k wt D D
w L w L L

    = + − − −    
    

              (12) 

0,1, , 1.uk L= −  For example, when the number of electrodes 8L = , we have 
that matrix 

0 1 2 3 4 3 2 1

1 0 1 2 3 4 3 2

2 1 0 1 2 3 4 3

3 2 1 0 1 2 3 4

4 3 2 1 0 1 2 3

3 4 3 2 1 0 1 2

2 3 4 3 2 1 0 1

1 2 3 4 3 2 1 0

t t t t t t t t
t t t t t t t t
t t t t t t t t
t t t t t t t t
t t t t t t t t
t t t t t t t t
t t t t t t t t
t t t t t t t t

 
 
 
 
 
 =  
 
 
 
 
  

T                 (13) 

is completely specified by 5 unique elements. In Figure 2, we show this matrix as 
an image with 0.1w =  at left and values of 0 1 2 3 4, , , ,t t t t t  with 0.05w = , 0.1 
and 0.2. 

When 0.1w = , we can roughly approximate T  with the identity matrix, so 
the disk and wire Ohm’s laws become virtually equivalent. The diagonal ele- 
ments of the SC matrix are dominant. There is a weak dependence of kt  on w  
for 0k > . 

The SC matrix reflects the physical principals of Ohm’s law on a disk with 
equidistant electrodes: 

1) It does not matter how the electrodes are indexed (i.e., which electrode is #1) 
because matrix T  is circulant. 

2) Ohm’s law (8) can be rewritten as 1σ −=C T V , where σ  is conductivity 
because matrix 1−T  is a SC matrix. 

3.3. Resistivity Estimation in a Homogeneous Tank 

In this section, we apply the generalized Ohm’s law on a disk to reconstruct the 
 

 
Figure 2. Matrix (13) shown as an image and unique t elements with three values of ω. 
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Figure 3. Left panel: EIT experiment with tank filled with gelatin. The current is injected at 16 equally spaced electrodes (color of 
clips does not matter). The voltage is measured at the same electrodes, 15 current patterns are applied with 17 frequencies. Right 
panel: Estimation of resistivity of gelatin using the generalized Ohm’s law on a disk with standard error bars. 
 

electric resistivity of gelatin in the lab tank using EIT hardware (see Figure 3). 
Currents are injected at 16L =  equally spaced electrodes with 17 different fre- 
quencies varying from 10 KHz to 3359 KHz. The diameter of the tank was 20 cm 
and the width of each electrode was 1 cm, so 0.5 10 0.05w = =  radian (the 16 
electrodes cover about 25%  of the tank circle). For each frequency, 15 sinu- 
soidal patterns (vectors) of currents are injected and the resulting voltage is 
measured; more detail about the hardware design is found in [24]. 

Let V  and C  be 16 × 15 matrices of voltage and current (the i th column 
of C  is the i th pattern). Then, by Ohm’s law, the matrix of voltages can be 
expressed as a linear regression model with an unknown coefficient, 

,ρ= +V AC ε  

where ε  is the 16 × 15 matrix with independent and identically distributed 
error elements with zero mean and constant variance 2σ . A least squares esti- 
mate of ρ  minimizes 2ρ−V AC  and can be written in matrix form as 

( )
( )2

trˆ .
tr

ρ
′

=
′

V AC
C A C

 

The estimate of the variance is 

( ) ( )
2

2

ˆ
var ,

tr
σρ =
′C A C

 

where ( )22 ˆˆ 16 15 1σ ρ= − × −V AC  is an unbiased estimate of 2σ  [25]. The 
results of estimation of the gelatin resistivity with ( )ˆvarSE ρ=  bars for 17 
frequencies estimated separately are shown in the right panel of Figure 3. Note 
that 1) the resistivity estimate drops with increasing frequency and 2) the 
uncertainty of resistivity estimation (SE) is about 1 cm/S. 
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