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Abstract 
We calculate in a numerically friendly way the Fourier transform   of a non-  
integrable function, such as ( ) 1xϕ = , by replacing   with 1−  , where   

represents the resolvent for harmonic oscillator Hamiltonian. As contrasted with the 

non-analyticity of ( ) ( )
12 2x a xϕ
−

+  at ix a= ±  in the case of a simple replacement 

of   by ( ) ( ) 12 2 2 2ˆ ˆp a q a
−

+ + , where p̂  and q̂  represent the momentum and 

position operators, respectively, the ϕ  turns out to be an entire function. In cal-
culating the resolvent kernel, the sampling theorem is of great use. The resolvent 
based Fourier transform can be made supersymmetric (SUSY), which not only makes 
manifest the usefulness of the even-odd decomposition of ϕ  in a more natural way, 
but also leads to a natural definition of SUSY Fourier transform through the com-
mutativity with the SUSY resolvent. 
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1. Introduction 

Fourier transform (FT) ( ) ( )2 2: L L→   by  

( )( ) ( )i1 e d ,
2π

kxx k kϕ ϕ= ∫  

which is a unitary operator, is a fundamental method in function analysis and is applied 
to many fields in physics. The corresponding self-adjoint operator is given by the 
harmonic oscillator Hamiltonian ( ) ( )2 2: L L→   by  

( )( ) ( ) ( )2 21 ˆ ˆ 1 ,
2

x p q xϕ ϕ= + −                    (1) 
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where ( )( ) ( )1 dˆ
i d

p x x
x

ϕ ϕ=  and ( )( ) ( )q̂ x x xϕ ϕ= , through the relation  

i πe ,  .
2

θ θ= =                           (2) 

The validity of (2) is verified by noticing that the Hermite polynomial ( )nH x  
(multipled by 

2 2e x− ) is a simultaneous eigenfunction of   and  , with their eigen- 
values given by in  and n , respectively. 

If a function :ϕ →   is integrable, its FT is well defined. However, if the 
function ϕ  is not integrable, for example ( ) 1xϕ = , its FT should be regarded as a 
generalized function. To calculate the FT of ( ) 1xϕ =  in a numerically friendly way, 
one of the methods is to replace   by 1−   such that [ ], 0=  , and to choose 
  as the resolvent for  , that is [1]  

( ) ( )1 spect .a a−= − ∉    

Considering that   includes the term proportional to 2q̂ , we find that ( )( )xϕ  
behaves like 2x−  for x →∞ . Thus ϕ  can be Fourier transformed. 

To make ( ) 1xϕ =  square integrable, it is sufficient to reduce the order of ( )xϕ  
(for x →∞ ) by one, not necessarily by two. This implies that it is sufficient to choose 

1 2−
  , not necessarily 1 2−

  , as given above. However, the square root of the 
operator  , in general, is somewhat complicated to deal with, so we adopt an alter- 
native approach, supersymmetrization. The supersymmetry (SUSY) can be realized by 
adding   in (1) to †f f  [2], where † 2 2, :f f →  , representing the fermionic 
creation and annihilation operators, respectively, satisfying 2 0f = , ( )2† 0f = , and 

{ }†,f f I= , with { },A B AB BA= + . The modified Hamiltonian †I f f′ = +   can 
be decomposed into 2=  , where   is called a supercharge. Under the modifica- 
tion ′→  , it is natural to transform   to ie θ ′′ =  , as is analogous to (2). 

The aim of this paper is replace ′  by  

( ) ( ) 1 ,I Iα α −′ ′= + +     

with α ∈  chosen in an appropriate way, to finally find that the introduction of 
SUSY clarifies the availability of the even-odd decomposition of ϕ  in a more natural 
way. In Section 2, we generalize the resolvent kernel for  , where   can be 
regarded as the specialization of the Hamiltonian ( ),α β  whose eigenfunction is given 
by the Jacobi polynomial. In calculating the resolvent kernel, the sampling theorem [3] 
is fully employed. In Section 3, we first reexamine the FT of ( ) 1xϕ = , based on the 
resolvent for  . Then we compare the resolvent based method with other methods, to 
find that the former has some merits of being numerical calculation friendly and free of 
singularity for ( ) 1a ϕ−− , even after analytic continuation. Analytic property is signi- 
ficant for calculating, for example, path integral in Minkowski space (Wick roration), 
and the Shannon entropy in the limit of the Rényi entropy (replica trick). We give 
conclusion in Section 4. 

2. Methods 

In this section, we first obtain the resolvent kernel for the Hamiltonian whose 
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eigenfunction is given by the Jacobi polynomial. Then we calculate the resolvent kernel 
for   as a specialization of the former.  

2.1. Jacobi Polynomial  

Let ( ) ( ) ( ), 2 2: L Lα β Ω → Ω  (where [ ]1,1Ω = − ⊂  ) be the Hamiltonian  

( )( )( )
( )

( ) ( ) ( ) ( ) ( ) ( ), 21 d d 11 , 1 1 .
d d

x x w x x w x x x
x x xw x

α βα β ϕ ϕ
 
 = − = − +
  

  

The (normalized) eigenfunction for ( ),α β  is given by  

( ) ( ) ( )
( )

( ) ( ) ( ), ,
,

for , 1 ,n n
n

w x
x P x

N
α β α β

α β
φ α β= > −  

where ( ) ( ),
nP xα β  and ( ),

nN α β  represent the Jacobi polynomial and its normalization 
constant as  

( ) ( ) ( )
( ) ( )

,
2 1

1 11, ; 1; ,
1 1 2n

n xP x F n n
n

α β α
α β α

α
Γ + + − = + + + − + Γ + Γ +  

       (3) 

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )

12, , 1 12d ,
2 1 1 1n n

n n
N w x P x x

n n n

α β
α β α β α β

α β α β

+ +

Ω

Γ + + Γ + +
= =

+ + + Γ + Γ + + +∫  

with ( )zΓ  and ( )2 1 , ; ;F a b c z  the Gamma function and the hypergeometric function, 
respectively. The corresponding eigenvalue is given by  

( ) ( ) ( ) ( ), ,1 0.nn n xα β α βα β φ + + + + =                  (4) 

The resolvent kernel for ( ),α β  (denoted by ( ) ( ), ,K x yα β
ν ) can be expanded using 

the eigenfunctions ( ) ( ),
n xα βφ ’s (for n∈ ) as  

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1, ,

1 , ,( , )

0

1 , ,

0

, 1

1

1 1 ,

n n
n

n n
n

K x y x y

x y

n n x y

α β α β
ν

α β α βα β

α β α β

ν ν α β

ν ν α β φ φ

ν ν α β α β φ φ

−

∞ −

=

∞ −

=

 = + + + + 

 = + + + + 

= + + + − + + +  

∑

∑



   (5) 

where in the second and third equalities, use has been made of the completeness for 
( ) ( ){ },
n n

xα βφ
∈

 and (4), respectively. 
There seems to be no such formula as the series sum of (5) for general parameters 

α  and β . However, it will be found that the sum can be represented as the product 
of two hypergeometric functions as follows. The starting point would be the following 
formula, which corresponds to the particular case of ( ) ( ), 0,0α β =  as [4] [5]  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0,0 0,0 0,0sin π 1, for , ,
π 2 1

K x y x y x y Dν ν ν
ν φ φ

ν
− = ∈

+
      (6) 

where ( ){ }2: , 0; , 1D x y x y x y= ∈ + > <
. Notice that ( ) ( )0,0 xνφ  is given by the 

Legendre function ( )P xν  as  

( ) ( ) ( )0,0 2 1 ,
2

x P xν ν
νφ +

=  
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where ( ) ( ),P xα β
ν  is defined by replacing n  in (3) with ν . Before proceeding further, 

we discuss the validity of (6). By applying ( ) ( )0,0 1ν ν + +   to (6) from the left, it is 
found that both sides of (6) satisfy the same second order differential equation for 

0x y+ ≠ , due to the completeness relation of ( ) ( ) ( ) ( ) ( )0,0 0,0
0 n nn x y x yφ φ δ∞

=
− = +∑ . The 

reason of restricting ( ),x y  to 0x y+ >  is as follows. To avoid the singularity of 
( )x yδ +  at 0x y+ = , ( ),x y  should be restricted to either 0x y+ >  or 0x y+ < . 

Moreover, to avoid the singularity of ( ) ( )0,0P xν  (for ν ∉ ) at 1x = − , the region of 
0x y+ <  is not allowed. 

Furthermore, it should be noted that the left-hand side of (6) turns out to be 
( )

( ) ( ) ( )
sin π1

2 π n nn

n
P x P y

n
ν

ν
∞

=−∞

−
−∑ , due to the relation  

( ) ( ) ( ) ( ) ( )1 1 for .n
n n nP x P x P x all n− − = = − − ∈  

Thus the relation of (6) can be rewritten as  

( ) ( ) ( ) ( ) ( ) ( )( )sinc for , ,n n
n

n P x P y P x P y x y Dν νν
∞

=−∞

− = ∈∑        (7) 

where ( ) sin πsinc :
π

zz
z

= , so that the sampling theorem [3] can be applied to 

( ) ( )P x P yν ν . The sampling theorem states that for :f →    

[ ]( ) ( ) ( ) ( )supp π,π sinc ,
n

f f n f nν ν
∞

=−∞

 ⊆ − ⇒ = − 
 

∑           (8) 

where ( )supp ⋅  represents the support. Hence the validity of (7) is guaranteed by 
showing that [ ]supp π,πf ⊆ −  for ( ) ( ) ( )f P x P yν νν =  (with ( ),x y D∈ ). To show 
it, it is convenient to use the integral representation for ( )cosPν θ  as [6]  

( ) ( ) ( )1 2

0

2 1cos cos cos cos d for < π ,
2

P
θ

ν θ φ θ ν φ φ θ
π

−   = − +    
∫  

from which it is found that ( ) ( )ie cos cos dt P Pν
ν νθ ψ ν∫  is vanishing for πt >  under  

the conditions of πθ ψ+ <  and πθ ψ− < . Here, we have used the integral 
representation for the Dirac delta as ( ) ( )ie dt tt t νδ ν′−′− ∝ ∫ . Noticing further that  

( )
π

cos ,cos ,
π

D
θ ψ

θ ψ
θ ψ

 + < ⇔ ∈ − <
 

we can eventually prove the relation of (7) by employing the sampling theorem. 
Before proceeding further, we try to rewrite the summation relation in the right- 

hand side of (8) in terms of the Dirac notation as  
,

n
f n n f

∈

= ∑


                          (9) 

where ( )v f f ν=  and 

( ) ( )sinc for all ,v n nν ν= − ∈  

from which we obtain the orthonormality relation mnm n δ=  for all ,m n∈ . The 

relation of (9) implies that the completeness relation 1n n n∞

=−∞
=∑  holds, provided  

it is applied to f  such that [ ]supp π,πf ⊆ − . Moreover, interpreting f  and 
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n  as f  and n , respectively, we can formally obtain from (9)  

( ) ( )i1 e for , ,
2π

nxx n W x x n= ∈ ∈              (10) 

where :W →   represents the window function as  

( )
( )
( )

1 π ,

0 π .

x
W x

x

 <= 
>

 

The relation of (10) should be compared with  

( )i1 e for , .
2π

kxx k x k= ∈                 (11) 

[In the usual Dirac notation, k  is reserved for a Fourier transformed variable, so 
that k  may be simply written as k . Actually, if we formally write f k  as 

( )df k f x x k x= ∫ , it is found that i1 e
2π

kxx k = , because  

( )1 1 i1= = = e d
2π

kxf k f k k f f x x
∗− − ∗∫    

where use has been made of the unitarity of   as † 1−=  . In this sense, x k  
can be simply written as x k .] Notice that (10) cannot be derived from (11) by 
formally setting k ∈  to n∈ . This is because n  in (10) can be applied only to 

f  such that [ ]supp π,πf ⊆ − . Notice further that the following relation can be 
derived from (10):  

( ) ( ) ( )for , ,
n

x n n y x y W x x yδ
∈

= − ∈∑


           (12) 

where we have used ( )ie 2π 2 πnx
n n x nδ
∈ ∈

= −∑ ∑  . The relation of (12) indicates that 

the completeness relation 1n n n
∈

=∑


   holds, if it is applied to f  such that  

[ ]supp π,πf ⊆ − , so that ( ) ( ) ( )f x f x W x= . These completeness relations, along with 
the orthogonal relations, are recapitulated in Table 1, while some examples of ( )f ν  
satisfying (9) are listed in Table 2. 

Now we go back to generalize the relation of (6). Using the integral representation 

for ( ) 2 1
1 1ˆ : 2 , ; ;
2 2

xC x Fλ
ν ν λ ν λ − = + − + 

 
 (notice that ( ) ( )1 2ˆP x C xν ν= ) as [7]  

( ) ( ) ( ) ( ) ( )1

2 1 0
ˆ cos cos cos cos d for 0 π ,

sin

c
C

θ λλ
ν λ

λ
θ φ θ ν λ φ φ θ

θ
−

−
= − + < <  ∫  

 
Table 1. Orthogonal relation and completeness relation, where x∈ . 

Variables x y  x y  y z   Completeness relations 

,y z∈  ( )x yδ −  i1 e
2π

xy  ( )y zδ −  d 1 dx x x x x x= =∫ ∫ 
   

,y n z m= = ∈  ( )sinc x n−  ( )i1 e
2π

nx W x  nmδ  1
a b

n n
n n n n

∈ ∈
= =∑ ∑

 

   

a 1
n

n n
∈

=∑


 can be applied to f  such that [ ]supp π,πf ⊆ − . b 1
n

n n
∈

=∑


   can be applied to f  

such that [ ]supp π,πf ⊆ − . 
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Table 2. Examples of ( )f ν  satisfying (9), where ( ) ( ) ( )( )0,0 ,P x P x yν ν=  and ( )H xν  represent 

the Legendre and Hermite functions, respectively. Here, : N
ig →   (for 11,2, ,2Ni −=  ) is 

given by ( )1 1 1
, , N

N kk
g x x x

=
= ∑ , ( )1, ,j N j kk j

g x x x x
≠

= − +∑  (for 2, ,j N=  ); and so on. It 

should be remarked that ( )f ν  can be chosen as a more generalized function where ( )P xν  is 

replaced by ( ) ( ),
2 1

11, ; 1;
2

xF P xα β
νν α β ν α − + + + − + ∝ 

 
. For the case where ( )f ν  is given by 

( )H xν , see Section 2.2 below. 

( )f ν  Parameters References 

( )coskPν σ θ+  π0,1, , 1;k
k

σ θ= − <  (for 1, 2,k =  ) [4] [5] (for 1k = ) 

( )
1

cos
N

ii
Pν θ

=∏  ( )1, , πi Ng θ θ <  (for 11, , 2Ni −=  ) [4] (for 2N = ) 

( ) ( )22

1
2 1

H xνν ν +Γ +   0,1; 0x= >  [10] 

( ) ( ) ( )1
2 1

H x H yν νν νΓ +
 0x y+ >  [1] 

 

where ( ) ( )

12
1 2
π

c

λ λ
λ

λ

 Γ + 
 =
Γ

, we find that ( )P xν  in Table 2 can be generalized to  

( )Ĉ xλ
ν , and more generally to ( )ˆk C xλ

νν  (for k ∈ , due to ( ) ( ) ie dk k tt νδ ν ν∝ ∫ ). 
As a special case of ( )f ν  in (9), we obtain  

( ) ( ) ( ) ( ) 1, sinc , for , ; , 1 ,
2n

n
f x y n f x y x y Dλ λ
ν ν λ

∞

=−∞

 = − ∈ ∈ + + 
 

∑     (13) 

where ( ) ( ) ( )ˆ ˆ,f x y N C x C yλ λ λ λ
ν ν ν ν= , with ( )

( ) ( )
2

1 2
N λ
ν

ν λ
ν λ
Γ +

=
Γ + Γ

 (notice that for 

1 , 1
2

λ ∈ + +  , it turns out that N λ
ν  is given by a polynomial with respect to ν ). 

For ( ) ( )ˆ:C x N C xλ λ λ
ν ν ν= , representing the Gegenbauer function, we have the following 

relations:  

( ) ( )
( ) ( )

( )
1 1
2 2

2 1
1 1

2 2

for , ,
m m

n n m
m m
n n m

C x C x n m
C x C x

+ +

− − −
+ +

− − −

 = + ∈
 = −

  

and  

( ) ( )
( ) ( )

( )
3
2

1

0 1,2, , 2 2 for .
0 1,2, , 2 1

m

n
m
n

C x n m m
C x n m

+

−
+

−

 = = + ∈
 = = +





  

Then it is found that the sum over n∈  in the right-hand side of (13) can be 
replaced by the sum over n∈  as  

( ) ( ) ( ) ( )
0

sin π 1 1sinc , 1 , ,
π 2

n
n n

n n
n f x y f x y

n n
λ λνν

ν ν λ

∞ ∞

=−∞ =

 − = − − − + + 
∑ ∑    (14) 
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where use has been made of ( ) ( )sin π 1 sin πnnν ν− = −  for all n∈ . Once we have 
replaced the right-hand side of (13) by that of (14), it is not necessary to restrict the  

parameter λ  to either 1
2

+  or 1+ . This is because ( ),f x yλ
ν  and the right- 

hand side of (14) satisfy the same second order differential equation for 0x y+ ≠ , de- 

spite the value of λ . By re-parameterizing λ  in the right-hand side of (14) as 1
2

α + , 

the relation of (6) is generalized to  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ), , ,sin π 1, = for , ,
π 2 2 1

K x y x y x y Dα α α α α α
ν ν ν

ν φ φ
ν α

− ∈
+ +

  (15) 

where use has been made of ( ) ( ) ( )1 n
n nC x C xλ λ− = −  for all n∈ . 

The relation of (15) can be further generalized. Recall that ( )P xν  in Table 2 can be 

generalized to ( ) ( ),
2 1

1ˆ : 1, ; 1;
2

xP x Fα β
ν ν α β ν α − = + + + − + 

 
, which is proportional to  

the Jacobi function. Following an analogous procedure for manipulating the Gegen- 
bauer function ( )C xλ

ν  above, we finally obtain [1]  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ), , ,sin π 1, for , ,
π 2 1

K x y x y x y Dα β β α α β
ν ν ν

ν φ φ
ν α β

− = ∈
+ + +

 

where use has been made of the relation  
( ) ( ) ( ) ( ) ( ) ( ), ,1 for all .n
n nx x nα β β αφ φ− = − ∈  

Notice the the superscripts ,α β  in the left-hand and right-hand sides are ex- 
changed. 

2.2. Hermite Polynomial 

In this subsection, we obtain the resolvent kernel for  , whose eigenfunction is given 
by the Hermite polynomial ( )nH x . Considering that ( )nH x  can be given by the 
specialization of the Gegenbauer polynomial ( )nC xλ  as [8]  

( ) 2! ,lim n
n n

xH x n Cλ

λ
λ

λ
−

→∞

  
=   

  
                   (16) 

then we obtain from (15), together with the asymptotic expansion as 
 ( )

( ) ( )
2

2
2

νν λ
λ

λ
Γ +

→
Γ

 (for λ →∞ ), the following formula:  

( ) ( ) ( ) ( ) ( ) ( )
0

1 1sinc for 0 ,n n
n n

n H x H y H x H y x y
N N ν ν

ν

ν
∞

=

− = + >∑     (17) 

where ( )π2 1N ν
ν ν= Γ +  ( nN  amounts to the normalization constant as  

( ) ( ) 2
e dx

n m n nmH x H x x N δ− =∫ ). Here, ( )H xν , which is formally given by n ν→  in 

(16), is related to the parabolic cylinder function ( )D xν  as  

( ) 22 4= 2 e
2

x xD x Hν
ν ν

− −  
 
 

 

where  
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( ) 2
2 2

2 4 π 1 2π 1 32 e , ; , ; ,
1 2 2 2 2 2 2

2 2

x x xD x xν
ν

ν ν
ν ν

−

 
    − = Φ − − Φ   −       Γ Γ −        

 

with ( ) ( )1 1, ; ; ;a c z F a c zΦ = , the confluent hypergeometric function. Considering that 

1 0
nN−

=  (for 1,2,n =  ) due to ( )nΓ − = ∞ , and that  

( ) ( )

( ) ( ) ( ) ( )

2
1

1

π e erfc ,
2

1 d for 1,2, ,
2 d

x

nn

H x x

H x H x n
n x

−

−− +


=


 = − =



 

where ( ) 22erfc e d
π

t
x

x t
∞ −= ∫ , we find that the sum over n  in the left-hand side of (17) 

can be formally extended to all n∈ . Thus, ( ) ( ) ( )1f H x H y
N ν ν
ν

ν =  satisfies the 

relation of (9) for 0x y+ >  (listed in the fourth row in Table 2). 

For later convenience, we divide the left-hand side of (17) into even and odd parts as  

( ) ( ) ( ) ( ) ( )
2

1 1, : for = 0,1 .
2 ! n nn

n
h x y H x H y

n n
ε

ν
ε

ε
ν∈ +

=
−∑


 

Recalling that ( ) ( ) ( )1 n
n nH x H x− = −  for all n∈ , we obtain from (17)  

( ) ( ) ( ) ( ) ( )2
1

1 1, 2 , ; for ,
2 2 22

h x y x x H x y xεε
ν νν

ε ν ε ν ε+

− −   = − Γ Φ + >   
   

 (18) 

where use has been made of the following formulae:  

( ) ( )

( ) ( )
2 1

π 1 ,
sin π

2 12 .
2π

z

z z
z

z z z
−

 = −Γ − Γ +


 Γ = Γ Γ +   

 

The condition of y x>  comes from the intersection of 0x y+ >  and ( ) 0x y− + > . 

To obtain ( ) ( ),h x yε
ν  for ( )y x− >  (complementary to y x> ), it may be conve- 

nient to rewrite ( )H yν  using another confluent hypergeometric function  

( ) ( )
( ) ( ) ( )

( ) ( )11 1
, ; , , 1 , 2 ;

1
cc c

a c z a c z z a c c z
a c a

−Γ − Γ −
Ψ = Φ + Φ + − −

Γ + − Γ
 as  

( ) ( )2 21 1 32 , ; , ; for 0 .
2 2 2 2

H y y y y yν
ν

ν ν− − −   = Ψ = Ψ >   
   

      (19) 

Substituting (19) into (18), and using ( ) ( ) ( )1 n
nH y H y− = −  again, we obtain the 

relation that is valid not only for y x>  but also for ( )y x− >  in the form  

( ) ( ) ( )

( )

2 21 1 1, 2 , ; , ;
2 2 2 2 2 2

                                                                                for ,

h x y xy x y

y x

εε
ν

ε ν ε ν ε νε ε− − −     = − Γ Φ + Ψ +     
     

>
  (20) 

which was derived from a somewhat more straightforward approach [1]. 
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In a practical application, it is convenient to choose the parameter ν  so that the 
y -dependence of ( ) ( ),h x yε

ν  may be written as simply as possible. Considering that 
( )nH y  is given by a polynomial of y  of order n , we can choose ν  as 0 for 1ε = . 

In the case of 0ε = , however, ν  cannot be chosen as 0, due to the divergence of 
( ) ( ),h x yε
ν , but can be chosen as 1. To summarize, we have  

( ) ( ) ( ) ( )

( ) ( ) ( )( )
( )

2

1
0

20
1

, erfi sgn
2 for > ,

d, e erfi
2 d

x x

h x y x y
y x

h x y e x y
x

π

π −

 = −

 =


 

where ( ) 2

0

2erfi e d
π

x tx t= ∫ . No such formula as (20) but ( ) ( )1
0 ,h x y  has been listed in 

Ref. [9]. 
At the end of this subsection, we deal with the sampling-theorem based summation 

formula for a single Hermite function of the form  

( ) ( ) ( ) ( )2 2
0
sinc for 0,1 ,n n

n
n H x H xε ν ν εν γ γ ε

∞

+ +
=

− = =∑  

where the coefficient νγ ∈  is to be determined in such a way that the sum over n  
in the left-hand side can be formally extended to all integers, namely, 0nγ − =  (for 

1, 2,n =  ). Bearing the specialization of (16) in mind, we find that the corresponding 
summation formula for a single Gegenbauer function is given by  

( ) ( ) ( ) ( )2 2
2 2

ˆ ˆsinc for 0 1; 1,2, .m m m m
n n

n
n N C x N C x x mε ν ν εν

∞

+ +
=−∞

− = < < =∑    (21) 

Actually, the left-hand side of (21) can be rewritten as  

( ) ( )

( ) ( ) ( ) ( ) ( )

2
2

12
2 2

0

ˆsinc

ˆ ˆsin 1 sin ,

m m
n n

n

mm m
n n n

n

n N C x

N c n C x c n m C x

ε

ε ε

ν

ν ν

∞

+
=−∞

∞
−

+ −
=

−

 = − + − + + 

∑

∑
 

where use has been made of ( ) ( )2 2 2
ˆ ˆm m

n m nC x C xε ε− − + −= , and  

( )
( ) ( ) ( )

( )
11

1 1
mn n m

n m n
−Γ − Γ +

= −
Γ − − + Γ +

 for m∈ . Under the specialization of (16), we 

finally obtain from (21)  

( ) ( ) ( ) ( )
0
sinc for 0 ,n

n
n f x f x xνν

∞

=

− = >∑                (22) 

where ( )
( )

( )22

1
2 1

f x H xν ν εν ν +=
Γ +

 for 0,1ε = . The condition of 0x >  in (22)  

originates from the condition of 0 1x< <  in (21), which is equivalent to cosx θ= , 
with π 2θ <  (corresponding to the case of 2k =  in the first row in Table 2). The 
relation of (22) is listed in Ref. [10], in which ( )2H xν ε+  is given by using the parabolic  

cylinder function ( )2 2D xν ε+ . [ 2 2
xD ν ε+

 
 
 

 in [10] should be read as ( )2 2D xν ε+ .] 

3. Results and Discussion  

In this section, we first deal with the FT based on the resolvent for  . In a matrix 



S. Kuwata 
 

142 

representation of † 2 2, :f f →   as  

†0 0 0 1
, ,

1 0 0 0
f f   
= =   
   

 

the supercharge ( ) ( )2 2 2 2: L L× → ×     can be written as  

† †
†

0
,

0
b

b f b f
b
 

= + =  
 

                     (23) 

where ( )1 ˆ ˆi
2

b q p= +  and ( )† 1 ˆ ˆi
2

b q p= − . The corresponding SUSY Hamiltonian 

′  is given by  

2 1 0
,

0
+ ′ = =  

 


 


 

which amounts to †I f f+ , where { }†,I f f=  ( I  can be simply denoted by  , 
because I  commutes with all the elements generated by † †, ,f f ff , and †f f ). 
Under the transformation ′→  , it is natural to transform FT as  

π i
2e .

′
′→ =


                          (24) 

In this case, ′  turns out to be unitary due to the self-adjointness of ′ , and is 
related to   through  

π i( 1)
2

π i
2

e 0 i 0
.

0
0 e

+ 
  ′ = =   
  

 









                (25) 

By the commutativity [ ], 0′ =  , so is [ ], 0′ =  , it follows from (23) and (25) 
that  

† †

i ,
i ,

b b
b b
=

 =

 
 

                         (26) 

where the second relation can de derived from the conjugate of the first relation (recall 
that   is unitary, so that † 1−=  ). 

The resolvent for   can be written using ( ) 1
a a −= −   as  

( ) ( )
2

2

1 1
†

0
= for .

0
b

I
b

α

α

α
α α

α
− −

 − 
+ ∈   −  







        (27) 

The validity of (27) is verified by ( )( ) ( ) ( )1 1I I I I Iα α α α− −+ + = + + =    . 
Recall that in Section 2, a convenient choice of the resolvent parameter a  in a  is 
given by 0 (or 1) for an odd (or even) function. This corresponds to the choice of α  
in (27) as 1, with ( )2 2Lφ ∈ ×   to which ( ) 1Iα −+  is applied being given by  

( ) ( )
( )

,
x

x
x

ϕ
φ

ϕ
−

+

 
=  
 

                         (28) 

where ( ) ( ) ( )1
2

x x xϕ ϕ ϕ± = ± −   . It should be noted that the φ  in (28) is the 

eigenfunction of ( )( )2′ ≅ − ⊕   , with its eigenvalue being unity, that is  
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2 ,φ φ′ =                             (29) 

where ( )2=   represents the space inversion  

( ) ( ): .x xϕ ϕ −  

The relation 2 =   can be formally derived from 2 iπe=   and  
( ) ( )2 22 2e ex x

n nH x nH x− −= , together with ( ) ( ) ( )1 n
n nH x H x− = −  for all n∈ . 

As a simple application, let us reconsider the FT of ( ) 1xϕ = , in which ( )
0
1

xφ
 

=  
 

.  

Although the ( )xφ  in this case does not belong to ( )2 2L ×  , we can formally apply 
( ) 1I −+  to φ , with the result that ( ) 1I φ−+  can be Fourier transformed. A series 
of calculations yields  

( ) 1

1 2 3 ,I Iφ φ φ φ
−+ ′ +→ → →    

where the kφ 's (for 1, 2,3k = ) are given by  

( ) ( )
( )

( ) ( )
( )

2

2

2

1 2 32

0πe sgn2
, ( ) , .

2 1 2π2πe | |

x

x

xD x
x x x

xD x xx
φ φ φ

δ

−

−

    −
 = = =       −       

  (30) 

For ( )D x , see Table 3. 
Notice that ( ) 1

1 x xφ −
  for ±∞→x , as is expected from the property that   

behaves like the multiplication by x  in the limit of x → ±∞ . Bearing in mind that we 
have the relation  

( ) ( ) 1I I −′ ′= + +     

by the commutativity [ ], 0′ =  , so that 3φ φ′=  , then we again obtain  

( ):1 2π .xδ                          (31) 

Recalling that ( )D x  is an odd function of x , we find that the first (second) 
element in kφ  (for 1, 2,3k = ) in (30) is given by an odd (even) function. It should be 
noticed that this property holds for a general ( )xφ  in (28), not necessarily for  

( )
0
1

xφ
 

=  
 

. The reason is as follows. From [ ], 0′ =  , together with (29), it is re- 

quired that  
( ) ( )1,2,3 ,k k kφ φ− +Γ ⊕Γ = =  

 

Table 3. Calculation of 1 2,ϕ ϕ , and 3ϕ  for ( ) 1xϕ = , where ( ) 2 22 2

0
e e d

xx tD x t−= ∫ . In the 

classical method 1, there is a singularity of ( )1 zϕ  at iz = ± . As compared with other methods, 

it is hard enough to calculate 3ϕ  from 2ϕ  in the classical method 2, due to an infinite number 

of derivatives in 
2ˆ 2e p . 

Method 1  2  ( )1 xϕ  ( )2 xϕ  ( )3

2π
xϕ

 
( )1 zϕ   

singular. 
3ϕ   

calc. 

Classical 1 ( ) 12ˆ 1q
−

+  2ˆ 1p +  ( ) 12 1x
−

+  π e
2

x−  ( )xδ  iz = ±  Easy 

Classical 2 2ˆ 2e q−  
2ˆ 2e q+  

2 2e x−  
2 2e x−  ( )xδ  - Hard 

Resolvent ( ) 11 −
−  1−  ( )2 1xD x −    2 22π e xx −−  ( )xδ  - Easy 
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where ( )1 1
2±Γ = ± , projection on the even or odd parity space. Thus, it is found that 

the first (second) element in kφ  is parity odd (even). 

In the latter half of this section, we discuss the FT of ( ) 1xϕ =  in another method. 
Some may point out that the result of (31) can be derived more efficiently from a 
method where   is replaced by  

( )2 1 1such that ,Lϕ= ∈                       (32) 

which is schematically shown as  

3

1 2

1 2

ϕ ϕ

ϕ ϕ

→
↓ ↑

→



 



 

Rewriting (26) as  

ˆ ˆ ,
ˆ ˆ ,
q p
p q
=

 = −

 
 

                          (33) 

we find that 1  can be chosen as such that depends on q̂  only (so that 2  depends 
on p̂  only), in order to calculate 1ϕ  in quite a simple way (we call such a case a 
classical method). To further simplify the calculation by 2 , the functional form of 2  
is given by a polynomial of p̂ . Considering the condition of ( )1 Lϕ ∈  , we find that 
the simplest form of 1  and 2  can be written as  

( ) ( )
12

1

2
2

ˆ 1 classical method 1 .
ˆ 1

q

p

− = +


= +




 

The calculation of ( ) ( )1 1 2 1,ϕ ϕ ϕ ϕ= =  , and ( )3 2 2ϕ ϕ=   is summarized in Table 
3, together with the corresponding calculation in another classical (named classical 2, 
discussed in the next-next paragraph) and the resolvent methods. 

Although all the methods give the same result as (31), there is an essential difference 
in 1ϕ  between the classical 1 and resolvent methods from an analytical point of view. 
While ( )zD z  is an entire function, ( ) 12 1z

−
+  has a pole at i= ±z . The non-analyti- 

city of 1ϕ  in the classical method is revealed when the 1ϕ  is evaluated as 1ϕ
Λ  in the 

limit of Λ →∞ :  

( ) ( ) 1
1 1 1 2, ,limx xϕ ϕ ϕ ϕΛ Λ − Λ

Λ→∞
= =   

where 2ϕ
Λ  is given by  

( ) ( ) ( ) ( )
( )
( )2 2

1 ,
, with

0 .

x
x x U x U x

x
ϕ ϕΛ

Λ Λ

 ≤ Λ= = 
> Λ

 

In calculating 1ϕ  from the inverse FT of 2ϕ , the limit operation Λ →∞  is 
necessary, because (inverse) FT is given by an improper integral. After the analytic 
continuation of ( )1 xϕ  and ( )1 xϕΛ  from x∈  to z∈ , it is found that  

z∀ ∈ ( ) ( ) ( )

( ) ( ) ( )
1 1

1 1

, classical method 1 ,lim

, resolvent method ,lim

B z z

z z z

ϕ ϕ

ϕ ϕ

Λ

Λ→∞
Λ

Λ→∞

 ≠

∀ ∈ =


       (34) 
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where { }1 Im 1B z z= ∈ − ≤ ≤ . Actually, for ( )i   z y y= ∈ , for simplicity, we have  

( ) ( )

( )

( )
2 2

2

1 1
2

1 e sinh cosh
1

                                                   classical method 1 ,
i i

2e cosh e erf erf
2 2 2

                                              

y v

y y y
y

y y
y yy y

ϕ ϕ
π

−Λ

Λ

−Λ

Λ + Λ
−

− =
 Λ + Λ −   

Λ + −    
    

( )          resolvent method ,











 

where ( ) 2

0

2erf e d
π

z tz t−= ∫ , so that it is confirmed that the relation of (34) holds for 

yz i= . Notice that ( )1 zϕΛ  is an entire function, because ( )2 xϕΛ  has a compact  

support so that its (inverse) FT turns out to be an entire function. Thus it is found that 
whether or not the relation of ( ) ( )1 1lim z zϕ ϕΛ→∞ =  holds for all z∈  depends on 
the property that ( )1 zϕ  is an entire function (the identity theorem in complex analy- 
sis). 

Some may further point out that in the classical method, 1ϕ  for 1=)(xϕ  can be 
made an entire function by choosing 1  [hence 2  by (33)] as  

( )
2

2

ˆ 2
1

ˆ 2
2

e
classical method 2 ,

e

q

p

−

+

 =


=




 

in which a series of calculations is summarized in Table 3. Although the ( )1 zϕ  is 
indeed an entire function, it is hard enough to calculate 3ϕ  from 2ϕ  (especially in a 
numerical way), compared to the resolvent method, because 

2ˆ 2e p  includes an infinite 
number of derivatives. Even if we try to regard 

2ˆ 2e p  as an integral transform, it fails 
due to the divergence of the corresponding integral kernel ( )K x . Actually, we obtain 
from 

2 2ˆ ˆ2 2 1e ep q −=     

( ) ( )( )

( ) ( ) ( )

2

2

ˆ 2
3 2

i 2
2

e

d , e e d ,

p

kx k

x x

K x y y y K x k

ϕ ϕ

ϕ

=

= − =∫ ∫ 

 

which indicates that ( )K x  (for x∈ ) is divergent in a usual sense. 
Regarding the analyticity and numerical simplicity in calculating FT of ( ) 1xϕ = , it 

seems that, based on the above discussion, there is no way other than the resolvent 
based method. 

4. Conclusions 

We have obtained, using the resolvent for the harmonic oscillator Hamiltonian  , the 
FT of a non-integrable function ϕ , such as ( ) 1xϕ = . As compared with the classical 
methods in Table 3, the resolvent method has some merits of being numerical calcula- 
tion friendly and free of singularity for ( )1 zϕ . In calculating the resolvent kernel, the 
sampling theorem is of great use. The introduction of SUSY to   not only makes 
transparent the usefulness of the even-odd decomposition of the ϕ  in a more natural 
way, but also leads to a natural definition of SUSY FT. 

For future study, various extensions of the present work are possible. One extension 
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is to deal with other unitary transforms, for example, the Hankel transform, whose 
eigenfunction is given by the Laguerre polynomials Using the resolvent for the corres- 
ponding Hamiltonian, we can obtain an analogous result. Another is to generalize 

:ϕ →   to ( ),: Cm
p qϕ →   , the Clifford algebra over p q+  [φ  in (28) cor- 

responds to ( ) ( )0,1 0,1C C⊕    ]. Although the Clifford FT, in itself, is defined in 
various ways [11] [12] [13] [14], mainly due to the non-commutativity of the algebra, 
the resolvent based calculation will still be of use, despite the non-commutativity. 
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