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Abstract 
An important question that arises is which surfaces in three-space admit a 
mean curvature preserving isometry which is not an isometry of the whole 
space. This leads to a class of surface known as a Bonnet surface in which the 
number of noncongruent immersions is two or infinity. The intention here is 
to present a proof of a theorem using an approach which is based on differen-
tial forms and moving frames and states that helicoidal surfaces necessarily 
fall into the class of Bonnet surfaces. Some other results are developed in the 
same manner. 
 

Keywords 
Surface, Fundamental Forms, Structure Equations, Mean Curvature,  
Bonnet, Helicoidal 

 

1. Introduction 

Surfaces that admit isometries which preserve principal curvatures have been 
studied since the time of O. Bonnet [1]. It was shown by Bonnet that all surfaces 
with constant mean curvature not including planes and spheres, can be 
isometrically deformed while preserving mean curvature or equivalently both 
principal curvatures. Let  Σ  denote the classes of smooth oriented, connected 
surfaces carrying a Riemannian metric which will be studied here. Let 

:H Σ →   be a given smooth function, then depending on the surface and the 
function H , it is possible to find isometric immersions of  Σ  into 3  such 
that each image has mean curvature function H . It may be asked how many 
geometrically distinct, or noncongruent, immersions exists. This question has 
been studied at various levels both locally and globally. It has been concluded 
that the number of noncongruent immersions which is denoted here by N , 
may be 0,1,2  and ∞ . The case in which N = ∞  means there exists a 
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one-parameter family of pairwise noncongruent isometric immersions with the 
same mean curvature function. When 2N =  or ∞ , these surfaces are the 
so-called Bonnet surfaces. When 0N =  or 1, there are many well-known 
surfaces, so all of these numbers can be realized. 

Some of the global results that have been reported up to this point should be 
reviewed first. 1) If H  is constant and there is an isometric immersion of Σ  
into 3  of mean curvature H  which is not a plane or sphere, then there is an 
isometric deformation of Σ  through noncongruent surfaces with the same 
constant mean curvature, H . 2) If Σ  is compact and H  is nonconstant, 
there exists at most two geometrically distinct immersions of Σ  in 3  with 
mean curvature H , so 0,1N =  or 2. If Σ  is homeomorphic to 2S , the 
2-sphere, there is at most one isometric immersion, and N  is 0 or 1. 3) If Σ  
is a helicoidal surface in 3 , then 2N =  or ∞ . 4) If the Gaussian curvature 
K  of Σ  is a nonzero constant, and the mean curvature H  is nonconstant, 
then 0,1N =  or 2. 

The surfaces in Euclidean space that admit a mean curvature preserving 
isometry which is not an isometry of the whole space form a special class of 
surface which has been studied by many people such as noted already Bonnet as 
well as Cartan and Chern [2] [3] [4]. These surfaces may be broken up into three 
classes or types which can be described as follows: 1) There are surfaces of 
constant mean curvature other than the plane or sphere 2) There are certain 
surfaces of nonconstant mean curvature which admit a one-parameter family of 
geometrically distinct nontrivial isometries, and finally 3) There are surfaces of 
nonconstant mean curvature that admit a single nontrivial isometry which is 
unique up to an isometry of the entire space. 

A surface that belongs to one of the above types is called a Bonnet surface, that 
is, an 2,N = ∞  type mentioned above [5] [6] [7]. By a nontrivial isometry of 
the surface is meant an isometry of the entire space. A helicoidal surface in 
Euclidean three-space 3E  is the locus of an appropriately chosen curve under a 
helicoidal motion, with so-called pitch in the interval ( )0,∞  [8] [9]. Such a 
motion can be described by a one-parameter group of isometries in 3E . The 
actual orbits of the motion through the initial curve foliate the surface. 

The intention here is to prove that the helicoidal surfaces are necessarily 
Bonnet surfaces, and moreover represent all three types of surface outlined 
above. Although not all the theorems presented here are new, the objective is to 
present new proofs based on the systematic use of differential forms and the 
moving frame concept [7]. This type of result is useful to have since it provides 
an answer, in the negative, to conjectures such as the following: Let S  be a 
Riemannian surface and :H S →   a smooth function. If a nontrivial family of 
isometric immersions with mean curvature function H  does not exist, then 
there must be at most two noncongruent ones. Then it may be conjectured: In 
the absence of a nontrivial family, the immersion must be unique. On the other 
hand, it seems that not all Bonnet surfaces of the third type are helicoidal 
surfaces. A helicoidal surface is determined by one real-valued function of one 
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variable, whereas a Bonnet surface of the third kind depends on four functions 
of one variable and therefore has a greater degree of generality [10]. 

2. Structure Equations  

Over Σ  there exists a system of orthonormal frames { }1 2 3, , ,x e e e  which is 
well defined such that x∈Σ , 3e  is the unit normal at x  and 1e , 2e  located 
along principal directions. The fundamental equations for a surface have the 
form [11],  

1 1 2 2 1 12 2 13 3 2 12 1 23 3 3 13 1 23 2d , d , d , d .x e e e e e e e e e e eω ω ω ω ω ω ω ω= + = + = − + = − −  (2.1) 

These equations can be differentiated exteriorly in turn and results in a large 
system of equations for the exterior derivatives of the iω  and ijω , as well as a 
final equation which relates some of the forms. This choice of frame and 
Cartan’s lemma allows for the introduction of the two principal curvatures at x  
which are denoted by a  and c  by writing  

12 1 2 13 1 23 2, , .h k a cω ω ω ω ω ω ω= + = =             (2.2) 

It suffices to suppose that a c>  in the following and the mean curvature of 
Σ  will be denoted by H  and the Gaussian curvature is denoted by K . They 
are defined in terms of the functions a  and c  to be  

( )1 , .
2

H a c K a c= + = ⋅                     (2.3) 

The forms which appear in (2.1) satisfy the fundamental set of structure 
equations  

1 12 2 2 1 12

13 12 23 23 13 12

12 2 1 1 2

d , d ,
d , d ,
d .ac K

ω ω ω ω ω ω
ω ω ω ω ω ω
ω ω ω ω ω

= =
= =

= = −

∧ ∧

∧ ∧

∧ ∧

                (2.4) 

The second pair of equations in (2.4) is referred to as the Codazzi equation 
and the last equation is called the Gauss equation. 

Exterior differentiation of the Codazzi equations in (2.4) and using (2.2) yields  

( )( ) ( )( )2 1 1 2d 0, d 0.a a c h c a c kω ω ω ω− − = − − =∧ ∧       (2.5) 

Now Cartan’s lemma can be applied to (2.5). There exist two functions u  
and v  such that  

( ) ( )2 1 1 2
1 1d , d .a h u k c k v h

a c a c
ω ω ω ω− = − − = −

− −
     (2.6) 

Subtracting the pair of equations in (2.6) gives an expression for ( )d log a c− ,  

( ) ( ) ( )1 2d log 2 2 .a c u k v hω ω− = − − −               (2.7) 

It is natural from (2.7) to define a new variable J  in terms of a  and a c  
as  

( )1 0.
2

J a c= − >                         (2.8) 

Equation (2.7) can then be put in the form,  
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( ) ( )1 2dlog 2 2 .J u k v hω ω= − − −                  (2.9) 

The differential forms iω  constitute a linearly independent system. Two 
related coframes iϑ  and iα  can be defined in terms of the iω  and the 
functions u  and v  as follows  

1 1 2 2 1 2

1 1 2 2 1 2

, ,
, .

u v v u
u v v u

ϑ ω ω ϑ ω ω
α ω ω α ω ω

= + = − +
= − = +

               (2.10) 

These relations imply that 1 0ϑ =  is tangent to the level curves which are 
singled out by setting H  equal to a constant and 1 0α =  is its symmetry with 
respect to the original directions. 

The relation 2H a c= +  is squared and subtracting the definition of the 
Gaussian curvature, 4 4K ac=  yields the result ( ) ( )224 H K a c− = − . The 
Hodge operator, denoted here by * , will play an important role in the following. 
It produces the following result on the basis forms iω  in (2.2),  

2
1 2 2 1* , * , * 1.ω ω ω ω= = − = −  

From these properties, the dual relations can be determined as  

1 2 1 2 2 2 1 1* , * ,u v v uϑ ω ω ϑ ϑ ω ω ϑ= − = = − − = −        (2.11) 

1 2 1 2 2 2 1 1* , * .u v v uα ω ω α α ω ω α= + = = − = −  

Moreover, adding the expressions for da  and dc  given by (2.6), we obtain  

( ) ( ) ( )1 2 2 1 1 2 1
1 d d .a c u k h v h k u v

a c
ω ω ω ω ω ω ϑ+ = − + + − + = + =

−
 (2.12) 

Finally, there is the relation,  

( ) ( ) ( )1 12 1 2 1 2 1 22* 2* 2 2 log .u v h k u k v h d Jα ω ω ω ω ω ω ω+ = − + + = − − − =  (2.13) 

Therefore, the Codazzi Equations (2.12) and (2.13) can be summarized in 
terms of the two functions H  and J  as follows,  

1 1 12, log 2* .dH J d Jϑ α ω= = +              (2.14) 

3. Bonnet Surfaces 

Suppose that *Σ  is a surface which is isometric to Σ  such that the principal 
curvatures are preserved under the transformation. Denote all quantities which 
pertain to *Σ  by the same symbols, but with an asterisk,  

* *, .a a c c= =                       (3.1) 

The same convention will be applied to the variables and forms which pertain 
to Σ  and *Σ . When Σ  and *Σ  are isometric, the forms iω  on Σ  are 
related to the forms *

iω  on *Σ  by means of the transformation  
* *
1 1 2 2 1 2cos sin , sin cos .ω τω τω ω τω τω= − = +        (3.2) 

The following theorem from [7] will be required. 
Theorem 3.1: Under the transformation of coframe given in (3.2), the 

associated connection forms are related by  
*
12 12 d .ω ω τ= −                        (3.3) 
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There is a very important result which can be developed at this point. In the 
case that *a a=  and *c c= , the Codazzi equations imply that  

( ) ( )* * * *
1 12 1 122* dlog dlog 2* .a c a cα ω α ω+ = − = − = +  

Now apply the operator *  to both sides of this equation to give,  
* *

2 12 2 122 2 .α ω α ω− = −  

Substituting for *
12ω  from Theorem 3.1, this assumes the form,  

*
2 22d .τ α α= −                         (3.4) 

Define 1H  and 2H  to be the derivatives of the function H  in directions 
such that dH  can be expanded as  

1 1 2 2d .H H Hω ω= +  

Since 1dH Jϑ=  and using 1ϑ  given by (2.10), Equation (2.13) produces  

1 2
1 2 1 2 ,

H Hu v
J J

ω ω ω ω+ = +  

Comparing coefficients of 1ω  and 2ω  on both sides, we can identify  

1 2, .
H Hu v
J J

= =  

This result implies that  

1 2 2 1
1 1 2 2 1 2, .

H H H H
J J J J

α ω ω α ω ω= − = +            (3.5) 

Since ( ) ( )*
2 1 2sin 2 cos 2α τ α τ α= + , it follows from (3.4) that  

( ) ( ) ( )2 1 2d 2 sin 2 cos 2 .α τ τ α τ α− = +  

Solving this for ( )d 2τ  and substituting for 1α  and 2α , it follows that  

( ) ( )( ) ( )

( ) ( )

( ) ( )

2 1

1 2 2 1
1 2 1 2 2

1 2 2 1
1 2 1 2 1

d 2 1 cos 2 sin 2

sin 2 cos 2

sin 2 cos 2 * .

H H H H
J J J J

H H H H
J J J J

τ τ α τ α

τ ω ω τ ω ω α

τ ω ω τ ω ω α

= − −

   = − − − + +   
   
   = − − − + +   
   

 

Therefore, using the second equation of (2.14) for 1α  implies that  

( ) ( ) ( )1 2 2 1
1 2 1 2 12d 2 sin 2 cos 2 *dlog 2 .

H H H H J
J J J J

τ τ ω ω τ ω ω ω   = − − − + + +   
   

 (3.6) 

The differential in (3.6) will play a role in the study of helicoidal surfaces. 

4. Helicoidal Surfaces 

Every helicoidal surface can be parametrized in terms of two parameters ( ),s t , 
where t  can be thought of as time along orbits from a fixed 0t t= , and s  is 
an arc-length of curves orthogonal to orbits. Then the curves t c=  are carried 
along the orbits by the helicoidal motion for c  constant. They remain 
orthogonal to the orbits and foliate the surface. An orthonormal frame 1e , 2e  
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is determined along these coordinate curves. The corresponding coframe may be 
written as  

( )1 2d , d ,s q s tω ω= =                     (4.1) 

where q  depends only on s . Since 1d 0ω = , the equation 1 12 2dω ω ω= ∧  
implies that 12ω  is proportional to dt , say df t  and  

2 12d d d ds f s tω ω= =∧ ∧  implies that  

( )d d d d ,q s s t f s t′ =∧ ∧  

so,  

( ) ( )
( )12 2d .

q s
q s t

q s
ω ω

′
′= =                    (4.2) 

Hence, the 1ω -curves are geodesics, and the 2ω -curves or orbits, have 
geodesic curvature equal to  

( ) ( )( )d log .
d

s q s
s

µ =                    (4.3) 

Thus along each orbit, the quantities a , c , µ  and τ  are constant and 
depend only on s . In this case, the derivative 2 0H = . Also for the same reason, 
the differential form 1 1 2 2dJ J Jω ω= +  of J  implies that 2 0J = , hence  

1
1dlog .

JJ
J

ω =  
 

                     (4.4) 

Hence, the equation for ( )d 2τ  in (3.6) takes the form  

( ) ( ) ( ) ( )1 1 1
1 2 1 2d 2 sin 2 cos 2 * 2 ,

H H J s
J J J

τ τ ω τ ω ω µ ω= − − + +  

that is,  

( ) ( ) ( ) ( )1 1 1
1 2 2 2d 2 sin 2 cos 2 2 .

H H J s
J J J

τ τ ω τ ω ω µ ω= − − + +     (4.5) 

Writing ( )d 2τ  as a differential form in terms of ds  and dt  and then 
equating coefficients of ds  and dt  on both sides of (4.5) yields the following 
pair of equations,  

( ) ( ) ( ) ( )1 1 1
1 1

d 2 dsin 2 , 2 cos 2 .
d d

HJ s J H J J
s s
τ

τ µ τ− − −= − = −   (4.6) 

The results in (4.6) are used in the proof of Theorem 5.2 which follows. 

5. Main Theorems and Proofs 

Now by what has been established so far, both functions a  and c  depend on 
the variable s , so this mapping is an isometry which preserves H , since H  is 
the average of a  and c . In general, an isometry is trivial if and only if it 
preserves the mean curvature and the principal directions. In this case, the above 
mapping is trivial if and only if τ  is a multiple of π 2 . Then we obtain that 
the orbits are plane curves. But this is impossible for a helicoidal surface. This 
proves the following result. 
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Theorem 5.1. For a helicoidal surface, the mapping ( ) ( ), ,s t s t→ −  is a 
nontrivial isometry which preserves the mean curvature H . 

To prove the second theorem, the following result due to Chern is required 
[4] [7]. 

Proposition 5.1. (Chern) A surface M  admits a nontrivial isometric 
deformation that keeps the principal curvatures fixed if and only if  

1 2 1 2d 0, d .α α α α= = ∧  

Theorem 5.2. A helicoidal surface is a Bonnet surface of the second type if 
and only if the following relation is satisfied,  

( )( ) ( )2 d logd 1 d 1 d 1 dcos 0.
d d d d d

q sH H Hs
s J s J s J s s

ϕ   − + =   
   

      (5.1) 

with ( )H H s=  nonconstant. 
Proof: Set 2ϕ τ=  and consider the principal coframe  

( ) ( ) ( ) ( ) ( ) ( )1 2cos d sin d , sin d cos d .s s s q s t s s s q s tω ϕ ϕ ω ϕ ϕ= + = − +  (5.2) 

Define 1H  and 2H  as the coefficients in the differential dH  by putting 

1 1 2 2dH H Hω ω= +  and let 1α  and 2α  be given by (3.5). Next we substitute 

1α  and 2α  into the equations which appear in Chern’s result given in 
Proposition 5.1. Since 2 0H =  in the ( )d ,ds t  basis of forms, it follows that  

( ) ( )( )

( )

1 1 1 1
1 1 1 1

1 1

d dd d d d sin d d
d d

d d dsin d d cos sin d d .
d d d

H H H Hs s q s s t
J J s J J s
H H qq s s t q s t

s J J s s

α ω ω ω ϕ

ϕϕ ϕ ϕ

   = + = +   
   
   = + +     

∧ ∧ ∧

∧ ∧

 

Since the first equation is 1d 0α = , this implies that  

( ) ( ) ( )1 1 1d d dcos sin log sin .
d d d

H H Hs s q s
J s J s s J

ϕϕ ϕ ϕ   = − −      
   (5.3) 

Similarly, using (3.5), we have  

( ) ( ) ( ) ( )( )

1 1
2 2 2

1 1

dd d d
d
d dcos d d cos d d ,
d d

H Hs
s J J

H Hs q s s t s q s s t
s J J s

α ω ω

ϕ ϕ

 = + 
 
 = + 
 

∧

∧ ∧

 

( )
2

1
1 2 d d .

H q s s t
J

α α  =  
 

∧ ∧  

Equating these two results as in the second of Chern’s two equations, we 
obtain  

( ) ( ) ( ) ( )
2

1 1 1 1d d dcos sin cos log .
d d d

H H H Hs s s q s
s J J s J s J

ϕϕ ϕ ϕ   − + =   
   

  (5.4) 

Multiplying (5.3) by sinϕ  and (5.4) by cosϕ , it is found that the folowing 
hold:  

( )1 1 12 2d d dsin cos log | | ,sin sin
d d d

H H Hq s
J s J s s J

ϕϕ ϕ ϕ ϕ   = − −      
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( )
2

1 1 1 12 2d d dcos sin log cos .cos cos
d d d

H H H Hq s
s J J s J s J

ϕϕ ϕ ϕ ϕ    − + =        
 

Adding these two equations, the desired result is obtained,  

( ) ( )
2

1 1 1d dcos log 0.
d d

H H Hs q s
s J J J s

ϕ   − + =   
   

         (5.5) 

Replacing 1H  by d dH s  in (5.5), equation (5.1) follows. □  
Multiply (5.5) by ( ) ( )sinq s sϕ  to obtain,  

( )1 1d d d d d dsin cos sin sin 0.
d d d d d d

H H H H qJ J q s J q
s s s s s s

ϕ ϕ ϕ ϕ− −  − + = 
 

  (5.6) 

Substituting the derivative for 2τ  into (5.6), it becomes,  

( ) ( )1d d d d d dsin cos sin 0.
d d d d d d

H H H qJ J q s q s
s s s s s s

ϕϕ ϕ ϕ−  + + = 
 

 

By means of the product rule, this can be put in the form,  

( ) ( )d 1 d sin 0.
d d

H s q s
s J s

ϕ  =  
                 (5.7) 

This is trivial to integrate, so if C  is the integration constant, we obtain that  

( ) ( )1 d sin ,
d
H s q s C

J s
ϕ ⋅ =                   (5.8) 

with ( )H H s=  nonconstant. 
Since this relation may be viewed as an ordinary differential equation for the 

real-valued function which determines the helicoidal surface under helicoidal 
motion, the existence of such a surface is guaranteed by the local existence 
uniqueness theorem for solutions of such an ordinary differential equation. 

From the first equation of (4.6) and the fact that the space curvature of orbits  

is either ( ) ( )( )
1 222 2 2cos sina cµ σ σ + +  

 or this with sin cos−  interchanged,  

the last result follows. 
Theorem 5.3. A helicoidal surface has constant mean curvature if and only if 

its principal directions make an angle constant with the orbits. 
Combining all of these results, the main result of this work can be stated in the 

form of the following Theorem. 
Theorem 5.4. The helicoidal surfaces are necessarily Bonnet surfaces and they 

represent all three types of surface. 
A conclusion that follows from these results then is an interesting new 

geometric characterization of such surfaces. Thus, a helicoidal surface has 
constant mean curvature if and only if its principal directions make an angle 
which is constant with the orbits. 

Finally, it will be proved that for any surface of revolution in 3  which has 
nonconstant mean curvature function H  it holds that either 1N =  or 
N = ∞ . 

Let ( ) 0x r z= >  be a plane curve in the x z−  plane and form the surface of 
revolution  
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( ) ( ) ( )( ), cos , sin , , .r z r z r z zϑ ϑ ϑ ϑ= −∞ < < ∞           (5.9) 

The principal curvatures are calculated to be  

3 2 3 22 2

1, .
1 1

zz

z z

ra c
r r r

= − =
   + +   

             (5.10) 

If a c=  at ( ),p r z ϑ∈ , of course the entire parallel through p  consists of 
umbilic points, so 1N = . Here zr  denotes the derivative of ( )r z  with respect 
to z . 

Theorem 5.5: Surfaces of revolution with nonconstant mean curvature that 
admit a one-parameter family of geometrically distinct nontrivial isometries 
preserving principal curvatures ,a c  are exactly those for which the function 

( )x r z=  satisfies a specific fourth order differential equation in z . 
Proof: For the surface of revolution of the form (5.9), the principal coframe is 

given by  

( )2
1 21, d .zr r zω ω ϑ= + =                 (5.11) 

Since principal curvatures a  and c  in (5.10) depend only on z  and not 
on ϑ , the first equation of (2.14) implies that  

( ) ( ) ( )( )2d 1d d .zza c z a c u r z vr z ϑ+ = − + −           (5.12) 

Equating the coefficients of the differentials dz  and dϑ  on both sides gives 
u  and v ,  

( )
( ) 2

, 0.
1

z

z

a c
u v

a c r

+
= =

− +
                (5.13) 

Then the forms 1α  and 2α  can be calculated from (2.10),  

( )
( )

( ) ( )
( )

1 2 2
d , d .

1
z z

z

a c a c r z
z

a c a c r
α α ϑ

+ +
= =

− − +
          (5.14) 

Substituting (5.14) into the differential expressions of Proposition 5.1, it is 
clear that 1d 0α =  must always hold since the coefficient of 1α  depends only 
on z  and d d 0z z =∧ . To develope the second equation of the pair, we calculate  

( )
( )

( )
( )
( )

( )
2

2 1 2 22 2
d d d , d d .

1 1
zz

z zz

a ca c r z
r z z z

a ca c r r
α ϑ α α ϑ

   ++   = =
  −− + + 

∧ ∧ ∧  (5.15) 

Equating these two expressions, the following fourth-order differential equa- 
tion for ( )r z  is obtained,  

( )
( )

( )
( )
( )

( )
2

22 2
.

1 1
zz

z zz

a ca c r z
r z

a ca c r r

   ++    =
  −− + + 

         (5.16) 

In (5.16), the principal curvatures a  and c  are given in (5.10), and since 
a  contains second derivatives of r  with respect to z , equation (5.16) will be 
a fourth order equation in z . This is the equation mentioned in the Theorem. 
□  
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