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Abstract 
A simple mathematical model for the exudative retinal detachment has been 
developed. The model takes into consideration a typical retinal blister with 
unknown shape and the fluid flow caused by its accumulation in the subretin-
al space through the fluid-leakage into the subretinal space from the chori-
ocapillar is across the outer blood-retina barrier described by Darcy’s law. The 
theory of bending beams is applied to model the deformation of the retinal 
blister. The boundary value problem describing the retinal deformation in 
dimensionless form is solved using the perturbation method. The computa-
tional results for the retinal deformation are presented through graphs to illu-
strate the sensitivity of the deformation to the elastic modulus, the moment of 
inertia and intraocular pressure and discussed. 
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1. Introduction 

The multi-layered retina is an effective transducer and functions as a light-re- 
ceptor. The retina is connected to the vitreous body through its internal limiting 
membrane layer and with the choroid through the Bruch’s membrane. The outer 
surface of the neurosensory retina is apposite to the retinal pigment epithelium, 
an outermost layer of the retina. In most of the area/region, the retinal pigment 
epithelium and the sensory retina are easily separated to form the subretinal 
space but the spread of subretinal fluid (SRF)/space is limited because the sen-
sory retina and the pigment epithelium are firmly bound together at the optic 
disc and the ora serrata. The vitreous humor, liquefied vitreous and a fluid leak-
ing outside the blood vessels of retina and/or the choroid percolating into the 
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subretinal space may accumulate in the subretinal space. The accumulation of 
fluid in the subretinal space separates the neurosensory retina from the retinal 
pigment epithelium. The separation can occur when the adhesion forces between 
the two layers are overpowered/overcome by other different forces. The ageing, 
cataract surgery, myopia and trauma are some of the most common factors that 
contribute to the process. 

Retinal detachment, which is a significant cause of blindness, must be dealt/ 
considered as a serious medical problem/emergency. After its occurrence of 
flashes of light and/or floaters in the visual field precedes, a dark shadow inter-
fering with vision is perceived by the patients. The peeling away of the neuro-
sensory retina from the underlying retinal pigment epithelium may result in the 
retinal detachment which is an affliction/disorder affecting many people. In the 
initial stages, the detachment may be localized, but, in the case of lacking its 
prompt and proper treatment, this may lead to progressive vision loss and sub-
sequent blindness. 

The three types of detachment distinguished are: (i) Retinal rhegmatogenous 
detachment (RRD), in which a hole or tear or break in the thin retinal layer 
forms and allows vitreous humor to pass from the vitreous body into the sub- 
retinal space between the sensory retina and the retinal pigment epithelium, (ii) 
Retinal tractional detachment (TRD) which is caused by pulling the neurosen-
sory retina away from the RPE by fibrovascular tissue, caused by trauma, in-
flammation or neovascularization, (iii) Retinal exudative (or serous) detachment 
(ERD) in which a blister forms without a retinal hole. Inflammation, injury, or 
vascular abnormalities (e.g. choroid disruption) cause(s) it. This leads to fluid 
build-up/accumulation in sub-retinal space without the presence of a hole, tear 
or break. 

The fluid accumulation in the subretinal space is a common characteristic in 
all types of retinal detachment. Different mechanisms may be involved in dif-
ferent types of the detachments. A shrinkage in vitreous body results in vitreous 
contraction. A tear, or hole or break in neurosensory retina allows the flow of 
vitreous humor, liquefied vitreous into the subretinal space under the pressure- 
differential across the retina and fluid accumulation occurs therein. Sometimes 
neurosensory retina is pulled off the retinal pigment epithelium by external trac-
tion forces. The seepage of fluid which leaks through the blood retina barrier in-
to the subretinal space develops a fluid build-up in the interstitial space. The 
fluid accumulated in the subretinal space pushes away the neurosensory retina 
which results in the retinal detachment. The retinal tension forces contribute to 
the detachment. 

Under some pathological conditions, the fluid leakage from the retinal veins 
and/or choriocapillaris into the subretinal space exceed the fluid flow away/ 
outward actively pumped by the retinal pigment epithelium layer and a blister 
may result between the retina and the retinal pigment epithelium layer without a 
retinal tear. The interposed blister of accumulated subretinal fluid prevents the 
retina from its properly functioning. This situation causes an exudative retinal 
detachment, also called a serous retinal detachment. The failure of the retinal 
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pigment epithelium actively pumping away of subretinal fluid, the increased/ 
enhanced substrate leakiness across the outer blood retina barrier due to the in-
flammation of the choriocapillaris, the excessive leakage of the serum through 
the walls of retinal veins due to the blockage in the vessels outward into the sub-
retinal space contribute to the development of the exudative retinal detachment. 
Besides, some other factors such as the vitreous forces that pull the retina from 
the retinal pigment epithelium layer, may have some role in the detachment. 

The retinal detachment is an ocular disorder which is well established and 
various therapeutic methods for its treatment have been evolved and are availa-
ble. Despite numerous studies, its mechanism is not clearly elucidated and ade-
quately described. In addition to experimental studies, several mathematical 
models [1] [2] for the retinal detachment propagation have been developed and 
analyzed. Mathematical modeling and simulation of the process may enrich/ 
enhance the present understanding of the retinal detachment. 

Fitt et al. [1] proposed a post re-attachment retinal re-detachment problem by 
modeling the retina as an elastic layer and investigated its deformation under a 
prescribed wall shear stress. F. Baino mainly focused on the treatment of retinal 
detachment and examined the role and features of the materials used in vitreore-
tinal surgery, emphasizing scleral buckling and short-term/long-term vitreous 
tamponade [3]. Bottega et al. [4] developed a mechanics based mathematical 
model for retinal detachment treating the retina as an elastic shell while RPE- 
choroid-sclera as a rigid structure and concluded that the presence and size of a 
retinal tear or hole can have a stabilizing effect with regard to detachment prop-
agation, under appropriate conditions. An improved analysis of the mechanical 
behavior of a detaching retina has been described by Bottega et al. and they re-
vealed critical characteristic behavior of detachment propagation [5]. 

The present paper is concerned with the formulation of a mathematical model 
for the exudative retinal detachment. The model takes into consideration the 
fluid seepage into the subretinal space from the choriocapillaris and/or retinal 
veins and active outward pumping of the subretinal fluid by the retinal pigment 
epithelium. The retinal blister of accumulated subretinal fluid between retina 
and retinal pigment epithelium is approximated as a spherical section. 

2. Model Development 

A typical location of retinal blister is considered for the mathematical treatment 
of the exudative retinal detachment. In this type of the detachment, a retinal 
blister is formed between the retina and the RPE layer due to the subretinal fluid 
accumulation without the retinal tear. In view of the inward propagation of the 
retinal blister and its possible slow spread along the interface between the sen-
sory retina and the retinal pigment epithelium, the flow of the subretinal fluid is 
assumed as a steady-state two dimensional flow. The subretinal fluid is treated as 
an incompressible Newtonian fluid with constant viscosity µ  and density, ρ . 
The retinal pigment epithelium is treated as a fixed plane and is represented by 
the x-axis (z = 0) and the retinal blister (considered as a thin flap) is assumed to 
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be extended between –L  to L  and is described by ( )z H x= . Due to the 
axisymmetry of the flow and detachment propagation, the domain of the prob-
lem is considered as: ( ) ;  0z H x x L= ≤ ≤  (Figure 1).  
 

 
Figure 1. Schematic diagram of retinal blister. (SRF: Subretinal fluid; RPE: Retinal pig-
ment epithelium; BrM: Bruch’s membrane; CE: Choriocapillaris endothelium; BRB: 
Blood retina barrier; H(x): Displacement of neurosensory retina from RPE layer z = 0). 

2.1. Governing Equations 

Applying the lubrication theory approximations to the Navier-Stokes equations 
and continuity equation for the slow flow of subretinal fluid between the retinal 
blister and the RPE layer, the governing equations of the problem reduce to the 
form: 

zz xU Pµ =                       (1) 

0zP =                         (2) 

0x zU W+ =                      (3) 

where ( ), ,U V W  are the fluid velocity components, ( ), ,x y zP P P  are the hy-
drodynamic pressure gradients in x, y, z direction , respectively and µ  corres-
ponds to the dynamic viscosity. 

2.2. Boundary Conditions 

( )
0

,0
Z

K UU x
Zσ

=

∂
= −

∂
                 (4i) 

( )( ), 0U x H x =                    (4ii) 

( ) ( )0, 0W x W x=                    (5i) 

( )( ), 0W x H x =                    (5ii) 

( )0P x P= = ∆                     (6i) 

( ) 0P x L= =                     (6ii) 

where K is the permeability and σ , the slip parameter of the outer blood retina 
barrier. 

2.3. Solution to the Problem 

Solving Equation (1) subjecting to the boundary conditions (4i) and (4ii) we 
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have, 

2
22

2
xP H KU Z Z

K H
µ σ

σ

 
 

   = + −       −     

            (7) 

From Equation (3) with boundary condition (5ii), we have, 

( )

( )

3 3 2 2 2

2 2

2

2 3 2 2

2
        

2 2

xx xx

x x

P PH Z H H Z KW Z H
K H

K H H
P HH H Z K Z H

K H

µ µ σ
σ

σ
µ σ

σ

  − −
= + + −       −  

 
  
 − +    −   + + −  

     
−   

  

  (8) 

The seepage of the fluid across the blood-retina barrier into the subretinal 
space is described by the Darcy’s law for the flow in porous media. 

( ) ( )0 C
KW x P P

dµ
= − −                      (9) 

where d is the width of blood-retina barrier and CP , the fluid pressure in the 
choriocapillaris. 

From boundary condition (5i), 

( )
3 2 2

0

2

2

2 3 2 2

2
             

2 2

xx xx

x x

P PH H H KW x H
K H

K H H
P HH H K H

K H

µ µ σ
σ

σ
µ σ

σ

  
= + −       −  

 
  
 − +       + −  

     
−   

  

      (10) 

Comparing Equation (9) and (10), 

( )
3 2 2

2

2

2 3 2 2

2
                            

2 2

xx xx
C

x x

P Pk H H H KP P H
d K H

K H H
P HH H K H

K H

µ µ µ σ
σ

σ
µ σ

σ

  
− − = + −       −  

 
  
 − +       + −  

     
−   

  

  (11) 

The position/displacement of the retinal blister depends on the pressure dif-
ferential across it arising from the different pressures acting on the retinal blister. 
The theory of bending beams can be applied to describe/model the displace-
ment/deformation of the retinal blister. The pressure differential across the reti-
na is balanced by the intensity of the loading on it and the deformation of the re-
tinal blister is described by a fourth order linear ordinary differential equation:  
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4

4
d
d I

HEI P P
x

= −                      (12) 

where E and I are the modulus of elasticity and the moment of inertia of retina, 
respectively. 

In order to solve Equation (12) which is a fourth order linear equation, we 
must have appropriate boundary conditions that describe the constraint im-
posed by the hinges. We assume that the beam has a clamped end, therefore the 
boundary conditions are 

( ) ( ) ( ) ( )0 0,  0 0,  ,  0x xxx L xH H H L H H L= = = =        (13) 

First and last boundary conditions imply that both the ends of the retinal blis-
ter are horizontal. The assumption of no shearing force acts on the middle point 
of the blister is modeled by second boundary condition. 

Rearranging Equation (12), 

I xxxxP P EIH= +  
x xxxxxP EIH=  

xx xxxxxxP EIH=  
Using these values in Equation (11), 

3 2 2 3
2

2

2
6

3 2 2xxxx xxxxxx

K H H
H H H K H KH H H H

K KH H

σ
λ

σ σ
σ σ

     − +            = + − + −      
           −  −           

 (14) 

where 12 k
d

λ = . 

The parameters can be non-dimensionalised using the scaling, 

( ) 2,  ,  ,  I L Ix Lx P P P P P H LH k L k= = + − = =   

We now non-dimensionalise Equations (12) and (14) using the above non- 
dimensional parameters, 

4

4
d
d

H P
x

α= −                         (15) 

where 30,  I LP PL
EI

α α − < =  
 

 

And 

3 2 2 3
2

2

2

6
3 2 2xxxx xxxxxx

K H H
H H H K H KH LH H H

K KH L H

σ
λ

σ σ

σ σ

     − +              = + − + −                   −  −            

 (16) 

with boundary conditions, 

( ) ( ) ( )

( ) ( ) ( )

0 0,  0 0,  0 ,

1 0,  1 0,  1

I
x xxx xxxx

L I

I
x xxxx

L I

P PH H H
P P

PH H H
P P

α

α

 − ∆
= = =  − 

 
= = =  − 

         (17) 
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Equation (16) is a nonlinear 6th order differential equation and in order to 
solve it we need six boundary conditions. Equation (13) shows that we already 
have four boundary conditions, so we need two more. Thus we rearrange and 
non-dimensionalise the boundary conditions in (6i) and (6ii), to give the two 
more conditions. 

Dropping bars for convenience from here onwards. 
For 1λ < , 
Now solve the Equation (16) by using regular perturbation method where we 

assume that, 

( ) ( ) ( )0 1H x H x H xλ= + +                  (18) 

Using Equation (18) in Equations (16) and (17) we have, 
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with boundary conditions,  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )
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         (19) 
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Comparing for zero order we have,  

( )
2

3 20
0 0 0 0

0

0 0
3 2
0 0 2

0

1 10 6
3 2

2
1                             
2

xxxxxx

H KL H H H H
K H

K H H
KH H

KL H

σ
σ

σ
σ

σ




  = + −       −    
    − +        + −   

      
−    

  

 

It means either  

( )06 0
xxxxxx

L H =                         (20) 

Or 

0 02
3 2 3 20
0 0 0 0 0 2

0 0

2
1 1 1 0
3 2 2

K H H
H K KH H H H H

K KH L H

σ
σ σ

σ σ

  
 − +           + − + − =    

           −  −         

 (21) 

Solving Equation (20) with boundary conditions (19), 

( )

( )

5 4
0

2

120 24

3 4
7 10

48 240

I

L I L I

I
I

L I

P PPH x x x
P P P P

P P x P P
P P

α α

α α

   ∆ −∆
= −   − −   

 ∆ −
+ + − ∆ + − 

         (22) 

Substituting (22) into Equation (18) we have, 

( )

( ) ( )

5 4 23 4
120 24 48

             7 10
240

I I

L I L I L I

I

P P P PPH x x x x
P P P P P P

P P O

α α α

α λ

     ∆ − ∆ −∆
= − +     − − −     

+ − ∆ + +

   (23) 

3. Results and Discussions 

The sensitivity of the exudative retinal detachment to the elastic modulus and 
moment of inertia of the retina has been illustrated through the curves in Fig-
ures 2(a)-(c) and Figures 3(a)-(c). Also the effect of intraocular pressure on the 
detachment has been presented through the graphs in Figure 4 (Table 1). 

It is observed from the graphs in Figures 2(a)-(c) that the deformation pro-
files of retinal blister is not linear and it decreases with an increase in the value 
of elastic modulus. It suggests that a decrease in the elasticity of the neurosen-
sory retina tends to retard the exudative retinal detachment. 

It is evident from the graphs in Figures 3(a)-(c) that the deformation/dis- 
placement of retinal blister is decreased with an increase in the moment of iner-
tia. It illustrates that an increased value of moment of inertia of the sensory reti-
na tends to decrease/retard the exudative retinal detachment.  
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(a) 

 
(b) 

 
(c) 

Figure 2. Effect of elastic modulus on displacement. 
 
Table 1. Parameters appearing in the model and their approximate corresponding values 
in the retina. 

Parameter Description Typical physiological value 

L Length of the detached retina 1 mm* 

CP  Vascular pressure 15 - 25 mmHg** 

IP  Intraocular pressure 10 - 20 mmHg** 

E Retinal Yung’s modulus 410  Pa ** 

I Moment of inertia 7 24.14 10  kg m−× * 

*Estimated and used by Z. Ismail [9]; **Estimated and used by T. Chou [2]. 
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(a) 

 
(b) 

 
(c) 

Figure 3. Effect of moment of inertia on displacement. 
 

The effect of intraocular pressure on the deformation of retinal blister has 
been depicted/displayed in Figures 4(a)-(c). An observation of the curves de-
monstrates that an increase in the intraocular pressure causes an increase in the 
displacement. Thus, a rise in the intraocular pressure results in an increase in the 
retinal detachment. 
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(a) 

 
(b) 

 
(c) 

Figure 4. Effect of intraocular pressure on displacement. 

4. Conclusion 

A more realistic scenario involves a localized retinal detachment, or blister, un-
der which subretinal fluid has accumulated. In view of the observations of the 
computational results of the deformation/ shape of the retinal blister, it is sug-
gested that any therapeutic procedure that tends to decrease the elasticity of the 
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retina and/or to increase the moment of inertia of retina and/or to elevate the 
intraocular pressure may help to treat the exudative retinal detachment. This 
result is supported by a number of experimental observations [6]. The work 
presented in this chapter is concerned only with the determination of shape of 
retinal blister and an analysis of its sensitivity to the elastic modulus and mo-
ment of inertia and the intraocular pressure. Results for modulus as a mechan-
ism to close the detached area suggest the influence of the parameters of the re-
tinal on its effectiveness with regard to closure and minimizing induced ocular 
pressure [7] [8]. We do not claim that great numerical accuracy should be attri-
buted to the calculated value of modulus, since the real retina, though possessing 
elastic properties, is not a homogenous structure. Accurate measurements of 
height and applied force are difficult to obtain in a consistent way due to this 
inhomogeneity of the retinal material. This work can be extended to investigate 
theoretically the effect of permeability characteristics of outer and inner blood- 
retinas, of the choriocapillaris fluid pressure and active pump flow characteristic 
on the exudative retinal detachment in near future. 
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