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Abstract 

Since the discovery of the paradoxes of self-referentiality or self-reference re-
spectively logicians and mathematicians tried to avoid self-reference when 
constructing formal systems. Yet “real” complex systems like the mind are 
characterized by self-reference and can accordingly only be modeled by for-
mal systems that are also basically self-referential. In this article I show that 
and how self-referential computer programs, understood as algorithmic for-
mal systems, are not only possible but also since some time quite common in 
special branches of computer science. Examples for this argument are neural 
networks and so-called hybrid systems, i.e. combination of different sub sys-
tems. The hybrid system SOCAIN, a combination of a cellular automaton, a 
neural network and a genetic algorithm is an example for the fruitfulness of 
using self-reference in a systematic way. In particular, such systems consist of 
mutually dependent sub systems, i.e. form no static hierarchy. 
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1. Introduction: Paradoxes and Self-Referentiality  

When more than a century ago Russell discovered his famous paradox of the set 
that consists of all sets, which do not contain themselves as elements; he draw 
attention to the problem of self-referentiality: A formal system must not be self- 
referential in order to avoid the according paradoxes. Consequently formal sys-
tems like the Principia Mathematica of Russell and Whitehead (the theory of 
types) and the set theoretical axioms system of Zermelo and Fraenkel (ZFC) 
were constructed by banning self-referentiality. For example, in ZFC a set is of a 
higher order than its elements and hence a set cannot include itself as an ele-
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ment—or other sets of the same order.1 The same avoiding of self-referentiality 
is the base for the hierarchy of meta languages, developed in particular by Tarski 
(1956). 

The (in) famous paradox of Curry is an illustrative example for paradoxes that 
might occur by not paying sufficient attention to the problems of self-reference: 
“A sentence A states that A implies B, and B is an obviously wrong statement 
like 1 = 2.” If A is true then “A implies 1 = 2 is true” and because of the logical 
rule of implication it follows that 1 = 2 is also true. Hence A must be wrong. If A 
is wrong then “A implies 1 = 2” is true because of the logical principle ex falso 
quodlibet and hence A is true. From a set theoretical sense though this paradox 
is based on the contradictory definition that A contains itself as a proper sub-
set—A = {A, B}, i.e. A contains elements that A does not contain. In this exam-
ple obviously the usage of self-reference does not only lead to a paradox but is 
also the base for a contradictory definition for the paradox. 

To be sure, there are many paradoxes, whose source is not the explicit usage 
of self-reference like, e.g. the classical paradoxes of infinity by Burali-Forti and 
Cantor.2 In this article I just deal with the problem of self-reference for mainly 
two reasons:  

On the one hand the dealing with the problem of self-referentiality had not 
only the mentioned consequences for the construction of formal systems with-
out self-reference but lead also to the discovery of principal limits of certain 
formal systems. In his famous article about the incompleteness of formal systems 
like the Principia Mathematica Gödel (1931) explicitly explained that he got the 
idea for his fundamental proof by getting acquainted with Russell’s paradox and 
the canonical formulation of paradoxes of self-reference, namely the liar para-
dox. Accordingly Gödel combined in his proof a logical negation of a self-refe- 
rential statement—“this sentence is not derivable in this system”—with Cantor’s 
diagonal method and obtained his fundamental results. The same proof prin-
ciple used Turing (1937) in his equally fundamental proof of the insolvability of 
the halting problem.  

Therefore, the discovery of the paradoxes of self-referentiality seemed to 
prove that they showed a principle limit of formal reasoning. This was (and 
sometimes still is) the reason why these paradoxes and the derived theorems of 
Gödel and Turing were mentioned as important aspects of the role of formal 
logic in philosophy. 

Gödel and Turing apparently saw that the combination of self-referentiality 
and logical negation might lead on the one hand to the paradoxes and on the 
other hand might be used as proofs of principal limits of formal systems—num- 

 

 

1ZFC means the set of axioms formulated by Zermelo and Fraenkel plus the continuum hypothesis 
C, i.e. that the cardinal number of the real numbers is equal to 1 א (Aleph 1), the next larger cardinal 
to that of the integers and rational numbers. C is independent of the other axioms and consistent with 
them, the same case as that of the parallel axiom with respect to the axioms of Euclidean geometry. 
2The paradox of Cantor, by the way, has an interesting similarity to the set theoretical reconstruction 
of Curry’s paradox: The set of all sets (Cantor) must contain not only itself by definition as a proper 
subset but also its power set as an element. Hence its size—its cardinal number—must be larger than 
that of its power set. Thus the concept of the set of all sets leads to a contradiction. 
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ber theory or computer programs. Conversely one might assume that self-ref- 
erence alone, i.e. without logical negation, must not be something that has to be 
avoided by all means. Yet in any case the impacts of the “limitation theorems” of 
Gödel, Turing, and the less famous theorem of Church were such that frequently 
these theorems were thought to define a definite limit of formal reasoning and 
hence the construction of formal systems at all. For example, the mathematician 
and physicist Penrose (1989) used these theorems to prove that a real Artificial 
Intelligence (AI) will never be possible because of the fundamental limits of 
formal systems. If in particular formal systems cannot deal with self-reference 
then no formal system can be equivalent to the mind (or the brain respectively).  

On the other hand there can be no doubt that there exist complex systems “in 
reality” that can be characterized as fundamentally self-referential. The most 
famous example is certainly the mind (or brain respectively) that is able to think 
about itself, to change its thoughts after evaluating them, and even to construct a 
picture—a mental image—of itself. Hence scholars like Penrose are certainly 
right if they argue that formal systems without such capabilities of self-reference 
can never be a sufficient, i.e. complete model of the mind and hence not an Ar-
tificial Intelligence that earns this name. Other examples are social systems that 
can evaluate themselves and change their performance according to their suc-
cesses in competition to other social systems. One might even postulate that the 
analysis of such complex systems, particularly known in the social and cognitive 
sciences, by using formal models is possible only if such systems can be modeled 
by self-referential formal systems. Yet the paradoxes of self-referentiality and the 
limiting results of Gödel and Turing seem to make such an enterprise rather 
hopeless. 

There exist numerous attempts to deal with the paradoxes in different ways, 
which I cannot even enumerate in this article. Because my research interests 
have been for a long time the modeling of complex systems with according 
computer programs the seeming limits of the paradoxes and the limitation 
theorems, I was and still am fascinated by the possibilities such computer pro-
grams offer for transcending these limits. The paradoxes, hence, served as an 
orientation how the construction of formal systems on the one hand has to avoid 
the paradoxes but on the other can make use of the possibilities of self-reference. 
That is why I focus in this article on these possibilities. 

For fortunately things are not so bad as the limitation theorems and the para-
doxes suggest. The possibilities of using self-reference in different ways have 
since some time be explored in mathematics and in particular in computer 
science. In the next sections I shall describe some different forms of self-refer- 
ence that can be applied without contradictions and have shown to be very 
fruitful. 

2. Recursivity—A Weak Form of Self-Reference 

Independently of the paradoxes of self-reference the concept of recursivity has 
been used for a long time in mathematics. That is why I remind here of the fact 
that this form of self-referentiality is a common form of mathematical thinking; 
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it is a historical early example that the usage of self-reference in formal thinking 
per se has nothing to do with paradoxes.3 

In a literal sense recursivity or recursiveness respectively means a process of 
“going backwards” (in Latin recurrere): A recursive dynamical system makes its 
progress by taking into regard all states or several of them it has reached so far 
and by computing the next state from the former states. The perhaps most fam-
ous example of a recursive sequence is the Fibonacci sequence, namely 

1 2n n nx x x− −= +                        (1) 

i.e. the value xn is computed by adding the last value and the before last one. 
The Italian mathematician Leonardo di Pisa, called Fibonacci, developed this 
sequence already in the 13th century, when he had the task to compute the re-
production of rabbits, starting with one pair. In other words, for generating the 
next value the sequence has to go back to the last two values already generated— 
it has to refer to itself with respect to its former states. 

The usage of recursive equations in particular for the mathematical descrip-
tion of growth processes is quite common in mathematics; another example is 
the also well-known general growth equation by Verhulst 

1n nx ax+ =                          (2) 

which means simply that the new unit xn+1 of this recursive sequence is just the 
product of a growth factor a and the preceding unit xn. Again the sequence has 
to go backwards.4 

From a philosophical point of view another example is certainly much more 
interesting, namely the recursive dynamics of Boolean networks (BN) or logical 
networks respectively. Boolean networks (BN), named after the founder of ma-
thematical logic George Boole, are directed but not weighted graphs; the nodes 
of the graph or the units are connected by logical functions or Boolean functions 
respectively. In the case of functions with one or two variables the functions are 
nothing else than the well-known logical operators like AND, OR, or IF-THEN 
(the logical implication). Usually BN are binary networks, i.e. the units either 
have the value 1 or 0, i.e. the truth-values of propositional logic. Figure 1 shows 
a simple BN with three units a, b, and c, and the two connecting functions AND 
and OR with AND (a, b) = c and OR (b, c) = a. 
 

 
Figure 1. A simple BN with three units and two connecting functions. 

AND

OR a b

c

 

 

3It has been frequently noted that the paradoxes of self-reference chiefly were constructed by a com-
bination of self-reference and logical negation (cf. the proofs of Gödel and Turing). Recursivity, 
hence, is an example how to use self-reference without negation and thus without paradoxes. 
4In reality of course growth processes cannot go on forever as the general equation implies. Hence 
so-called dampening factors must be added to equation (2), but this is not of importance in this con-
text. 
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So far BN are nothing else than a graph theoretical representation of proposi-
tional logic, a seemingly uninteresting field of mathematical logic. Things 
though become more interesting if one understands BN as dynamical systems, 
namely by generating a particular dynamics. This is done by defining an initial 
state, consisting of certain values—1 or 0—for the three units. If for example a = 
1, b = 0, and c = 1 we obtain the following succession of states: 
 

a b c 

1 0 1 

1 0 0 

0 0 0 

0 0 0 

 
The state (0, 0, 0) is a so-called point attractor, i.e. a state the system does not 

change any more. This particular trajectory is generated by using the classical 
definitions of AND and OR: AND(a, b) = 1 if and only if both a = 1 and b = 1 
and AND (a, b) = 0 in all other three cases; OR (a, b) = 0 if and only if both a = 0 
and b = 0. A specific BN, hence, generates its recursive dynamics by taking into 
regard the states just reached and determining from these states the next one.  

One can see BN as a dynamical extension of propositional logic, which, as I 
remarked, seems to be a rather uninteresting field. When rather early it was dis-
covered that the propositional calculus is complete and decidable, in a certain 
sense Kant seemed right when he postulated in the Kritik der reinen Vernunft 
that logic only delivers analytic statements a priori and therefore is much less 
interesting than mathematics with its synthetic a priori insights. Yet the dynam-
ical extension of propositional calculus in form of BN demonstrates quite 
another picture; that is why I showed this example of recursiveness in more de-
tail. Despite their logical simplicity BN are equivalent to potential universal 
Turing machines, which means that one can generate any complex dynamics 
with suited BN (cf. e.g. Kauffman, 1993). In addition, BN are still not completely 
understood in the sense that one knows general laws or regularities that allow to 
explain the different complex behaviors of BN. So far “only” statistical regulari-
ties in form of so-called ordering parameters are known, i.e. parameters that de-
scribe the most important mathematical characteristics of BN (cf. e.g. Klüver & 
Schmidt, 2007).  

Other rather sophisticated examples of recursive sequences can be found, for 
example, in Hofstadter (1979). Yet despite the fruitfulness of the concept of re-
cursiveness in mathematics it would seem a bit tricky to claim that by using re-
cursiveness the problems of self-reference can be solved once and for all. Pe-
nrose for example of course knew about recursive sequences and according re-
cursive equations, but he would also certainly argue that this concept is far too 
simple for the “real” problems of self-reference and in particular those with re-
spect to the limiting theorems of Gödel and Turing. After all, the “going back” of 
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recursive systems is much less a reference of the system to itself, i.e. to former 
states, than statements within a system about the system as in the proofs of 
Gödel and Turing.  

Therefore, the demonstration of the possibilities of using recursiveness is not 
enough to show that it is possible to construct self-referential formal systems 
without the dangers of paradoxes and the principal limits of formal reasoning. 
To be sure, the results of Gödel and Turing remain valid, but they are perhaps 
not as important for the construction of formal systems as many scholars be-
lieved. 

3. Algorithms and a Definition of Self-Referential  
Computer Programs 

In a general sense algorithms as the (mathematical and logical) basis for com-
puter programs always constitute recursive sequences in form of the runs of the 
programs. An algorithm is of course just a more or less sophisticated computa-
tion method. Accordingly algorithms that generate sequences of values must do 
this by operating in a recursive way—go from state xn to state xn+1 by applying 
always the same computation rule. An algorithmic pseudo code for the small BN 
in Figure 1 is for example: 

IF a, b, and c are in states x, y, and z, and IF x, y, z ∈ (0, 1), THEN c = AND 
(a, b), a = OR(b, c), and b = y (i.e. the value of b does not change in all runs). 
The IF-THEN structure means in this example the next step in the computation 
of a, b, and c. 

One might say that without the permanent usage of recursiveness no comput-
er simulations of dynamical systems would be possible at all. Yet in spite of this 
general characteristic of algorithmic computer programs no mathematician or 
computer scientist would call a program like the shown BN code a self-referen- 
tial program in a strict sense of the word.  

A significantly more sophisticated formal system than the “only” recursive 
Boolean networks are artificial neural networks (NN) that belong to the most 
important tools in the research of Artificial Intelligence (AI). NN are basically 
directed and weighted graphs, i.e. their units—the so-called neurons—are con-
nected by directed edges with certain numerical values, the so-called weights. 
Figure 2 shows one of the simplest types of NN, namely a two-layered feed for-
ward network: 
 

 
Figure 2. A two layered feed forward net; the top line is the input layer, the bottom one 
the output layer; the numbers show the weight values. 
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“Feed forward” means that the “activation flow” in the network has only the 
direction from the input layer to the output layer. A user gives certain values as 
input to the input layer and the NN computes according to so-called activation 
functions the values of the output layer. A standard activation function is the 
“linear one”: 

j i ija a w= ∑                           (3) 

which simply means that the “activation value” aj of the “receiving” neuron j is 
computed by the values of the “sending” neurons i, multiplied with the values of 
the connections to the receiving neurons and added up.  

The interesting aspect of these artificial systems is the fact that they are able to 
“learn”, i.e. to change their behavior according to certain rules and “learning 
goals”. To make this possible a complete NN-system consists of (a) the basic di-
rected and weighted graph—the (initial) topology of the system, (b) a “learning 
rule”, and (c) a computational method to measure the learning success of the 
system.  

For example, a frequently used type of learning is the supervised learning type. 
This means that the network gets a specific learning goal in form of a target vec-
tor, external to the network proper. The learning process is now steered by the 
goal in order to minimize the difference between the output layer—the output 
vector—of the network and the target vector. The learning goal has been reached 
if this difference is equal to zero or below a certain predefined threshold.  

The learning process in the case of supervised learning and feed forward net-
works consists of the following steps: 

a) After the insertion of an input vector compute the output vector by, for 
example, using function (3). 

b) Compute the distance between the output vector and the target vector, e.g. 
via the Euclidean distance. 

c) Change the weight values of the connections by, e.g. using the so-called 
Delta rule (see below). 

d) By applying the initial input vector compute the new output vector as in a). 
e) Repeat step b) with the new output vector. 
f) Repeat step c). 
g) Repeat a)-e) until a certain limit has been reached. 
The Delta rule is one of the simplest learning rules, namely 

( )ij j j i j iw t a o oη ηδ∆ = − =                    (4) 

∆wij is the changing value for the weight wij from the sending neuron i to the 
receiving neuron j; η is a so-called learning rate, which determines the fastness 
of the process, tj is the value of the target component j, aj is the activation value 
of the output neuron j, and δj is accordingly the size of the error measured as the 
difference between the output neurons and the according components of the 
target vector (hence Delta rule). In other words, the variation rate of the weight 
values is proportional to the size of the error, i.e. the distance between output 
and target vector. 
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Other learning types, learning rules, activation functions, and network topol-
ogies are known and frequently used, but for the purpose of this article this ra-
ther simple example is sufficient.  

It is easy to see that the whole process a)-g) also generates a recursive se-
quence of different states. Yet in contrast to the recursive sequences shown in 
the preceding section the learning process has additionally at its core a funda-
mental self-referential aspect: Step b) means an evaluation of the system by itself, 
namely the evaluation of its previous performance in proportion to the learning 
goal. Step c) is in consequence the correction of specific components of the sys-
tem, i.e. the weight values as main part of the system’s topology, in order to bet-
ter the system’s performance. This correction process is again performed by the 
system itself, i.e. without any external interference.  

Here it is important to remember that the whole network consist of the com-
ponents (a), (b), and (c) described above. Hence the measuring of the learning 
success and in consequence the changing of the topology are internal processes, 
performed by the network. The network, so to speak, searches a way through a 
“learning space” by permanently applying operations of self-reference. 

Because of these characteristics of neural networks it is no wonder that in-
itially these systems were looked at in mainstream computer science as rather 
strange and esoteric. Yet since several years things have changed significantly: 
The construction of computer programs that are able to evaluate and change 
themselves according to specific criteria has become a special branch of com-
puter science, the so-called field of Metaprogramming or Generative Program-
ming respectively (cf. e.g. Czarnecki & Eisenecker, 2000). One might call these 
developments in computer science as the quest for the goal making computer 
programs as independently as possible, i.e. independently from external interfe-
rences, by equipping them with the capabilities of special forms of self-refer- 
ence.5 

To put it into a nutshell, self-referential computer programs like the described 
neural networks are formal algorithmic systems that are able a) to observe 
themselves, i.e. evaluate their performing success, and b) to change themselves 
according to the desired goals by applying certain types of “meta rules”, namely 
rules that change specific structure components of the system.6 Experiences with 
the numerous constructions and practical applications of such systems have 
since long demonstrated that self-referentiality is not a problem that must by all 
means be avoided but a very important chance for the development of computer 
programs that can be applied to real complex problems. 

4. An Example: The Hybrid System SOCAIN 

Hybrid systems are formal systems consisting of the combination of two or more 

 

 

5When I wrote this article in Autumn 2016 nearly each month one of the big IT firms like Google 
and Apple announced new breakthroughs in the field of Artificial Intelligence, in particular by using 
rather complicated neural networks. These announcements are of course frequently just done for 
marketing purposes, but they show that self-referential programs, so to speak, are now a field of high 
economic interests and according researches. 
6A detailed description and analysis of meta rules can be found in (Klüver, 2000). 
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different sub systems (cf. e.g. Goonatilake & Khebbal, 1995). “Different” means 
in particular that the sub systems are constructed by applying different tech-
niques. For example, if a BN should be improved by changing its topology for 
some purpose, i.e. the connections between the neurons, then one could com-
bine the BN with a certain optimization algorithm, e.g. an evolutionary algo-
rithm (EA) that varies the topology of the BN. The whole system BN/EA is then 
called a hybrid one.  

Principally hybrid systems can be constructed in a horizontal and in a vertical 
fashion: In a horizontally coupled system the different sub systems operate in a 
kind of division of labor, i.e. one sub system performs a certain task, hands over 
its results to a second sub system that uses these results as a starting point for its 
own tasks and so on. In vertically coupled systems one sub system operates on 
another sub system in order to evaluate the performance of the first and to 
change it, if necessary. One could call in such cases the second sub system a meta 
system with respect to the first one. The following example is a hybrid system 
that uses both forms of coupling. 

This hybrid self-referential system was constructed by our research group 
(Stoica, Klüver, & Schmidt, 2004); it demonstrates different possibilities of in-
troducing self-referentiality into formal systems. The task of the program is the 
modeling of social systems that are capable to construct models of themselves 
and by improving their own models improve themselves. Being a hybrid system 
it consists of several, in this case three different coupled sub programs that oper-
ate “horizontally” with and “vertically” on each other. Because the horizontally 
coupled sub systems are a cellular automaton (CA) and an “interactive neural 
network” (IN) the program was called SOCAIN-SOciety consisting of CA and 
IN.  

A cellular automaton is a geometrically simplified version of Boolean net-
works; the units of the CA are called cells (hence the name). An interactive 
neural network is a “recurrent” network, i.e. each neuron of the net is principally 
connected with each other neuron. Hence its topology is much more compli-
cated than the simple feed forward network shown in Figure 2. 

The CA models the “real” society in the way that the members of the society 
are represented by the individual cells of the CA; each member belongs to a spe-
cific social class. The IN represents the model of the CA in an aggregated way: 
Each artificial neuron of the IN represents one social class; the number of class 
members are represented by the so-called activation values of the neurons (cf. 
the preceding section). Technical details of the whole model, which are not im-
portant for this article, can be looked up in (Stoica, Klüver, & Schmidt, 2004). 

According to certain environmental conditions this system has the task to 
improve its system’s value. The theoretical assumption is here that the system’s 
achievements depend on the distribution of the social members to the different 
classes. This improvement is performed by a third sub program, namely a so- 
called genetic algorithm (GA). A GA belongs to the class of evolutionary algo-
rithms (EA); it performs its optimization tasks by simulating biological evolu-
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tion: The respective problem is coded as a vector; then a population of such vec-
tors is generated at random, and subsequently the vectors are varied by the “ge-
netic operators” of mutation and recombination (crossover) until a certain op-
timization goal has been reached. 

The whole system operates the following way: The CA performs several runs; 
the results are evaluated with respect to the environmental conditions. In the 
next step the GA betters the CA. Afterwards the CA transforms itself into the IN, 
i.e. the aggregated image of the “original” society, which is again optimized by 
the GA. The optimized IN is then back transformed into the CA that performs 
several runs again. The GA optimizes now the CA that is again transformed into 
the IN and so on until a sufficient final optimization result is reached. The whole 
self-referential system hence has the structure shown in Figure 3. 

The goal of this program was to demonstrate the possibility of formally mod-
eling self-referential operations like self-observing, self-modeling, and self-im- 
proving. By the way, the hybrid system SOCAIN performed much more effi-
cient, i.e. it reached its optimizations goals much faster than a simpler hybrid 
system that consists “just” of a CA and an improving GA. Constructing models 
of themselves hence can be a significant advantage for complex systems that 
have to adapt in difficult environments. In particular, the emergence of con-
sciousness during the evolution of the human species is closely connected with 
the emergence of the self-modeling ability, i.e. the constructing of “mental im-
ages” of one-self.  

SOCAIN obviously contains several components of self-reference: The CA 
sub system and the IN subsystem are horizontally coupled; each of the sub sys-
tems is evaluated by the same criteria and they permanently refer to each other 
by transforming their respective states at a certain time into the other. One 
might call these transformations mutual mappings of the CA into the IN and 
vice versa. Therefore each sub system is a self-observing one, because only the  
 

 
Figure 3. The self-referential system SOCAIN. 

CA
simulates the differentiation of a 

homogeneous society into a class society

IN
takes over the best final 

state of the CA

GA (meta system)
operates on the

transition rules and 
on the mobility matrix

GA (meta system)
operates on the weight matrix

mobility matrix
= weight matrix

The IN gives the optimized matrix (mobility matrix) back to the CA
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best achieved states are each time given to the other sub system. The genetic al-
gorithm additionally optimizes the two sub systems, i.e. the original society and 
its aggregated image, which means a vertical coupling. Because the evaluation 
criteria and the according optimization processes are the same for both sub sys-
tems the construction generates the same form of self-observing and self-im- 
provement, as that shown in the last section with the example of neural net-
works, for the whole system.  

In nuce, the self-referential processes of SOCAIN consist of a) the construc-
tion of a self-image (the IN) of the original social system (the CA), b) the self- 
evaluating and self-improvements of the vertically coupled sub systems CA/GA 
and IN/GA, and finally c) the self-observation of the whole system SOCAIN un-
til the final result that the optimization process can be stopped. In addition, 
there is a permanent feedback loop between the basis system, the CA, and the 
image system: The image system improves the CA by handling its performed 
states to the basic system; the CA gives the results of its own improvements by 
the GA back to the IN image system, that subsequently again transfers its results 
to the CA, and so on until a satisfying end result has been achieved. 

The intention for the construction of SOCAIN was chiefly, as I mentioned, the 
development of a formal system that is able to construct an image of itself; in 
Kantian terms SOCAIN should serve as the demonstration of the condition of 
the possibility for such formal systems. The insight that such systems can per-
form significantly better than comparable systems without this capability is an 
interesting additional gain of the construction, which should be analyzed fur-
ther. In any case, even such an advanced form of self-referentiality like the con-
struction of self-images within a whole system obviously is possible too. 

5. Self-Referentiality, Meta Rules and Outgödeling 

The basic architecture of such self-referential programs is certainly the imple-
mentation of specific meta rules in addition to the basic rules of the program. 
The neural network, e.g., described in section 3, consists of activation functions 
on the one hand that determine the network’s dynamics in form of recursive se-
quences of system’s states. This dynamics depends on the specific functions on 
the one hand and the (initial) topology on the other, namely the conditions, 
which neurons are connected with which others and in particular the directions 
and weights of the connections. Additionally there exists a learning rule, i.e. a 
rule that operates on the original network and changes several components, in 
this example the weights of the connections. Such a learning rule might be called 
a meta rule, because it operates on the original system. 

In the certainly much more complicated example of SOCAIN the meta rules 
are defined by the rules of the genetic algorithm, which is itself a formal system 
and hence operates as a meta system on the two other systems. Here it is impor-
tant to remind that such meta rules, or in the case of vertically coupled hybrid 
systems meta systems, are necessary to take appropriate measures from the self- 
evaluation of the system, namely to change some components of the system in 
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order of improving the system’s behavior. One might call the function of the 
meta rules the practical consequence of the self-evaluation; the evaluation always 
needs an additional computational method and could in principle be without 
consequences. This would be the situation of a human learner who knows that 
he must change his learning behavior but is too lazy to do it.7 

To put it into a nutshell, the self-referentiality of such formal systems consists 
of a) special algorithms for self-observing and in particular self-evaluation, and 
b) certain meta rules that change the system’s structure and accordingly its be-
havior, depending on the goals the system has to fulfill. Only by inserting meta 
rules into the original system a self-referential variation of the system is possible. 

The usage of the terms meta rules and meta systems is of course not by chance 
but orientated to the classical concepts of Hilbert’s Metamathematics and the 
hierarchy of meta languages, i.e. concepts that were introduced for avoiding self- 
reference. Hence one might argue that the self-referentiality of programs like 
neural networks or SOCAIN could be achieved only by constructing hierarchies 
of rules and other sub programs that operate always on the next lowest level but 
avoid self-reference the same way as for example the distinction of different le-
vels of languages does. Consequently according to this critical argument these 
programs are not more self-referential than axiomatic set theory or a set of meta 
languages. 

To be sure, realizing computer programs like those described is possible only 
by introducing some different levels of operations, e.g. an original initial system, 
rules of self-evaluation, and rules to change it. As a whole system such a pro-
gram is certainly self-referential. Yet in addition and in contrast to static hierar-
chies in such computer programs the different levels are not independent from 
another, because it is easily possible to construct permanent feedback loops be-
tween the different levels. For example, in a vertically coupled hybrid system like 
the coupling of a CA with a GA in SOCAIN the optimizing operations of the 
GA—the meta system—might be influenced by the performance of the (opti-
mized) CA too: The better the performance of the CA is in proportion to specific 
environmental conditions the smaller could be the variation rate by which the 
GA varies the “object system” of the CA. It is a technique quite frequently used 
in cases where developing or learning systems should not transcend a certain 
limit and hence should approach this limit only cautiously. Of course, the oppo-
site is also possible: If a learning or optimization progress is too slow then de-
pendent on the progress of the object system the operations of the meta system 
can be quickened. Our research group constructed such mutually dependently 
coupled hybrid systems too. 

Therefore, such systems do not simply form a hierarchy of logically different 
levels but a dynamical unity of mutually dependent components with different 
functions. In the example of SOCAIN I already mentioned the fact that the ho-

 

7The German author Erich Kästneronce characterized such an attitude by remarking “Esgibtnich-
tsGutes, außer man tut es” (there is no good except one does it). Indeed, what use would be a com-
puter program without practical consequences from self-observing and self-evaluation? 
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rizontally coupled IN and CA systems permanently influence each other. The 
same is the case if one makes the GA meta system dependent on the progress of 
the two object systems. This is much more than the classical self-reference 
avoiding hierarchies and it justifies the statement that systems like SOCAIN are 
indeed self-referential. A similar interdependency of different levels, by the way, 
can and was introduced in neural networks by e.g. varying the learning rate η in 
the Delta learning rule (4) in dependency of the learning progress of the net-
work. Figure 4 shows the basic architecture of such interdependent sub systems. 

The introduction of different levels in such systems, therefore, is not the same 
avoidance of self-referentiality as in the classical attempts to avoid the paradoxes 
of self-reference, but just the opposite: It is a methodical way to use the chances 
of self-referentiality for modeling real complex systems and to construct rather 
autonomous computer programs (cf. footnote 4).  

Finally, what about the limiting theorems of Gödel, Church, Turing? Their 
fundamental results, of course, remain valid, as I remarked before. Yet their 
practical importance for the construction of formal systems, in particular com-
puter programs, must be seen in another light. Programs like those described 
can in principle “outgödel” themselves, to use an apt expression of the physicist 
Tipler (1994): By self-observing and self-evaluation they can get insights with 
respect to their own limits and an according necessity for improving their per-
formance, the necessity for enlarging themselves, to remove discovered incon-
sistencies, and much more. Our research group, for example, developed a tool 
for cellular automata that informs a user about inconsistent rules and how to 
deal with them, i.e. the tool gives orientations how to avoid the inconsistencies 
by inserting other rules. If the user whishes the system improves itself by  
 

 
Figure 4. The basic system is varied by the meta system, which permanently varies its 
operation rules in dependency of the basic system’s progress. 
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automatically inserting corrected rules. Therefore, by such a self-improving the 
system can correct its own constructor. 

At present we develop a hybrid system that is self-developing, orientated to 
the classical developmental model of Piaget, namely the permanent interplay 
between accommodation and assimilation. The system consists of a three- 
layered feed forward net (cf. above section 3) and a self-organized learning net-
work, which we developed in our research group (cf. Klüver & Klüver, 2013), a 
so-called Self Enforcing Network (SEN). The two networks permanently influ-
ence each other: In response to the assimilation results of the SEN the feed for-
ward network varies its own structure, i.e. its basis for accommodation pro- 
cesses. In particular it is able not only to change its weight values but also to en-
large itself by inserting additional neurons to the different layers. The results of 
the varied feed forward net is given to the SEN, which accordingly also enlarges 
itself and such can perform its assimilation tasks in a more and more differen-
tiated way. 

By such a permanent self-reference in form of structure variation and self- 
enlargement the whole system indeed is able to develop itself without external 
influences. Such a system is therefore able to outgödel its initial limits not only 
by perceiving them but in particular by changing its initial structure according 
to the developmental tasks. To be sure, this system also consists of different rules 
and meta rules for varying and enlarging its own structure. Self-referentiality, 
hence, is obviously at the core of autonomous developmental processes and can 
be modeled in formal systems without principal logical problems.8 

Of course, according to Turing no self-referential computer program will ever 
be able to make statements about all imaginable programs. But this is certainly 
not so important for practical purposes as one might assume. Self-referential 
programs can deal with each specific problem, with which they are confronted, 
by transcending their initial limits—if the problem can be solved at all by the 
type of programs they belong to. This is the same way human minds deal with 
specific problems. The principal limits demonstrated by the limiting theorems, 
therefore, are limits for certain and universal kinds of formal reasoning. But 
fortunately other ways are possible and obviously fruitful. 

6. Conclusion  

The methodical core of my arguments in this article is obviously the construc-
tion and analyzing of computer programs that operate in a self-referential way 
without any paradoxes. Because the questions I dealt with are basically philo-
sophical and logical fundamental questions one might call this methodical way 
“Experimental Philosophy”, a concept used in the early Enlightenment to dis-
tinguish the new experimental sciences from speculative philosophy and in par-

 

8In computer science such a self-enlargement is frequently called “bootstrapping”. This rather 
strange name comes from the famous story of the Lying Baron Münchhausen, who claimed that he 
had drawn himself together with his horse out of a swamp. Although the Baron used his hair and not 
his bootstraps the self-developmental operations of a system like our hybrid network system certain-
ly remind of this story. 
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ticular theology.9 With the emergence of computer technology and according 
logical frameworks for the construction of self-referential programs it is now 
possible to apply this methodical way even to basic problems of philosophy and 
thus give the term “Experimental Philosophy” an additional and literal meaning. 
It is probably not exaggerated to call this a new paradigm of scientific thinking. 

In any case, it has been a long way from the discoveries of the paradoxes of 
self-referentiality to the constructions of self-referential formal systems like the 
described computer programs. So what, after all, can still be the importance of 
these paradoxes?  

In my opinion their historical role and present importance is best described 
with the famous ladder metaphor of Wittgenstein:  

“My statements are explained this way that who understands me will recog-
nize them in the end as nonsensical when he by them has climbed up over 
them… (he must so to speak throw away the ladder after he has climbed up on 
it)” (TractatusLogico-Philosophicus 6.54, my translation from the German orig-
inal).  

In this sense we can understand the paradoxes as important steps towards 
some great achievements in mathematical logic and the foundations of mathe-
matics. Yet now it is time to walk new paths without them. 
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