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Abstract 
Inverted pendulum models are commonly used to study the bio-mechanics of 
biped walkers. In its simplest form, the inverted pendulum consists of a point 
mass attached to two straight mass-less legs. Most works constrain the motion 
of the mass to the sagittal plane, i.e. the plane perpendicular to the ground 
that contains the direction toward the biped is walking. In this article, we re-
move this constrain to study the oscillations, the mass experiences in the di-
rection perpendicular to the sagittal plane as the biped walks. While small, 
these lateral oscillations are unavoidable and of importance in the under-
standing of balance and stability of walkers, as well as walkers induced oscilla-
tions in pedestrian bridges. 
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1. Introduction 

When a human walks, the sagittal plane refers to the plane perpendicular to the 
ground that contains the direction toward the person is walking. As the person 
walks, its center of mass oscillates, both in the vertical direction (perpendicular 
to the ground) and lateral direction (perpendicular to the sagittal plane). One of 
our goals is to contribute to the understanding of the lateral oscillations. 

The lateral oscillations play an important role in the balance and stability of 
individuals as they walk. Thus, their understanding is of interest in the field of 
bio-mechanics. These oscillations are also of interest in the field of robotics, 
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since their understanding and control are likely to help improve the design of 
stable biped robots. While small, these lateral oscillations are the cause of some 
observed undesired and unexpected motions of pedestrian bridges when too 
crowded [1]-[11]. Thus, the topic of study of this article is also of interest to 
those that design pedestrian bridges as well as other related structures. 

The use of inverted pendulum models to study the bio-mechanics of walking 
is a common practice. In its simplest form, the inverted pendulum consists of a 
point mass, which models the center of mass of the individual, attached to two 
straight mass-less segments, the legs. Works that use inverted pendulum (in its 
simplest or more sophisticated forms) or similar models to study aspects of the 
mechanics of biped walkers or related toys or biped robots include [12]-[26]. 
Particularly, the work in [27] has inspired lots of subsequent work. 

Different simple models are surveyed in [28]. Inverted pendulum type models 
are also used to study the control and stability of walking [29] [30] and the bal-
ance of standing in moving platforms [31]. Some general articles about biped 
and animal movement, including walking and running, are [32] [33]. Spring 
loaded inverted pendulum models refer to inverted pendulum models where the 
legs are not rigid; instead, they behave like springs. These models are used to 
study the mechanics of running [34] [35] [36]. Spring loaded inverted pendulum 
models have also been used to study the transition from walking to running as 
the speed increases [34] [35] [37] [38] [39]. A survey regarding the analysis and 
control of biped robots walking can be found in [40]. Experimental studies of the 
responses of humans walking in a treadmill subject to lateral oscillations are re-
ported in [41]. Lateral stability of walking is studied both theoretically and expe-
rimentally in [42] [43] [44] [45] [46]. The relationship between width of the step 
and length of the leg is studied with a mathematical model and energy argu-
ments in [47]. 

Most works using the simplest inverted pendulum model constrain the mo-
tion of the center of mass to the sagittal plane. In this article, we remove this 
constrain. As a consequence, we are able to use this unconstrained inverted 
pendulum model to study the lateral oscillations the mass experiences as the 
person walks, i.e. the oscillations in the direction perpendicular to the sagittal 
plane. We believe and hope that the model and techniques described in this ar-
ticle will be adopted by other researchers and will prove useful in the study of 
different aspects of the mechanics of biped walkers. 

In the next section the model is introduced. In the following section we de-
scribe the equations governing the dynamics of the mass while one foot is off the 
ground. Subsequently, we identify the solutions to the governing equations that 
correspond to periodic walking. We then report results of numerical simulations. 
We further explore our model by restricting our attention to the parameter re-
gime of slow walkers. We then also study the short steps parameter regime. We 
finish the article with a discussion. 

2. The Model  

We model a human as a point mass m  attached to two straight mass-less seg-
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ments, the legs. Each leg is of length L . The mass m  is the common end point 
of the two legs. The other end point of each leg is its foot. Only the feet can 
touch the ground. We will call this model of a human the model biped. Next, we 
describe our modeling assumptions. In the statements below k is any integer. 

Assumption 1. At all times, either one or both feet are touching the ground.  
The fact that each step takes the same time leads to our next assumption. 
Assumption 2. Let 0sT >  be the time of one step. Both feet are touching the 

ground only at times k st t kT= = .  
During the time interval ( )1,k kt t + , the foot of only one leg is touching the 

ground. This leg is called the stance leg. The other leg is called the swing leg. For 
definiteness, we assume the left and right leg alternate being the stance and 
swing legs as follows. 

Assumption 3. The left leg is the stance leg during the time intervals 
( )2 2 1,k kt t +  and thus, the right leg is the stance leg during the time intervals 
( )2 1 2,k kt t− .  

Assumption 4. During the time interval ( )1,k kt t + , the foot of the stance leg 
remains in the same position.  

Observation 1. During the time interval ( )1,k kt t + , the only forces acting on 
the mass m  are the force due to gravity, gF , and the force due to the stance 
leg, ( )F F t= , which is parallel to the stance leg and points from the mass in 
the direction opposite to the foot (see Figure 1). 

As it makes contact with the ground at time kt t= , the leg that was the swing 
leg during the time period ( )1,k kt t−  exerts an impulse on the mass m , chang-
ing its momentum, and preventing the mass from falling to the ground. Simul-
taneously, the leg that was the stance leg during the time period ( )1,k kt t− , exerts 
another impulse on the mass m , changing its momentum further, and giving 
the mass enough energy to take its next step. This last impulse corresponds to 
the human pushing off the ground with the foot of the leg that is changing from 
being the stance leg to being the swing leg. The impulse each leg exerts on the 
mass must be parallel to that leg and pointing from the mass away from its foot. 
This discussion leads to the next assumption. 
 

 
Figure 1. Forces acting on the mass m . The stance leg is the solid thin line. The swing 
leg is not shown. 
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Assumption 5. Let ( )mr t , ( )r t


 and ( )rr t  denote the position of the 
mass m  and left and right foot at time t  respectively. At times kt t= , the 
mass m  feels an impulse of the form  
( ) ( ) ( )( ) ( ) ( )( )k k m k k k m k r kJ t r t r t r t r tα β= − + −



 for some 0kα ≥  and 0kβ ≥ , 
with 2k kα α+ =  and 2k kβ β+ =  for all k . By symmetry, we also have 1k kα β+ = . 

Observation 2. Since the legs and feet are mass-less, the motion of the swing 
leg does not affect the motion of the mass m . It only matters the position where 
its foot lands.  

Assumption 6. When both feet are touching the ground, at kt t= , the mass 
m  is in the plane that contains both feet and is perpendicular to the ground.  

One could wonder if, when both feet are touching the ground, the mass m  
could be out of the plane perpendicular to the ground containing the feet. An in-
itial guess could lead us to believe that the mass being slightly ahead of this plane 
could facilitate the motion and make walking forward more efficient. However, 
in the context of this simple model, we have proved that there is no periodic 
walking if the mass is out of this plane. While elementary, this proof is some-
what tedious and lengthy, so we have elected to leave it out of this article. 

In Figure 2 we illustrate and introduce geometric parameters. The solid cir-
cles are the footprints. The footprints from the left foot are included in a dotted 
line. The footprints from the right foot are included in the other dotted line. 
These two lines are a distance w  apart. Thus, w  models width of the steps. 
The white circles are the orthogonal projections onto the ground of the mass at 
times when both feet are touching the ground. After each step, the center of 
mass advances a distance u . Thus, u  models the length of the steps. fe  is the 
dimensionless unit vector that points in the direction the biped is walking. he  is 
the dimensionless unit vector perpendicular to fe , parallel to the ground and 
pointing to the right of the biped. ve  is the dimensionless unit vector perpen-
dicular to the ground pointing upward (see Figure 1 also). 

Recall that sT  is the time of one step and ( )m mr r t=  is the position of the 
mass m  at time t . The symmetry and periodicity of the walk leads to the next 
assumption. 

Assumption 7. ( ) ( )2 2m s f mr t T ue r t+ = +  for all t . The components of 
the velocity of m  in the walking and vertical directions, fe  and ve , are peri-
odic with period sT  and the component of the velocity of m  in the lateral di-
rection, he , is anti-periodic with anti-period sT .  
 

 
Figure 2. Footprints, in solid black circles. The thin solid lines are the orthogonal projec-
tions of the legs onto the ground at the beginning and end of a step where the left leg is 
the stance leg. 
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3. Governing Equations during a Step While One Leg  
Is Off the Ground 

We now proceed to describe the motion of the mass during the time interval 
( )10, t . Recall that 1 st T= . During this period, the left leg is the stance leg and 
the right foot does not make contact with the ground. The left leg and the mass 
form an inverted pendulum. According to Observation 1 and Newton’s third law  

,m gmr F F′′ = +                          (1) 

where primes denote derivatives with respect to t . 
Let r̂  be the dimensionless unit vector pointing from the left foot to the 

mass, ( )ˆ mr r r L= −


. We define ( )F F mg= , where g  is the acceleration 
of gravity and we use the notation a  for the norm of any vector a , i.e. 

2 2 2
1 2 3a a a a= + + . We introduce the dimensionless time t g Lt= . Equa-

tion (1) becomes  

ˆ ˆ ,vr Fr e= −                           (2) 

where dots denote derivatives with respect to t . 
Let θ  be the polar angle and φ  be the azimuthal angle,  

ˆ sin cos sin sin cosh f vr e e eθ φ θ φ θ= + +               (3) 

where π 2 π 2φ− < <  and 0 π 2θ< <  (see Figure 1). In terms of ( )tθ θ=  
and ( )tφ φ= , Equation (2) becomes  

2 sin cos sinθ φ θ θ θ− =                     (4) 

2 cos sin 0θφ θ φ θ+ =                       (5) 
2 2 2sin cos .Fθ φ θ θ− − = −                    (6) 

We will solve these equations during the first step, i.e. in the time interval 
( )10, t , where 1 st T g L= . Equation (6) determines ( )F F t= . The dynamics 
of the mass m  is given by Equations (4) and (5). Multiply Equation (5) by 
sinθ  and integrate once to obtain  

2sin Kφ θ =                         (7) 

for some constant K . Use Equation (7) to eliminate φ  from Equation (4) to 

get 2
3

cos sin
sin

K θθ θ
θ

− = . This equation is integrated once after is multiplied by 

θ  to get  
2

2
2

1 cos ,
2 2sin

K Eθ θ
θ

+ + =                    (8) 

for some E . Note that E  is the dimensionless mechanical energy. 
The initial azimuthal angle, ( )0 0φ φ= , and polar angle, ( )0 0θ θ= , are re-

lated to the parameters displayed in Figure 2 (see also Figure 1). More precisely, 
let  

arctan ,w
w
u

φ  =  
 

                       (9) 

then 
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2 2

0 0
π   and  arcsin .
2 2w

u w
L

φ φ θ
 +
 = − + =
 
 

           (10) 

Assume the parameters w , u  and L  are given. For each pair E  and K , 
the system of Equations (7) and (8) subjected to the initial conditions (9) and (10) 
has a unique solution. However, this solution may not correspond to periodic 
walking as described in this article. In the next section, we list the two necessary 
and sufficient conditions for periodic walking. These conditions will lead to a 
relationship between E  and K . 

4. Conditions for Periodic Walking  

In this section we assume that the parameters w , u  and L  are given and 
fixed. Thus, 0θ  and 0φ  are also given through Equations (9) and (10). We seek 
to answer the following question: Given that ( ) 00θ θ=  and ( ) 00φ φ= , what 
are the necessary and sufficient conditions for periodic walking? 

Condition 1. If ( )tθ  and ( )tφ , solutions of Equations (7) and (8) subjected 
to the initial conditions (9) and (10), correspond to periodic walking, there exists 

1 0t >  such that ( )1 0tθ θ=  and ( )1 π 2 wtφ φ= − .  
Note that 1t  is the dimensionless time of one step. ( )1 0tθ θ=  simply means 

that the height of the mass m  at the start and the end of a step is the same. The 
need for ( )1 π 2 wtφ φ= −  is illustrated in Figure 2 and is a consequence of the 
symmetry of the steps. 

Given any function ( )g g x=  of one variable, we use the standard notations 

( )g a+  and ( )g a−  for the limits of ( )g x  as x  tends to a  from the right 
(with values of x a> ) and from the left (with values of x a< ). Given two 
vectors a  and b  we denote by 1 1 2 2 3 3a b a b a b⋅ = + +a b  their dot product. 

Let n̂


 be the unit vector from the left foot to the mass at time 1t t=  and let 
ˆrn  be the unit vector from the right foot to the mass at time 1t t= . Given As-

sumption 7, ( ) ( ) ( )( )1ˆ ˆ ˆ0 2 0h hr t r e r e+ + += − ⋅    if ( )r̂ t  correspond to periodic 
walking. This fact, plus Assumption 5 leads to the second condition for periodic 
walking. 

Condition 2. If ( )tθ  and ( )tφ , solutions of Equations (7) and (8) subjected 
to the initial conditions (9) and (10), correspond to periodic walking, there exists  

0α >  and 0β >  such that ( ) ( )( ) ( )1ˆ ˆ ˆ ˆ ˆ0 2 0h h rr e r e r t n nα β+ + −− ⋅ = + +


   .  

In the above condition 1t  is as defined in Condition 1, and ( )r̂ t  is related 
to ( )tθ  and ( )tφ  by Equation (3). 

Observation 3. If Conditions 1 and 2 are necessary and sufficient for periodic 
walking.  

Observation 4. If Condition 1 is satisfied, so is Condition 2.  
The proof of this observation is simple. One shows that, if Condition 1 is sa-

tisfied, ( ) ( )( ) ( )1 1ˆ ˆ ˆ0 2 0h h vr e r e r t c e+ + −− ⋅ − =    and 2ˆ ˆr vn n c e+ =


 for some posi-
tive constants 1c  and 2c , from where we conclude that Condition 2 is satisfied 
with 1 2c cα β= = . The corresponding calculations are elementary but lengthy 
so we do not present them here. 



G. H. Goldsztein 
 

63 

The azimuthal angle θ  initially decreases and it attains its minimum at the 
time t t=   such that ( ) 0tθ =

 . The value of this minimum azimuthal angle 

( )tθ θ=  , can be obtained in terms of the constants of motion E  and K  
from Equation (8) by setting 0θ =   

2

2 cos .
2sin

K Eθ
θ

+ =                    (11) 

Note ( )tφ φ=   can be computed as follows  

( ) ( )0

0
0

d dd d .
d d

θ θ

θ θ

φ φφ φ θ θ θ θ
θ θ

− = = −∫ ∫



             (12) 

Due to symmetry, the Condition 1 is equivalent to: The minimum azimuthal 
angle θ   is attained at the same time that the polar angle φ  is zero, i.e.  

0φ = . Thus, since d
d
φ φ θ
θ
=   , setting 0φ =  in Equation (12), using the fact  

that 0 π 2 wφ φ= − + , using Equations (7) and (8) and simple manipulations, we 
get that Condition 1 is satisfied if and only if  

( )
0

2 2

π d .
2 sin 2 cos sin

w
K

E K

θ

θ
φ θ

θ θ θ
− =

− −
∫            (13) 

On one hand, given 0θ , Equation (8) implies that 0cosE θ> . On the other 
hand, we recall that the force the stance leg exerts on the mass m  points from 
the mass away from its foot. This means that F  in Equation (6) is constrained 
to be positive. Thus, while Equation (6) is not used to solve for θ  and φ , it 
does impose a constrain. Using Equations (7) and (8) and simply algebra we get 
that 3cos 2F Eθ= − . Thus, the constrain 0F ≥  reduces to ( )3 2 cosE θ≤ . 
Since cosθ  is a decreasing function of θ  for 0 π 2θ≤ < , this constrain 
needs to be verified only for 0θ θ= . In summary, if the pair ( ),E K  corres-
ponds to periodic walking, we necessarily have ( )0 0cos 3 2 cosEθ θ< ≤ . Note 
that the constrain ( ) 03 2 cosE θ≤  gives a limit on the speed of the biped. If the 
biped were to try to walk faster, the foot of its stance leg would lose contact with 
the ground. 

Since 0φ > , we have that 0K >  (see Equation (7)). On the other hand, 
given 0θ  and E , Equation (8) implies that the largest value of K  possible is 
the one that makes ( )0 0θ + = . Simple algebraic manipulations leads to the fol-
lowing constrain on K  once E  and 0θ  are given,  

( )0 00 sin 2 cosK Eθ θ< ≤ − . 
We summarize the findings in this section, and add to that, in the following 

observation. 
Observation 5. (1) Let 0θ  be given, the pairs ( ),E K  that correspond to 

periodic walking are the solutions of Equations (11) and (13). 
(2) If the pair ( ),E K  corresponds to periodic walking, then  

( )0 0cos 3 2 cosEθ θ< ≤  and ( )0 00 sin 2 cosK Eθ θ< ≤ − . 
(3) Let 0θ  be given. For each ( ) 01 3 2 cosE θ< < , there exist a K  such 

that ( )0 00 sin 2 cosK Eθ θ< ≤ − , and the pair ( ),E K  satisfies Equations (11) 
and (13) (we prove this point in Appendix 1). 
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(4) Let 0θ  be given. Numerical simulations strongly suggest that, for each 
( ) 01 3 2 cosE θ< < , there exist a unique K  such that  

( )0 00 sin 2 cosK Eθ θ< ≤ − , and the pair ( ),E K  satisfies Equations (11) and 
(13) (i.e. the K  from point (3) is unique). 

(5) While we were not able to prove it, we have evidence to believe that, if 
1E ≤  and π 4wφ < , there is no periodic walking. Note that π 4wφ ≥  means 

that the feet are wider apart than the length of the steps, not a situation we will 
be considering. Thus, in the rest of this article, we will restrict our attention to 
the parameter regime π 4wφ <  and assume that ( ) 01 3 2 cosE θ< <   

5. Numerical Simulations  

In what follows we will study aspects of the periodic walking of the model biped. 
The parameters that determine the motion are wφ , 0θ  and E . The angles wφ  
and 0θ  determine the geometry of the biped, i.e. the width and length of the 
steps relative to the length of the legs. The parameter E  is a dimensionless 
mechanical energy. 

Let T  be the dimensionless time of one step. By symmetry, ( )2Tθ θ=  , 

the minimum azimuthal angle (see Equation (11)). Thus, 
0

2 1 dT
θ

θ
θ θ= ∫ 



. Us-

ing Equation (8) and simple manipulations we get  

( )
0

2 2

sin2 d .
2 cos sin

T
E K

θ

θ

θ θ
θ θ

=
− −

∫               (14) 

Let V  be the dimensionless average velocity. From Figure 2, it can be shown 
that the dimensionless distance the biped covers in one step is 02sin cos wθ φ . 
Thus,  

02sin cos .wV
T
θ φ

=                     (15) 

For the parameter values 0 π 6wθ φ= = , Figure 3 shows V  as a function of 
E . As expected, V  is an increasing function of E . The more mechanical 
energy the mass has, the faster it moves in average. Our numerical calculations 
suggest that 

1
lim 0

E
V+→
= . 

Let hA  be the dimensionless amplitude of the lateral oscillations. Note that 

( ) ( )( )ˆ ˆ0 2h hA e r r T+= ⋅ − . Thus, from Equation (3) and the facts that  

0 π 2 wφ φ= − +  and 0φ =  when θ θ=  , we have  

( ) ( ) ( )0sin sin sin .h wA θ φ θ= −               (16) 

Figure 3 shows hA  as a function of E  when 0 π 6wθ φ= = . Since V  in-
creases with E , note that hA  is a decreasing function of V . The faster the bi-
ped walks, the smaller the amplitude of the lateral oscillations. 

Let vA  be the dimensionless amplitude of the vertical oscillations. The mass 

is at its lowest when 0θ θ=  and its highest when θ θ=  . Thus,  

( ) ( )( )ˆ ˆ2 0 2v vA e r T r += ⋅ − , which is  
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Figure 3. V , hA  and vA  vs E  when 0
π
6wφ θ= = . 

 

0cos cos .
2vA θ θ−

=


                    (17) 

With the parameter values 0 π 6wθ φ= = , Figure 3 shows vA  as a function 
of E . Note that vA  is a decreasing function of V . The faster the biped moves, 
the smaller the vertical oscillations. 

In Figure 4 we show an example of the path traced by the mass in two full 
steps. The top figure shows a three dimensional plot of the path of the mass. This 
path is the thick solid line. The thin lines are snapshots of the stance leg, the left 
leg during the first step and the right leg during the second step. The swing leg is 
not shown. The bottom figure shows a view from the top, i.e. the orthogonal 
projection of the path onto the ground. The lateral oscillations are clearly seen in 
this figure. Again, the thick solid line is the projection of the path of the mass 
and the thin lines are the projections of the stance leg. The parameters in that 
example are 1.1E =  and 0 π 6wφ θ= = . 

6. Slow Walkers  

We remind the reader that the dimensionless energy satisfies the constrains 
( ) 01 3 2 cosE θ< < . In this section, we will study the dynamics of slow walkers. 

As our analysis will show, this corresponds to values of the energy of the form  
21 ,  where  0 1.E ε ε= + <                   (18) 

The choice of the square in ε  is to simplify future calculations. The fact that 
1ε   will allow us to use asymptotic approximations and as thus, obtain a 

deeper understanding of the dynamics of the model biped than by numerical 
simulations alone. 

In the Appendix 2 we show that the asymptotic value of the minimum polar 
angle θ   (see Equation (11)) valid in the parameter regime of Equation (18) is  

( )
2 sin .

cos 2
w

w

φθ ε
φ

≈                     (19) 

In the Appendix 3 we show that the asymptotic value of the dimensionless 
time of one step, T  (see Equation (14)), is  

ln .T ε≈ −                        (20) 

In the above equation, we mean that 0lim ln 1Tε ε→ − = . Thus, the dimen-
sionless average velocity V  (see Equation (15)) satisfies, in this parameter re-
gime  
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Figure 4. Trajectory of the mass m . The value of the parameters are 1.1E =  and 

0
π
6wφ θ= = . 

 

02sin cos .
ln

wV θ φ
ε

≈ −                    (21) 

Note that T →∞  and 0V →  as 0ε → , consistent with the title of this 
section: slow walkers. Note also that the asymptotic formula for V  is consistent 
with the plot in Figure 3, not only on the fact that 0V →  as 0ε →  (or 

1E → ), but also on how it approaches 0. 
Given Equation (19), we can obtain the asymptotic value of the amplitude of 

the lateral oscillations from Equation (16):  

( ) ( )
( )0

2 sinsin sin .
cos 2

w
h w

w

A φθ φ ε
φ

≈ −              (22) 

Figure 5 shows an example with the parameters are 1.01E =  and 

0
π
6wφ θ= = . In this case, 2 0.01ε = . We show the orthogonal projection of the 

trajectory of the mass onto the ground. 
Compare Figure 5 with Figure 4, that was obtained with the same values of 

wφ  and 0θ  but a value of 1.1E = , or in other words, 2 0.1ε = . Note also that 
those two figures illustrate that the lateral oscillations increase as the velocity of 
the biped decreases. 

7. Steps Much Shorter Than the Biped Height  

In this section, we explore a different parameter regime. Namely, we restrict our 
attention to small values of the initial azimuthal angle  

0 1.θ                           (23) 

This corresponds to the biped taking steps that are much shorter than the 
lengths of its legs, a realistic parameter regime. 

In the Appendix 4, we outline the steps required to get the asymptotic value of 
the minimum azimuthal angle θ   and of K  in the regime 0 1θ  . We ob-
tain  
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Figure 5. Orthogonal projection of the trajectory of the mass m . The value of the para-

meters are 1.01E =  and 0
π
6wφ θ= = . 

 

( )
( )

3 2
0 0

7 4
sin sin cos

12 1w w w
E

E
θ θ φ θ φ φ

−
≈ −

−
             (24) 

and  

( )0 2 1 sin .wK Eθ φ≈ −                    (25) 

The asymptotic value of the dimensionless time required by the biped to take 
one step, T , is obtained from Equations (14), (24) and (25) and simple mani-
pulations  

0

0
0sin 2 2 2

0

2 d 2 cos .
1 1sinw

w

w

T
E E

θ

θ φ

θ θ θ φ
θ θ φ

≈ =
− −−
∫        (26) 

Thus, V , the dimensionless average velocity of the biped satisfies  

( )2 1V E≈ −                        (27) 

(see Equation (15)). 
Making use of Equations (24) and (16) we get the asymptotic value of the am-

plitude of the lateral oscillations  

( )
( )

3 2
0

3 2
sin .cos4 1h w w

E
A

E
θ φ φ

−
≈

−
                 (28) 

Note that hA  becomes small fast. It is of the order of 3
0θ  for small values of 

0θ . 
On the other hand, the amplitude of vertical oscillations goes to zero quadrat-

ically as 0 0θ → , since simple calculations lead to  
2

2
0

cos .
4

w
vA φ θ≈                        (29) 

Explicit Time Dependence of the Azimuthal Angle θ   
and Polar Angle φ  When 0 1θ    

As previously defined, T  is the dimensionless time required by the biped to 
take one step. Note that θ  is a decreasing function of t  in the time interval 
0 2t T< < . Thus, using Equation (8), the asymptotic value of K  (Equation 
(25)), the asymptotic approximations sinθ θ≈  and cos 1θ ≈  when 1θ  , 
and simple algebra we get  

( ) 2 2 2
0

2 1d sin .
d w

E
t
θ θ θ φ

θ
−

≈ − −                (30) 
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Using the initial conditions ( ) 00θ θ+ = , this simple separable first order equ-
ation can be integrated analytically to get  

( )
( ) ( )

( )

2 2
0 02 cos 2 1 2 1 if     0

2

if     
2

w
TE t E t t

t
TT t t T

θ θ φ
θ

θ

 − − + − ≤ ≤≈ 
 − ≤ ≤


  (31) 

On the other hand, Equation (7) leads to  

( )0
2

2 1 sind .
d

wE
t

θ φφ
θ
−

≈                   (32) 

Note that θ  is given by Equation (31). Plugging that expression for θ  as a 
function of t  into Equation (32), integrating, and using the initial condition 

( ) 00 π 2 wφ φ φ+ = = − + , leads to the following formula  

( )

( )

( )

0

2 1cosarctan if     0
sin sin 2

if     .
2

w

w w

E Tt t
t

TT t t T

φ
φ θ φφ

φ

  −
  − − ≤ ≤

 ≈  

− − ≤ ≤


      (33) 

8. Discussion  

In this article, we use a very simple inverted pendulum model to explore aspects 
of the mechanics of biped walkers. The novelty of this article is that we do not 
restrict the motion of the mass of the pendulum to the sagittal plane. As a con-
sequence, we were able to study the lateral oscillations of the center of mass as 
the biped walks. These oscillations were beyond the capability of the simplest 
inverted pendulum models when the motion of the mass was restricted to the 
sagittal plane. 

We performed numerical simulations and explore different parameter regimes 
with the use of asymptotic techniques. Our analysis shows that the inverted 
pendulum model remains simple enough to study, even when the mass is not re-
stricted to move in the sagittal plane. We believe and hope the approach intro-
duced in this paper will prove useful and be adopted by other researchers to 
study different aspects of the dynamic of biped walkers.  
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Appendix  

1. Proof of Point (3) in Observation 5 
Let 00 π 2θ< <  fixed. For any parameters E  and K  satisfying 
( ) 2

0 02 cos sin 0E Kθ θ− > >  we define ( ),E Kα α= , to be the unique solu-
tion of  

2

2 cos
2sin

K Eα
α
+ =                     (34) 

that satisfies 00 α θ< <  (that such a unique α  exists is an easy calculus exer-
cise). Taking partial derivatives of the above equation with respect to K ,  

and solving for 
K
α∂
∂

, we obtain  

2 4
sin 0,

cos sin
K

K K
α α

α α
∂

= >
∂ +

                  (35) 

since 0 π 2α< < . Thus, given E  fixed, α  is a continuous and increasing 
function of K  in the interval ( )0 00 sin 2 cosK Eθ θ< ≤ − . It can be easily 
shown that  

( )0

0 if     1
lim

arccos if     0 1K

E
E E

α
+→

≥
=  < <

              (36) 

It also easily follows from the definition of α  that  

( )
( )

0 0

0
sin 2 cos

lim , .
K E

E K
θ θ

α θ
−

→ −

=                 (37) 

Our findings regarding α  are summarized in the following observation.  
Observation 6. Fix 0cosE θ> . Regard ( ),E Kα α= , defined in Equation 

(34), as a function of K  on the interval ( )( )0 00,sin 2 cosEθ θ− . Then, α   

is a continuous and increasing function of K  that satisfies ( ), 0 0Eα + =  if 
1E > ; ( ) ( ), 0 arccosE Eα + =  if 0 1E< ≤ ; and Equation (37).  

Consider E  a fixed parameter. We define  

( ) ( ) 22 cos sin .f Eθ θ θ= −                 (38) 

Assume 0θ  is fixed. Assume 00 π 2α θ< < < , where α  was defined in 
Equation (34). As always, also assume 0cosE θ> . We define  

( )
( )

0

2
, d .

sin
KI I K E

f K

θ

α
θ

θ θ
= =

−
∫            (39) 

Since α  depends on E  and K , and the function f  depends of E , the 
integral I  is a function of the two parameters E  and K . Note that, given 
Equation (34),  

( ).K f α=                       (40) 

Let ( )0 0K f θ= . Let 2 2
0K Kε = − . Assume 0 1ε<  . This implies that 

0 1K K−  , and thus, we also have that 00 1θ α< −  . Then, we have 
( ) ( ) ( )( ) ( )( )2 2 2

0 0 0 0 0 0 0K K f f f K fε α θ θ α θ θ α θ′ ′− = = ≈ + − = + − . As a con- 
sequence, we have the approximation  
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( )0
0

.
f
εα θ
θ

≈ −
′

                     (41) 

Since 2 2
0K K ε= −  and ( )2

0 0K f θ= , we have that ( )2
0K f θ ε= − , and 

thus, the argument in the square root in the integral of Equation (39) is 
( ) ( ) ( )2

0f K f fθ θ θ ε− = − + . For ( )0,θ α θ∈  we have 00 1θ θ< −   since 
we are assuming 00 1θ α< −  . Thus, ( ) ( ) ( ) ( )0 0 0f f fθ θ ε θ θ θ ε′− + ≈ − + , 
or equivalently  

( ) ( ) ( )2
0 0 .f K fθ θ θ θ ε′− ≈ − +                 (42) 

Using Equations (41) and (42), plus 0K K≈ , and 0θ θ≈ , and simple algebra, 
we have the following asymptotic approximation (in the regime 1ε  )  

( )
( ) ( ) ( )

0

0
0

0

0 0 0

, d
sinf

KI K E
f

θ
εθ
θ

θ
θ θ θ θ ε−

′

≈
′ − +

∫          (43) 

Make now the change of variable ( ) ( )0 0z f θ θ θ ε′= − −  (note that 
( )0 0f θ′ > ) and some simple algebra to get  

( ) ( ) ( )
10 0
0

0 0 0 0

2d, d .
sin sin1

K KzI K E z
f fz
ε ε

θ θ θ θ
≈ =

′ ′−∫         (44) 

The limit ( )0 0sin 2 cosK Eθ θ→ −  from below corresponds to 0ε +→ . 
We summarize our findings in the following observation. 

Observation 7. 

( )
( )

0 0sin 2 cos
lim , 0,

K E
I K E

θ θ
−

→ −

=                 (45) 

Assume now that 0cos 2 3θ >  and E  is such that ( ) 01 3 2 cosE θ< < . 
Both E  and 0θ  are fixed. Assume 1K  . Given Observation 6, we have that 

1α  . 
Let 1θ  be such that 1 1α θ   and 1 0θ θ≤ . We split the integral I  

(Equation (39)) in two, 1 2I I I= + , where  

( ) ( )
1 0

1
1 22 2

d    and   d .
sin sin

K KI I
f K f K

θ θ

α θ
θ θ

θ θ θ θ
= =

− −
∫ ∫   (46) 

Since 1θ   for all ( )1,θ α θ∈ , we have ( ) ( ) 22 1f Eθ θ≈ −  and sinθ θ≈  
in the integrand of 1I  (see Equation (38) for the definition of f ). Since 

1α   and ( )K f α=  (see Equation (40)), it can also be very easily seen 
that ( )2 1K Eα ≈ − . Thus, we have, after simple manipulation, the following 
asymptotic approximation for 1I ,  

( ) ( )
1

1 2
2 1

2

d
2 1

1
K
E

I
E

K

θ θ

θ
θ

−

≈
−

−
∫  

Making the change of variables ( )2 2 22 1 1x E Kθ= − − , and using that 

1α θ , we get  

1 20

d π .
21

xI
x

∞
≈ =

+∫  
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Note that 2I  can be bounded as follows  

( ) ( )
0

1

0
2 2 2

1 1 1 1

d
sin sin

KKI
f K f K

θ

θ

θθ
θ θ θ θ

≤ =
− −

∫  

which tends to zero as 0K +→ , since 1θ  can be selected independent of K . 
Thus, we have proved the following observation 

Observation 8. 

( ) 0
0

π 3lim ,    if   1 cos .
2 2K

I K E E θ
+→

= < <            (47) 

Observations 7 and 8 show that, if 0cos 2 3θ > , for each E  such that 
( ) 01 3 2 cosE θ< < , there exists at least one K  such that  

( )00 2 cosK E θ< < − , for which ( ), π 2 wI K E φ= −  (this is the same as Eq-
uation (13)). Those parameters ( ),E K  give us a periodic walking and the cor-
responding α  equals θ  . This proves Point (3) in Observation 5.  

2. Calculations leading to Equation (19) 
Consider E  a fixed parameter. Let ( )f θ  be as defined in Equation (38). 

Note that Equation (11) implies that ( )K f θ=  . Thus, Equation (13) implies 

that θ   is the solution of 

( )
( ) ( )

0π ,   where   d .
2 sin

w

f
I I

f f

θ

θ

θ
φ θ

θ θ θ
− = =

−
∫ 




          (48) 

Recall that we are in the parameter regime of Equation (18), i.e. 21E ε= +  
where 1ε  . Assume Cθ ε≈  for some constant C . This assumption will be 
verified later. Let 1θ  be such that 1 1ε θ   and 1 0θ θ≤ . We split the 
integral I  (Equation (48)) in two, 1 2I I I= + , where  

( )
( ) ( )

( )
( ) ( )

1 0

1
1 2d    and   d .

sin sin

f f
I I

f f f f

θ θ

θ θ

θ θ
θ θ

θ θ θ θ θ θ
= =

− −
∫ ∫

 

 
 (49) 

We first note that 2I  can be bounded as follows  

( )
( ) ( )

0
2

1 1

0  as  0
sin

f
I

f f

θ θ
ε

θ θ θ
≤ → →

−




           (50) 

because 1θ  can be chosen to be independent of ε  and ( ) 0f θ →  as 
0ε → . 

Next, we compute the asymptotic value of 1I . Since 1 1θ  , for 1θ θ θ≤ ≤  
we have ( ) ( )2 2 22f θ ε θ θ≈ +  and sinθ θ≈ . As a consequence,  

( ) ( ) ( ) ( )( )( )

( )( ) ( )( )

2 22 2 2 2

2 22 2 2

2 2

2

f fθ θ ε θ θ ε θ θ

θ θ θ ε θ

− ≈ + − +

= − + +

  

   

Thus, we have the following approximation for 1I   
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( )
( ) ( )

122
1 2 22 2 2

d2 .
2

I
θ

θ

θθ ε θ
θ θ θ θ ε θ

≈ +
− + +

∫ 
 

 
     (51) 

Making the change of variable ( )( ) ( )2 22 2 22 zε θ θ θ+ = −  , some algebraic 

manipulation, and using that Cθ ε≈  for some constant C  and 1ε θ , we 
get  

( )
( )

( )
( )( )

22
2

1 0 2 2 2

2

2
22

2 d ,   
1

where   .
2

zI a
z a z

a

ε θ

θ

θ

ε θ

∞+
≈

+ +

=
+

∫








           (52) 

This last integral can be computed analytically to get  

( )
2

1 2arctan 2 1.I ε

θ
≈ +


                  (53) 

Given Equation (50), we have 1I I≈ . Thus, Equations (48) and (53) lead to  

( )
2

2
π arctan 2 1.
2 w

εφ
θ

− ≈ +


                (54) 

This equation can be easily solved to give Equation (19). 
3. Derivation of Equation (20)  
We now proceed to compute the asymptotic value of the dimensionless time 

of one step, i.e. T , given by Equation (14), in the parameter regime 21E ε= + , 
with 1ε  . 

Let 1θ  be such that 1 1ε θ   and 1 0θ θ≤ . We split the integral in Equa-
tion (14) in two, to get 1 22 2T J J= + , where  

( ) ( ) ( ) ( )
1 0

1
1 2

sin sind    and   d ,J J
f f f f

θ θ

θ θ

θ θθ θ
θ θ θ θ

= =
− −

∫ ∫
 

   (55) 

where ( )f θ  is a defined in Equation (38), and we remind the reader that 

( )2K f θ=  . 
We first note that 2J  remains bounded as 0ε → . Note that 2J  does not 

go to 0, but it does remain bounded independently of ε . This results from very 
simple facts so we skip the details. 

Next, we compute the asymptotic value of 1J . Since 1 1θ  , for 1θ θ θ≤ ≤  
we have ( ) ( )2 2 22f θ ε θ θ≈ +  and sinθ θ≈ . As a consequence,  

( ) ( ) ( ) ( )( )( )

( )( ) ( )( )

2 22 2 2 2

2 22 2 2

2 2

2

f fθ θ ε θ θ ε θ θ

θ θ θ ε θ

− ≈ + − +

= − + +

  

 
 

Thus, we have the following approximation for 1J   
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( ) ( )
1

1 2 22 2 2
d .

2
J

θ

θ

θ θ
θ θ θ ε θ

=
− + +

∫ 
 

             (56) 

Making the change of variable ( )22 2z θ θ= −  , some algebraic manipulation, 
and using that Cθ ε≈  for some constant C  and 1ε θ , we get  

( )

( )( )
( )( )

22
1 22

1 0 22 2

d ln 2 ln .
2

zJ
z

θ θ
ε θ ε

ε θ

−
≈ ≈ − + ≈ −

+ +
∫






   (57) 

In the above equation we have used the facts that 1 1ε θ   and Equation 
(19). This shows the validity of Equation (20).  

4. Derivation of Equations (24) and (25)  
Let ( ) ( ) 22 cos sinf Eθ θ θ= − . Note that ( )2K f θ=  , and after some ma-

nipulation Equation (13) becomes  

( )
0

2

π d .
2 sin

w
K

f K

θ

θ
φ θ

θ θ
− =

−
∫                (58) 

Let 0ε θ= . Let a K ε=  and ( )b f ε ε= . Make the change of variables 

( ) ( )2 2 2x a fε θ+ = . Some manipulations show  

( ) ( )
2

2

2d d .
sinsin

K a x
ff K
εθ
θ θθ θ

=
′−

            (59) 

Note that  

( ) ( ) ( )4 2 4sin 2sin 4 cos sin cos 2sin 2cosf E fθ θ θ θ θ θ θ θ θ′ = + − = +  

from where we get  

( ) ( )4 2 2 2sin 2sin 2 cos .f x aθ θ θ ε θ′ = + +              (60) 

Next, we observe that ( ) ( ) ( )2 42 1f E Oθ θ ε≈ − + , and thus, since  

( ) ( )2 2 2x a fε θ+ = , we have  

( ) ( )
2 2

3 .
2 1
x a O

E
θ ε ε+
≈ +

−
                   (61) 

From the last two equations we conclude that  

( ) ( )
( )
( ) ( ) ( )

2 2 2 22 2
4 2 2 2 6sin 2 2 1 .

2 1 4 1

x ax af x a O
E E

ε
θ θ ε ε ε

 + +  ′ ≈ + − + +    − −   
 

Further calculation and expanding in powers of ε  lead to  

( )
( )
( )

( )
2

2 4
2 2 2

22 .
sin 4 1

Ea a a O
f x a E
ε ε ε
θ θ

−
= − +

′ + −
           (62) 

Note that 0x =  when θ θ=  , and that 2 2x b a= −  when 0θ θ ε= = . 
Thus, after the change of variables, Equation (58) becomes  

( )
( )

( )
( )

2 2 2 2
2 2 2 2

2 2 2 2 20

2 2π d arctan .
2 4 1 4 1

b a
w

E Ea b aa x a b a
x a aE E

φ ε ε
−    − −−   − ≈ − = − −

  + − −  
∫   (63) 

Further elementary operations and expansions in powers of ε  leads to Equa-
tions (24) and (25). 
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