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Abstract 
The positive-definiteness and sparsity are the most important property of 
high-dimensional precision matrices. To better achieve those property, this 
paper uses a sparse lasso penalized D-trace loss under the positive-definiteness 
constraint to estimate high-dimensional precision matrices. This paper 
derives an efficient accelerated gradient method to solve the challenging 

optimization problem and establish its converges rate as 2

1O
k

 
 
 

. The 

numerical simulations illustrated our method have competitive advantage 
than other methods. 
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1. Introduction 

In the past twenty years, the most popular direction of statistics is high- 
dimensional data. In functional magnetic resonance imaging (FMRI), bioin- 
formatics, Web mining, climate research, risk management and social science, it 
not only has a wide range of applications, but also the main direction of 
scientific research at present. In theoretical and practical, high-dimensional 
precision matrix estimation always plays a very important role and has wide 
applications in many fields. 

Thus, estimation of high-dimensional precision matrix is increasingly 
becoming a crucial question in many field. However, estimation of high- 
dimensional precision matrix has two difficulty: 1) sparsity of estimator; (ii) the 
positive-definiteness constraint. Huang et al. [1] considered using Cholesky 
decomposition to estimate the precision matrix. Although the regularized 
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Cholesky decomposition approach can achieve a positive-semidefiniteness, it 
can not guarantee sparsity of estimator. Meinshausen et al. [2] use a neigh- 
bourhood selection scheme in which one can sequentially estimate the support 
of each row of precision matrix by fitting lasso penalized least squares regression 
model. Peng et al. [3] considered a joint neighbourhood estimator by using the 
lasso penalization. Yuan [4] considered the Dantzig selector to replace the lasso 
penalized least squares in the neighbourhood selection scheme. Cai et al. [5] 
considered a constrained 1  minimization estimator for estimating sparse 
precision matrices. However, this methods mentioned are not always achieve a 
positive-definiteness.  

To overcome the difficulty (ii), one possible method is using the eigen- 
decomposition of Θ̂  and designing Θ̂  to satisfy condition { }0Θ ≥ . Assume 
that Θ̂  has the eigen-decomposition 1

ˆ p T
i i ii v vλ

=
Θ = ∑  and then a positive semi- 

definite estimator was gained by setting ( )1
ˆ max ,0p T

i i ii v vλ
=

Θ = ∑ . However, this 
strategy destroys the sparsity pattern of Θ̂  for sparse precision matrix 
estimation. Yuan et al. [6] considered the lasso penalized likelihood criterion 
and used the maxd et al. gorithm to compute the estimator. Friedman et al. [7] 
considered the graphical lasso algorithm for solving the lasso penalized Gaussian 
likelihood estimator. Witten et al. [8] optimized the graphical lasso. By the lasso 
or 1  penalized Gaussian likelihood estimator, thoses methods simultaneously 
achieve positive-definiteness and sparsity.  

Recently, Zhang et al. [9] consider a constrained convex optimization frame- 
work for high-dimensional precision matrix. They used lasso penalized D-trace 
loss replace traditional lasso function, and enforced the positive-definite 
constraint { }εΘ ≥ I  for some arbitrarily small 0ε > . In their work, focusing 
on solving problem as follow:  

( )2
1,off

1ˆ , trarg min
2

ˆ
n

Iε
λ+

Θ≥
Θ = Θ − Θ + ΘΣ              (1) 

It is important to note that ε  is not a tuning parameter like λ . We simply 
include ε  in the procedure to ensure that the smallest eigenvalue of the 
estimator is at least ε . They developed an efficient alternating direction method 
of multipliers (ADMM) to solve the challenging optimization problem (1) and 
establish its convergence properties.  

To gain a better estimator for high-dimensional precision matrix and achieve 
the more optimal convergence rate, this paper mainly propose an effective 
algorithm, an accelerated gradient method ([10]), with fast global convergence 
rates to solve problem (1). This method mainly basis on the Nesterov's method 
for accelerating the gradient method ([11] [12]), showing that by exploiting the 
special structure of the trace norm, the classical gradient method for smooth 
problems can be adapted to solve the trace regularized nonsmooth problems. 
However, for our problem (1), we have not trace norm, instead of is 1  norm 
form, but this method have the similar efficiently result for our problem. 
Numerical results show that this method for our problem (1) not only has 



L. Xia et al. 
 

23 

significant computational advantages, but also achieves the optimal convergence  

rate as 2

1O
k

 
 
 

.  

The paper is organized as follows: Section 2 introduces our methodology, 
including model establishing in Section 2.1; step size estimation in Section 2.2; 
an accelerate gradient method algorithm in Section 2.3; the convergence analysis 
results of this algorithm in Section 2.4. Section 3 introduced numerical results 
for our method in comparing with other methods. And discussion are made in 
Section 4. All proofs are given in the Appendix. 

2. An Accelerated Gradient Method  
2.1. Model Establishing  

According to introduction, our optimization problem D-trace Loss function as 
follow:  

( ) ( )2
1,off

1 ˆ: , trmin 2 n
I
F

ε
λ

Θ≥
Θ = Θ Σ − Θ + Θ                (2) 

where λ  is a nonnegative penalization parameter, ˆ
nΣ  is the sample cova-  

riance matrix. 1

1ˆ n T
n i ii X X

n =
Σ = ∑ , and 

1 1, iji joff ≠
Θ = Θ = Θ∑  is the 1  off- 

diagonal penalty. Defining ( ) ( )21 ˆ, tr
2 nf Θ = Θ Σ − Θ , and ( )f Θ  is a con-  

tinuously differentiable function. Considering the gradient step  

( )1 1
1

k k k
k

f
t− −Θ = Θ − ∇ Θ                        (3) 

where 0kt ≥  is a stepsize, ( ) ( )1 ˆ ˆ
2 n nf I∇ Θ = ΘΣ +Σ Θ − . The smooth part (3)  

can be reformulated equivalent as a proximal regularization of the linearized 
function ( )f Θ  at 1k−Θ :  

( )1,arg min
kk t k

Iε
−

Θ≥
Θ = Φ Θ Θ                       (4) 

where  

( ) ( ) ( ) 2
1 1 1 1 1, ,

2k
k

t k k k k k F

t
f f− − − − −Φ Θ Θ = Θ + Θ−Θ ∇ Θ + Θ−Θ       (5) 

Based on this equivalence relationship, solving the optimization problem (2) 
by the following iterative step:  

( ) ( )

( ) ( )

( )

1 1 1

2
1 1 1 1 1

2
1 1

2

1 1 1 1

, ,arg min arg min

1 1ˆ ˆ ˆ    , tr ,arg min
2 2

  
2

1 1 ˆ ˆ    arg min
2 2

k kk t k t k
I I

k n k k k n n k
I

k
k F

k
k k n n k

I k F

t
I

t
I

t

ε ε

ε

ε

λ

λ

λ

− −
Θ≥ Θ≥

− − − − −
Θ≥

−

− − −
Θ≥

Θ = Ψ Θ Θ Φ Θ Θ + Θ

= Θ Σ − Θ + Θ−Θ Θ Σ +Σ Θ

− + Θ−Θ + Θ

  = Θ− Θ − Θ Σ +Σ Θ − + Θ  
  



   (6) 
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with equality in the last line by ignoring terms that do not depend on Θ .  
Defining ( )+C  as the projection of a matrix C  onto the convex cone 

{ }ε≥C I . Assuming that C  has the eigen-decomposition 1
p T

j j jj v vλ
=∑ , and 

then ( )+C  can be obtained as ( )1max ,p T
j j jj v vλ ε

=∑ . Defining an entry-wise 
soft-thresholding rule for all the off-diagonal elements of a matrix  

( ) ( ){ }
1 ,

, ,j j p
τ τ

≤ ≤
=S Z s z





 with  

( ) ( ) ( ) { } { }  , sign max ,0 I Ij j j jj l jτ τ ≠ == − +s z z z z
   



. Thus, the above problem 
can be summarized in the following theorem:  

Theorem 1: Let B n n×∈ , and Θ  is symmetric covariance matrix, then:  

( ) 2

1

1B Barg min
2 F

I
S

ε
λ

Θ≥

 = Θ− + Θ 
 

                (7) 

is given by ( ) ( )( )B B,S S λ
+

= , where ( ) ( ){ }
1 ,

B, B ,j j l p
S sλ λ

≤ ≤
=



 with  

( ) ( ) ( )B , sign B max B ,0j j js λ λ= −
  

 { } { }  I B jj jI≠ =+


 

. 
The proof of this theorem is easy by applying the soft-thresholding method. 

2.2. Step Size Estimation  

To guarantee the convergence rate of the resulting iterative sequence, Firstly 
giving the relationship between our proximal function 

kt
Ψ  and the objection 

function F  at the certain point.  
Lemma 1: Let  

( ) ( ),arg min
I

Tµ µ
εΘ≥

Θ = Ψ Θ Θ                      (8) 

where Ψ  is defined in Equation (6). Assuming the following inequality holds:  

( )( ) ( )( ),uF T Tµ µΘ ≤ Ψ Θ Θ                      (9) 

then for any n n×Θ∈ , then:  

( ) ( )( ) ( ) ( )2
,

2 F
F F T T Tµ µ µ

µ µΘ − Θ ≥ Θ −Θ + Θ−Θ Θ −Θ           (10) 

This lemma is proved in the Appendix.  
At each iterative step of the algorithm, an appropriate step size µ  is needed 

to satisfy ( )1k u kT −Θ = Θ  and  

( ) ( )1,k k kF µ −Θ ≤ Ψ Θ Θ                     (11) 

Since the gradient of f(·) satisfies Lipschitz continuous, according to Nesterov 
et al. [11] work, having follow lemma.  

Lemma 2: Supposing that ( )f X  is a convex function, and the gradient of 
( )f X  denote ( )f X∇  is Lipschitz continuous with constant L , then:  

( ) ( ) ( ) 2, ,
2

n
F

Lf X f Y X Y f Y X Y X Y≤ + − ∇ + − ∀ ∈       (12) 

so, we have  

( )( ) ( ) ( ) ( ) ( ) 2
,

2L L L F

Lf T f T f TΘ ≤ Θ + Θ −Θ ∇ Θ + Θ −Θ             (13) 

Hence, when Lµ ≥ , then:  



L. Xia et al. 
 

25 

( )( ) ( )( ) ( ) ( )( )
1

, ,F T T T Tµ µ µ µ µ µλΘ ≤ Φ Θ Θ + Θ = Ψ Θ Θ            (14) 

The above results show that the condition in Equation (11) is always satisfied 
when the update rule  

( )1k L kT −Θ = Θ                        (15) 

2.3. An Accelerate Gradient Method Algorithm  

In practice, L  may be unknown or it is expensive to compute. To use the 
following step size estimation method, usually, giving an initial estimate of L  
as 0L  and increasing this estimate with a multiplicative factor 1γ >  re- 
peatedly until the condition in Equation (11) is satisfied. It is well known ([11] 
[12]) that if the objection function is smooth, then the accelerate gradient  

method can achieve the optimal convergence rate of 2

1O
k

 
 
 

. Recently, there  

have other similar methods applying in problems consisted a smooth part and a 
non-smooth part ([10] [13] [14] [15]). Then giving the accelerate gradient 
algorithm to solve the optimization problem in Equation (2). 

Algorithm1:An accelerate gradient method algorithm for high-dimensional 
precision matrix  

1) Initialize: 0L , γ , 1 0
n n×Θ = Θ ∈

 , 1 1α =   
2) Iterate:  
3) set 1kL L −=   
4) While ( )( ) ( )( )1 1 1,k k kL L LF T T− − −Θ > Ψ Θ Θ   , set :L Lγ=   
5) Set kL L=  and update 

( )k L kk
TΘ = Θ  

2

1

1 1 4
2

k
k

α
α +

+ +
=  

( )1 1
1

1k
k k k k

k

α
α+ −

+

 −
Θ = Θ + Θ −Θ 

 
  

2.4. Convergence Analysis  

In our method, two sequences kΘ  and kΘ  are updated recursively. In 
particular, kΘ  is the approximate solution at the kth step and kΘ  is called the 
search point ([11] [12]), which is constructed as a linear combination of the 
latest two approximate solutions 1k−Θ  and 2k−Θ . In this section, the con-  

vergence rate of the method can be showed as 2

1O
k

 
 
 

. This result is sum-  

marized in the following theorem.  
Theorem 2: Let { }kΘ  and { }kΘ  be the covariance matrices sequence 

generated by our algorithm. Then for any 1k ≥ , having  

( ) ( )
( )

2*
0*

2

2

1
F

k

L
F F

k

γ Θ −Θ
Θ − Θ ≤

+
                (16) 
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where ( )* arg min
I

F
εΘ≥

Θ = Θ . 

3. Simulation  

In this section, providing numerical results for our algorithm which will show 
our algorithmic advantages by three model. In the simulation study, data were 
generated from ( )0N 0,Σ , where ( ) 10 0 −

Θ = Σ . And the sample size was taken 
to be n = 400 in all models, and let p =500 in Models 1 and 2, and p = 484 in 
Model 3, which is similar to Zhang et al. [9]. The numerical results of three 
models as follow:  

Model 1: 0 0
, ,1, 0.2i i i jΘ = Θ =  for 1 2i j≤ − ≤  and 0

, 0i jΘ =  otherwise. 
Model 2: 0 0

, ,1, 0.2i i i jΘ = Θ =  for 1 4i j≤ − ≤  and 0
, 0i jΘ =  otherwise. 

Model 3: 0 0
, , 11, 0.2i i i i+Θ = Θ =  for mod ( )1 2, 0i p ≠ , 1 2

0
,

0.2
i i p+

Θ =  and 
0
, 0i jΘ =  otherwise; this is the grid model in Ravikumar et al. [16] and requires 

1 2p  to be an integer.  
Simulation results based on 100 independent replications are showed in Table 

1. This paper mainly compare the three methods in terms of four quantities: the  

operator risk E ( )0

2
Θ̂ −Θ , the matrix ∞1,  risk E ( )0

1,
ˆ

∞
Θ −Θ , and the  

percentages of correctly estimated nonzeros and zeros (TP and TN), where 1,∞  
norm ( ),maxi i jj X∑  is written as 

1,X
∞

. In the first two columns smaller 
numbers are better; in the last two columns larger numbers are better. In general, 
Table 1 shows that our estimator performs better than Zhang et al.’s method 
estimator and the lasso penalized Gaussian likelihood estimator.  

4. Conclusion  

This paper mainly estimate positive-definite sparse precision matrix estimation  
 
Table 1. Comparison of our method with Zhang et al.’s method and graphical lasso. 

 Operator 1,∞  TP TN 

  Model 1   

our method 0.77 0.80 94.91 99.20 

Zhang et al.’s 
method 

0.77 1.06 88.80 98.77 

Graphical lasso 0.78 1.26 88.12 97.65 

  Model 2   

our method 1.59 1.60 70.02 98.40 

Zhang et al.’s 
method 

1.59 1.92 63.47 98.66 

Graphical lasso 1.61 2.11 64.88 97.40 

  Model 3   

our method 0.56 0.81 1 99.21 

Zhang et al.’s 
method 

0.56 0.91 99.41 98.57 

Graphical lasso 0.58 1.06 99.76 97.48 
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via lasso penalized D-trace loss by an efficient accelerated gradient method. The 
positive-definiteness and sparsity are the most important property of large 
covariance matrices, our method not only efficiently achieves these property, but 
also shows an better convergence rate. Numerical results have show that our 
estimator also have a better performance, comparing to Zhang et al.’s method 
and the Graphical lasso method.  
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Appendix: Proff of Theorems and Lemmas 
Appendix: Proof of Lemma 1 

Since that both the trace function and 1  norm are all convex function, so  

( ) ( ) ( )

( ) ( ) ( )

2 2

2

1 1ˆ ˆ, tr tr tr
2 2

1 1ˆ ˆ ˆtr tr ,
2 2

n n

n n n I

Θ Σ − Θ = Θ Σ − Θ

≥ Θ Σ − Θ + Θ−Θ ΘΣ +Σ Θ −    

   (17) 

( ) ( ) ( )( )1 1
,L L LT T g Tλ λ λΘ ≥ Θ + Θ− Θ Θ                (18) 

where ( )( ) ( )
1L Lg T TΘ ∈∂ Θ  , is the sub-gradient of 1  norm at point ( )LT Θ .  

Since ( )( ) ( )( ),F T Tµ µ µΘ ≤ Ψ Θ Θ    and combing in Equations (17), (18) then  

( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )( ) ( )

2

2

,

1 ˆ ˆ, ,
2

1 ˆ ˆ  ,
2 2

1 ˆ ˆ,
2 2

L L L

n n L L

L n n L F

L n n L L F

F F T F T

I T g T

LT I T

LT I g T T

λ

λ

Θ − Θ ≥ Θ −Ψ Θ Θ

≥ Θ−Θ ΘΣ +Σ Θ − + Θ− Θ Θ

− Θ −Θ Θ∑ +Σ Θ − − Θ −Θ

= Θ− Θ ΘΣ +Σ Θ − + Θ − Θ −Θ

  

    

     

     

 (19) 

Since ( )LT Θ  is a minimizer of ( ),LΨ Θ Θ , thus  

( ) ( )( ) ( )( )1 ˆ ˆ 0
2 n n L LI L T g TλΘΣ +Σ Θ − + Θ −Θ + Θ =               (20) 

So the Equation (19) can be simplified as:  

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )

2

2

2

1,
2 2

,
2

,
2

L L n n L L F

L L L F

L L F

LF F T T I g T T

LT L T T

LL T T

λΘ − Θ ≥ Θ− Θ ΘΣ +Σ Θ − + Θ − Θ −Θ

= Θ− Θ − Θ −Θ − Θ −Θ

= Θ−Θ Θ −Θ + Θ −Θ

       

    

    

   (21) 

Appendix: Proof of Theorem 2 

Defining ( ) *
11k k k k kU α α −= Θ − − Θ −Θ , ( ) ( )*

k kV F F= Θ − Θ , easily obtaining  

( ) 2 22 2 2
1 1 1

1

2
k k k k k kF F

k

V V U U
L

α α + + +
+

− ≥ −               (22) 

since 1k kL L+ ≥ . so  

2 22 2
1 1 1

1

2 2
k k k k k kF F

k k

V V U U
L L
α α + + +

+

− ≥ −               (23) 

By applying Lemma 1, easily obtaining:  

( ) ( ) ( ) ( )( )* *
1 11

2 2* *1 1
1 12 2

L

F F

F F F F T

L L

Θ − Θ = Θ − Θ

≥ Θ −Θ − Θ −Θ





           (24) 
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so:  

2 2* *1
1 1

1

2
F F

V
L

≤ Θ −Θ − Θ −Θ                    (25) 

Applying (23) (25), then:  

2*1
1 12

12
k

k F
k

L
V

α
+

+
+

≤ Θ −Θ                     (26) 

Combining the Equation (26) and the relation 
( )2

2 1
4k

k
α

+
≥ , easily ob-  

taining:  

( ) ( )
( ) ( )

2 2* *
0 0*

2 2

2 2

1 1
k F F

k

L L
F F

k k

γΘ −Θ Θ −Θ
Θ − Θ ≤ ≤

+ +
       (27) 
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