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Abstract 
With the multitude of non-communicating wearable sensors, there is an ur-
gent need to better combine wearable data streams in order to improve hu-
man health and well-being. A five-step process is proposed. The first step is to 
specify the human behavior that the data set will address. The second step is 
to critically assess primary measurement that allows the behavioral goal to be 
addressed. After this, other streams can be integrated in a hierarchical fashion 
based on their accuracy, precision and relevance. The third step is to perform 
a hierarchical synthesis of the multiple data streams. In the fourth step, the 
multiple data streams are integrated for practical use; we propose achieving 
this with wearable computers. The final step is that system retraining occurs, 
via Artificial Intelligence, so that an integrated wearable system can be indi-
vidualized. A case study of Type 1 diabetes is used: this analysis and the pro-
posed solutions illustrate the need for an urgent interdisciplinary debate to 
advance useful methods for combining data from divergent wearable sensors. 
Wearable fully integrated systems, programmed with Artificial Intelligence, 
will enable data from multiple wearable sensors to be optimized to improve 
individual well-being. 
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1. Introduction: The Wearable Sensor Market Is Growing 

The $1 billion wearable sensor market is predicted to grow ten-fold over the next 
five years [1]. The wearable sensor market is growing for a variety of reasons [2]. 
Firstly, there is increasing consumer demand and availability of wearable sen-
sors. Secondly, there is a growing acceptability for wearable sensor use in society. 
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The most common of these are wearable sensors that monitor daily physical ac-
tivity levels [3]. However, other sensors are gaining popularity such as the mon-
itor sleep, intradermal variables and heart rate [4]. Thirdly, the cost of develop-
ing mass scalable electronics is declining, so the barrier to producing new com-
pact wearable technologies has diminished. Fourthly, there is a growing aware-
ness that the Internet of Things [5] will be important in society. This has propa-
gated the advancement of big data analyses and the systems to perform these 
analyses [6] [7]. The wearable sensor market is expanding and it will be neces-
sary to better integrate non-communicating wearable technologies to improve 
human well-being. 

2. Wearable Sensors Generate Data That Vary in Format,  
Quality and Integrity in the Absence of a Common  
Analytical Approach 

Wearable sensors have the capability of gathering data from different physiolog-
ical variables and so could improve human well-being [2]. Data may be gathered 
using different technological modalities that may produce different types and 
quality of data, of variable value and validity [8]. Data streams may be even more 
heterogeneous because different companies produce sensors under variable 
stringencies and governed by different regulatory rule sets; for example in the 
U.S., subcutaneous continuous glucose monitoring requires FDA approval whe-
reas monitoring daily movement requires no regulatory oversight [9]. Methods 
for analysis vary too; some data are filtered and analyzed on board the device 
whereas other devices stream raw data to a secondary data acquisition system [8] 
[9]. The quality, integrity and nature of different wearable sensors vary depend-
ing upon a multitude of factors. 

3. Once Data are Gathered, the Applications of the Data are  
Multidimensional and Inconsistent 

Some data, such as blood sugar data, may need to be accessed by both the user 
and a third party, such as a healthcare provider [9]. Data from movement- 
trackers, by contrast, is generally only accessed by users themselves for self- 
monitoring [3]. Despite data from diverse wearable sensors being of different 
types and applications, uniform safeguards are necessary [7]. Data integrity 
needs to be guaranteed, data particularly if health-related, needs to be private 
and secure and data transmission protocols need to be robust [6] [7]. 

4. The Disorganization of Data Handling in the Wearable  
Sensor Field Makes Intelligent Analysis and Consistent  
Feedback Impossible 

Because the entire process of data acquisition, transmission and analysis from 
wearable sensors is unfettered, it is impossible to integrate data for individual or 
third party use [8]. If airlines communicated with airports in a haphazard fa-
shion, without agreed upon protocols, chaos would reign. Regardless of the 
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challenge of terminal integration of multi-stranded data from wearable sensors, 
there have been few structured approaches to standardizing the data from wear-
able sensors and intelligently unifying data integration, analysis and feedback. 

5. The Multiplicity of Wearable Sensors 

Many wearable sensors exist and others are being developed for human use [2]. 
The wearable sensor field is at a critical juncture, because common approaches 
to integrating, analyzing and processing the multiple sources of data has not oc-
curred. If people are to benefit, common approaches to data transmission, inte-
gration and processing will be needed. 

6. Strategy to Build an Intelligent Multisensor System 

In order to work through the complexity of how to integrate multiple disparate 
sensors it is necessary to develop a robust strategic approach. There are five steps 
that can be taken to integrate data from multiple wearables: 

Step 1. Identify a specific problem that the data set will address 
Step 2. Identify a hierarchy of data streams from wearable sensors: 

1) Define a valid primary measurement to verify true events and exclude false 
alarms; 

2) Define secondary measures in hierarchical order that contribute to the causa-
tion of true events and/or exclusion of false alarms: 

a) Define the secondary measure with the highest hierarchical value that contri-
butes to causation of true events and/or exclusion of false alarms; 

b) Define the secondary measure with the second highest hierarchical value that 
contributes to causation of true events and/or exclusion of false alarms; 

c) Define a secondary measure—with the third highest hierarchical value that 
contributes to causation of true events and/or exclusion of false alarms etc. 
Step 3. Hierarchical Data synthesis  
Synthesize data based upon a clearly defined problem that needs to be solved 

with an evidence-based understanding of the hierarchical value of the data 
sources. 

Step 4. Practical integration of data streams 
The data streams need to be integrated in a practical fashion that free-living 

people can apply outputs to their health and/or behaviors. 
Step 5. System Retraining to achieve individualization 
Re-training of the system needs to occur based on the presence of false posi-

tive and false negative events. Artificial Intelligence approaches can individualize 
the system’s algorithms. 

7. Type I Diabetes Is a Chronic Disease That Serves as an  
Example of How Important It Is to Integrate Data from  
Multiple Wearable Sensors 

There are a variety of reasons as to why Type I (Juvenile) diabetes is a valuable 
example of a chronic disease state by which we can examine the challenges and 
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potential solutions as to how data from multiple disparate wearable sensors can 
be integrated [9] [10] [11] [12] [13]. 

In Type I diabetes there is autoimmune destruction of the insulin producing 
cells in the pancreas [14]. Patients, often diagnosed in childhood, have lifelong 
dependency on exogenous insulin. Multiple aspects of a patient’s life affect insu-
lin dosage; for example, if a patient overexerts him or herself without decreasing 
their insulin dose, they can develop low blood sugar values—hypoglycemia [15]. 
Hypoglycemia is a major cause of sudden death in patients with Type 1 diabetes 
[16] [17]. Conversely, if a patient eats too much their insulin dose may be in-
adequate and they become hyperglycemic (high blood glucose) [14]. It is known 
through multicenter trials that good control of blood glucose is associated with 
improved outcomes in type I patients [15] [18]. Therefore there is a lifelong need 
to maintain good glycemic control. Type I diabetes is a chronic disease state 
where wearable sensors could be useful because there are many aspects of daily 
living that can impact their activity level and food intake [9]. 

7.1. Identification of a Specific Human Problem 

We will examine the following clinical scenario: A physician is referred a 36- 
year-old woman with Type 1 diabetes because whilst at work she has multiple 
hospital admissions with low blood sugar—hypoglycemia (Figure 1. Panel A). 
Episodes of hypoglycemia are the commonest causes of acute harm to patients 
with Type 1 diabetes [15]. They can be caused by excessive insulin and/or in-
adequate caloric intake for the physiological state of the patient [16] [17]. 

At the time of her evaluation the patient had lived with Type 1 diabetes for 23 
years. She checked her blood glucose periodically with a lancet and adjusted her 
insulin injections accordingly. The doctor, on questioning the patient, discov-
ered that the hypoglycemia events occurred only in the afternoons. The patient 
explained that in the afternoons she often had to hand deliver documents 
around the work campus. The doctor hypothesized that the low blood sugar 
events occurred because of high levels of physical exertion. 

7.2. Primary Measurement Verifies That the Problem Exists 

To verify that the patient indeed had low blood sugar values in the afternoons, 
the doctor fitted the patient with a wearable glucose monitor that measured 
the patient’s glucose continuously and aggregated a value every 15 minutes 
[19] [20]. The patient’s 15-minutely analog glucose data were converted to a 
digital signal (Figure 1. Panel B): When the patient had a glucose value that 
was high (>150 mg/dL), a +1 signal was generated. When the patient had a 
glucose value that was low (<90 mg/dL) a −1 signal was generated. All other 
glucose values were ascribed, ‘0’. This digital signal was transmitted to the 
doctor as a series of +1, −1 and 0 digits (Figure 1. Panel E). The data con-
firmed that the low blood sugar values occurred in the afternoon (Figure 1. 
Panel B). 
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Figure 1. Worked example of Type 1 diabetes and the integration of three wearable sensors. 
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7.3. Identify Sensor/s to Address the Primary Hypothesis 

To address the hypothesis that, “low blood sugar events occurred because of 
high levels of physical exertion”, the doctor asked the patient wear a motion 
sensor to capture the patient’s daily physical activity. The patient’s daily physical 
activity values ranges from 6 to 22 Activity Units (AU)/min with a mean of 14 
and standard deviation of 4 AU/min [8] [13]. The analog-to-digital converter for 
this sensor was set as follows; +1 was sent for >19 AU/min, −1 was sent <9 
AU/min and all other values were assigned “0”. When the doctor (or algorithm) 
reviewed the outputs from the glucose monitor and the activity monitor side-by- 
side, +1 elevations in physical activity coincided with −1 depressions in blood 
glucose (Figure 1. Panels B and C). The doctor’s hypothesis was confirmed, that 
low blood sugar events occurred when the patient was physically exerting herself 
by hand-rushing documents across her work campus. 

7.4. Identify sensor/s to Address a Secondary/Subsidiary  
Hypothesis 

The patient improved by taking a larger snack before hand-rushing documents 
around her campus. She had far fewer low blood sugar events. However, during 
the summer, the doctor noticed that the patient was getting more low blood 
sugar values requiring treatment. The doctor hypothesized (secondary hypothe-
sis) that the patient was getting more, low blood sugar events because of ex-
tremely high summer temperatures. The patient was asked to wear an ambient 
temperature sensor (Sensor 3) attached to the top of her glasses. A +1 signal was 
sent when ambient temperature increased by 3˚C above the rolling average for 
12 hours previously, and a −1 one signal when ambient temperature decreased 
by 3˚C; all other outputs were 0. When the 3 digital signals were viewed along-
side each other (Figure 1. Panels B, C, D), low blood sugars were influenced by 
high ambient temperature. The patient was advised to stay hydrated on summer 
afternoons at work. 

7.5. Hierarchical Data Synthesis 

In this example, three signals from three divergent wearable sensors were com-
bined using an analog-to-digital conversion approach. The data format from the 
three sensors was different (glucose, movement and temperature), the data-ga- 
thering frequencies were different and data integrity was different. In the patient 
described above with Type 1 diabetes: 
• All 3 sets of data were transmitted together (Figure 1. Panel E) using a for-

mat that rendered the information unidentifiable, codified (without knowing 
the sensor configuration and the rules for +1/−1/0) and so secure.  

• The data were intelligently integrated to improve health.  
• Data of different veracity were not equally weighted. The driving data set 

(Sensor 1: blood glucose values) were of predominant importance because 
they were being used to drive the principal question. Sensor 2 addressed the 
primary hypothesis and so had secondary weighting. Sensor 3 addressed a 
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subsidiary hypothesis and so had tertiary weighting. 
• The analogue-to-digital conversion described above illustrates an example of 

how variable data from multiple wearable sensors can be usefully combined. 
The three wearable sensors in this example address a specific health problem. 

Exactly the same five-step approach can be used to address health questions for a 
person wearing 15 different sensors (Figure 2). Also, multiple different health 
questions can be addressed using the same sensor streams but with different 
prioritization and weighting. 
• The common (digitized) data format is the key starting point to integrate da-

ta from different sensors.  
• This approach is consistent with multiple companies simultaneously devel-

oping different sensors with different outputs (all outputs in this example 
were reduced to: +1/−1/0 format). 

• This approach enables disparate and complex data sources to be transmitted 
in a de-identified and secure fashion. 

• This approach enables intelligent design to drive the process for using weara-
ble sensors to advance human welfare. 

This approach for combining data from multiple wearable sensors is one sim-
ple method for combining data from multiple divergent sources. It was used 
here only to illustrate the challenges. Many other mathematical approaches can 
be used to intergrade medical signals. For example Fourier transformations are 
relevant in a broad series of chronic disease states such as, Alzheimer’s disease, 
cholelithiasis and breast cancer [21]-[26]. Similarly, the Gaussian function has 
been applied to cerebral ischemia, rheumatoid arthritis and chemotherapy effi-
cacy in cancer treatment [27] [28] [29] [30]. 

Regardless of the mathematical paradigm/s being applied to multiple streams 
of data, an organized and hypothesis driven approach is recommended. 

7.6. Data Integration (Figure 2) 

Although the need for integrated wearable technologies in health is discussed 
[4], practical solutions are rarely expounded upon. However, relatively simple 
solutions do exist for integrating data from multiple wearable sensors with dif-
ferent data formats. For example, the Raspberry Pi 3  
(https://www.raspberrypi.org/products/raspberry-pi-3-model-b/) [31]. The com- 
puter measures 86 × 17 × 54 mm and weighs 42 g. The system runs Linux and 
enables multiple inputs with high-level data processing under the ARMv8 (1.2 
GHz 64-bit quad-core) processor. The Pi 3 computer has both Wi-Fi (802.11n) 
and Bluetooth (4.1 and Low Energy) connectivity. There are 4 USB ports, 40 
GPIO pins, and a Micro SD slot. Coin cell batteries power the unit, enabling 
continuous use for 20 days. 

Practically, complex algorithms can be written in Linux so that complex ana-
lytics can run on the fly. In medical care scenarios, such systems can communi-
cate with the medical teams in real time, potentially using the cell phone net-
work, to ensure medical oversight (Figure 2). It is envisaged that a wearable  

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
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Figure 2. Example of how a multiple-sensor system can be practically integrated using a 
wearable computer that has WiFi and Bluetooth capability. 

 
computer could integrate multiple inputs for multiple wearable sensors simulta-
neously. The Pi3 can drive outputs too, such as a personalized warning signal (e.g. 
“Your blood sugar is decreasing, eat something now!”) or even drug delivery [32]. 
Integrated signals can be used to improve personal behaviors or health [33]. 

7.7. System Training 

Artificial intelligence (AI) is in its infancy. Using a variety of metadata learning 
tools such as multi-layer perceptron neural network learning, it will be possible for 
multifaceted systems to improve their data analysis autonomously [34] [35] [36]. 
This approach is already being used to help patients with epilepsy, analyze EKGs 
and work out how to optimize the integration of genetic data with phenotype [34] 
[35] [37] [38]. AI is particularly relevant for integrating wearables because these 
types of complex analytics are necessary to improve true positive rates and de-
creases false negative rates; reflective of improved positive predictive power. 

8. Conclusion 

This paper illustrates the need for an urgent interdisciplinary debate to advance use-
ful methods for combining data from divergent wearable sensors to help people. 
Wearable fully integrated systems, programmed with Artificial Intelligence, will ena-
ble data from multiple wearable sensors to be optimized for the individual. Inte-
grated wearable systems may assist in the care of patients with chronic diseases such 
diabetes, cardiac and neurological conditions. Thoughtful integration of wearable 
sensors has the potential to improve the well-being and health of many people. 
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