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Abstract 
Bell’s non-locality theorem can be understood in terms of classical thermodynamics, 
which is already considered to be a complete field. However, inconsistencies in clas-
sical thermodynamics have been discovered in the area of solid-oxide fuel cells 
(SOFCs). The use of samarium-doped ceria electrolytes in SOFCs lowers the open- 
circuit voltage (OCV) to less than the Nernst voltage. This low OCV has been ex-
plained by Wagner’s equation, which is based on chemical equilibrium theory. 
However, Wagner’s equation is insufficient to explain the low OCV, which should be 
explained by fluctuation and dissipation theorems. Considering the separation of the 
Boltzmann distribution and Maxwell’s demon, only carrier species with sufficient 
energy to overcome the activation energy can contribute to current conduction, as 
determined by incorporating different constants into the definitions of the chemical 
and electrical potentials. Then, an energy loss equal to the activation energy will oc-
cur because of the interactions between ions and electrons. This energy loss means 
that an additional thermodynamic law based on an advanced model of Maxwell’s 
demon is needed. In this report, the zero-point energy can be explained by this addi-
tional thermodynamic law, as can Bell’s non-locality theorem. 
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1. Introduction 

Solid-oxide fuel cells (SOFCs) directly convert the chemical energy of fuel gases, such as 
hydrogen and methane, into electrical energy. SOFCs use a solid-oxide film as the elec-
trolyte, and oxygen ions serve as the main charge carriers. Typically, yttria-stabilized 
zirconia (YSZ) is used as the electrolyte material in these cells. The operating tempera-
ture of these cells (873 - 1273 K) should be reduced to extend their life spans. Therefore, 
the use of mixed ionic and electronic conducting (MIEC) electrolyte materials, such as 
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samaria-doped ceria (SDC) electrolytes, at lower temperatures is preferred. The open- 
circuit voltage (OCV) of an SDC cell is approximately 0.8 V, which is lower than the 
Nernst voltage (Vth) of 1.15 V at 1073 K. This low OCV is attributed to the low value of 
the ionic transference number (tion). The low OCV has been calculated using Wagner’s 
equation, which is based on chemical equilibrium theory [1] [2]. However, there are se-
rious problems in Wagner’s equation [3]-[8]. We discuss these problems in Section 2. 

Over the past two decades, the understanding of nonequilibrium thermodynamics 
has been enhanced by fluctuation and dissipation theorems such as the Jarzynski and 
Crooks relations [9] [10]. Attempts have been made to explain Maxwell’s demon based 
on fluctuation and dissipation theorems [11]. We discovered the following empirical 
equation using SDC electrolytes [12]: 

thOCV
2e

aE
V= −                         (1) 

where aE  is the ionic activation energy, which is 0.7 eV for SDC electrolytes. There-
fore, the OCV in Equation (1) is ( )0.80 V 1.15 V 0.7 eV 2e= − . Equation (1) can be 
explained using an advanced model of Maxwell’s demon. On the basis of this model, we 
proposed an additional thermodynamic law. We previously discussed the relationship 
between quantum physics and this additional thermodynamic law [8]. In Section 3, we 
discuss a prototypical and an advanced model of Maxwell’s demon in relation to hop-
ping conduction.  

Then, the inevitable energy dissipation equal to 1 2 ω  from the particles to the en-
vironment will occur as the zero-point energy. Consequently, the space uses not the 
prototypical model of Maxwell’s demon using YSZ electrolytes but rather the advanced 
model of Maxwell’s demon using SDC electrolytes. In Section 4, we discuss the rela-
tionship between the zero-point energy and this additional thermodynamic law.  

Bell’s theorem [13] is a “no-go theorem” that draws a distinction between quantum 
mechanics and classical mechanics. Bell’s theorem states that “No physical theory of 
local hidden variables can reproduce the predictions of quantum mechanics.” However, 
Bell did not know that the information of local hidden variables could be erased during 
measurement due to the inevitable energy dissipation. In Section 5, based on the ad-
vanced model of Maxwell’s demon, we show that Bell’s non-locality theorem can be ex-
plained in terms of classical thermodynamics. Furthermore, a determination experi-
ment to disprove quantum teleportation is proposed. Bell’s non-locality theorem can be 
local with this additional thermodynamic law. 

2. Problems in Chemical Equilibrium Theory 

The low OCV has been explained by Wagner’s equation, which is based on chemical 
equilibrium theory. The flux of oxygen ions under open-circuit conditions, as described 
by Wagner’s equation [1] [2], is 

cathode
2
anode2 2

ln el ion
22 ln

el ion

d ln
16

pO
O pO

RTJ pO
F L

σ σ
σ σ

= −
+∫               (2) 

where 
2OJ  and 2pO  are the 2O  flux and the 2O  partial pressure, respectively; 

cathode
2pO  and anode

2pO  are the 2O  partial pressures at the cathode and the anode, re-
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spectively; R, T, and F are the gas constant, the absolute temperature, and Faraday’s 
constant, respectively; L is the thickness of the membrane or film; and elσ  and ionσ  
are the conductivities of the electrons and oxygen vacancies, respectively. 

From Equation (2), Equations (3) and (4) can be deduced [14]. 

thOCV i iV R I= −                        (3) 

where Ri and Ii are the ionic resistances of the electrolyte and the ionic current, respec-
tively. 

cathode
2
anode
2

ln
ion 2ln

OCV t d ln .
4

pO

pO

RT pO
F

= ∫                  (4) 

Equation (4) is often used when ionσ  is constant under various 2O  partial pres-
sures [14], and Ii is not apparently expressed. When an SOFC is operated under OCV 
conditions, the electronic leakage current (Ie) is defined using the external current (Iext): 

ext 0.i eI I I= + =                        (5) 

In general, Ii and Ie are not zero. Parameter tion is expressed as  

ion
ion

el ion

.t
σ

σ σ
=

+
                       (6) 

However, σel is a function of the 2O  partial pressure [15]: 
1
4

2
el ion *

2

pO
pO

σ σ
−

 
=  

 
                     (7) 

where *
2pO  corresponds to the oxygen partial pressure at which ion =1 2t . However, 

Wagner’s equation encounters the following problems. 
Problem 1: The calculated OCV will always be higher than the experimental result. 

Polarization voltage losses are frequently used to compensate, but the lack of change of 
the OCV during electrode degradation is impossible to explain [3] [4] [5]. 

Problem 2: The equilibration process of thick SDC electrolytes in response to a 
change in the anode gas cannot be explained because the response from the experi-
mental results is too fast to explain the delay in the electron diffusion current from the 
cathode to the anode [6]. 

To solve the aforementioned problems, there should be a fast response current-   
independent constant anode voltage loss ( 0.35 V 1.15 V 0.80 V= − ) [5] [6]. Then, RiIi 
becomes very small because of the anode shielding effect [5] [6] [16]. 

3. Prototypical and Advanced Model of Maxwell’s Demon in  
Relation to Hopping Conduction 

3.1. Prototypical Model of Maxwell’s Demon in Relation to  
Hopping Conduction 

YSZ is a ceramic in which the crystal structure of zirconium dioxide is made stable by 
the addition of yttrium oxide. When yttria is added to pure zirconia, Y3+ ions replace 
Zr4+ on the cationic sublattice. Oxygen vacancies are generated due to the charge neu-
trality. A graphical explanation is provided in Figure 1. Ionic conduction involves  
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Figure 1. Graphical explanations for generating oxygen vacancies. Oxygen vacancies are gener-
ated because of charge neutrality. Quoted from Yttria-stabilized zirconia (Wikipedia). 
https://en.wikipedia.org/wiki/Yttria-stabilized_zirconia  

 
hopping from an occupied site (8c site) to a vacant lattice site (8c). Oxygen ions then 
pass through the first gate (32f site) and the second gate (another 32f site) [17]. A sche- 
matic of the path for ions is shown in Figure 2. The situation is very similar to that of a 
prototypical model of Maxwell’s demon. Landauer first proposed the principle of this 
model in 1961. Landauer’s principle states that, if an observer loses information about a 
physical system, the observer loses the ability to extract work from that system [18]. 

3.2. Advanced Model of Maxwell’s Demon in Relation to  
Hopping Conduction 

YSZ electrolytes are purely ionic conductors; however, SDC electrolytes are MIEC ma-
terials. Interactions should occur between hopping ions and electrons. A schematic of 
the path for ions in SDC electrolytes is shown in Figure 3. Gabor and Brillouin inde-
pendently proposed the energy loss during interactions [19] [20]. Hence, the situation 
is different from the use of YSZ electrolytes, which can be explained by Landauer’s 
principle [18]. 

In previous work, we explained the advanced model of Maxwell’s demon electro-
chemically [6] [8]. The Boltzmann distribution of oxygen ions in the electrolyte at 1073 
K is displayed in Figure 4. The ions with energies exceeding the ionic activation energy 
become carriers (hopping ions). Figure 5 presents an incorrect carrier distribution. The 
Boltzmann distribution cannot be separated using passive filters, and an accurate dis-
tribution is provided in Figure 6. The loss of Gibbs energy is illustrated in Figure 5, 
and the real Gibbs energy (Greal) should be determined using Equation (8) [6]: 

real aG G NE∆ = ∆ −                       (8) 

Then, voltage losses occur during every hopping process in the MIEC area. Therefore, 
the voltage loss resulting from only four hopping processes (1.4 V 0.35 4 V= × ) should 
be higher than the Nernst voltage (1.15 V). However, the voltage loss is attributed to 
only one hopping process. This voltage loss can be explained by the Jarzynski equality 
[6]. In thermodynamics, the free energy difference ( B AF F F∆ = − ) between two states 
A and B is connected to the work W through the inequality 

https://en.wikipedia.org/wiki/Yttria-stabilized_zirconia
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Figure 2. Schematic of the path for ions in YSZ electrolytes. The situation is very similar to that 
of a prototypical model of Maxwell’s demon explained by Landauer’s principle. 
 

 
Figure 3. Schematic of the path for ions in SDC electrolytes. Interactions should exist between 
the hopping ions and electrons, as explained by Gabor and Brillouin. 
 

 
Figure 4. Boltzmann distribution at 1073 K. Ions with energies exceeding the ionic activation 
energy are converted into charge carriers (i.e., hopping ions). 
 

 
Figure 5. Forbidden distribution of hopping ions. This distribution is forbidden according to 
“Maxwell’s demon.” 
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Figure 6. Correct distribution of hopping ions. The shape of the distribution in this figure should 
be the same as the shape of the distribution in Figure 4. 
 

F W∆ ≤                            (9) 

The Jarzynski equality is [7] 

e eF KT W KT−∆ −=                        (10) 

where the over-line indicates an average over all possible realizations of an external 
process that takes the system from the equilibrium state A to a new nonequilibrium 
state under the same external conditions as that of the equilibrium state B.  

Ions in equilibrium state A lose energy (=0.7 eV) during their hopping in the MIEC 
electrolyte, and the heating of the colder ions can occur immediately in the vacancies. 
However, after the last hop, the ions cannot be heated and therefore exit the electrolyte 
in equilibrium state B. A schematic of this explanation of the energy loss is shown in 
Figure 7. Consequently, Equation (1) is compatible with the second law of thermody-
namics. 

3.3. Additional Thermodynamic Law Based on the Advanced  
Model of Maxwell’s Demon 

The electrochemical potential can be separated into the chemical potential and the 
electrostatic potential, 

i i iz Fη µ ϕ= +                         (11) 

where zi, ηi, μi and ϕ  are the valence of species i, the electrochemical potential, the 
chemical potential and the electrostatic potential. In Equation (11), the following 
transformation should be considered during ion hopping: 

_ hopping _ vacanciesi i aNEµ µ= +                   (12) 

hopping vacanciesi i aZ F Z F NEϕ ϕ= −                 (13) 

where N, _ hoppingiµ , _ vacanciesiµ , _ hoppingiϕ , and _ vacanciesiϕ  are Avogadro’s number, the 
chemical potential of hopping ions, the chemical potential of ions in vacancies, the 
electrical potential of hopping ions, and the electrical potential of ions in vacancies, re-
spectively. Thus, when Ea is 0.7 eV, 

hopping vacancies vacancies 0.35 V
2e

aE
ϕ ϕ ϕ= + = +             (14) 
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Figure 7. Schematic of the explanation for the energy loss. Equation (1) can be compatible with 
the Jarzynski equality. 
 

The electrical potential ( 0.35 V 0.7 eV 2e= ) in Equation (14) is neutralized by free 
electrons. Thus, our proposed additional thermodynamic law based on the advanced 
model of Maxwell’s demon is stated as follows: 

“Considering the separation of the Boltzmann distribution and Maxwell’s demon, 
only carrier species with sufficient energy to overcome the activation energy can con-
tribute to current conduction, as determined by incorporating different constants into 
the definitions of the chemical and electrical potentials. Then, an energy loss equal to 
the activation energy will occur because of the interactions between ions and electrons.” 

Using S (the action function), we can state the Nernst-Planck equation as 

( )d .iS ZF tµ ϕ= −∫                        (15) 

From the principle of least action,  

0.Sδ =                            (16) 

Considering the separation of the Boltzmann distribution and Maxwell’s demon, the 
generalized expression obtained from Equations (12) and Equation (13) is 

d 2 .
d i a
S ZF NE
t

µ ϕ= − =                      (17) 

Equation (17) holds for one hop but not zero when Ea is not zero. In SDC electrolytes, 
the energy loss during hopping due to inevitable dissipation (Eloss) is 

loss
1 d .
2 da

SE NE
t

= =                        (18) 

3.4. Determination Experiment for an Advanced Model of  
Maxwell’s Demon 

Oxygen ions transport through a path during hopping in the lattice structure. The elec-
tric potential in the path during hopping differs from the electric potential in the va-
cancies. In YSZ electrolytes, which are purely ionic conductors, ions do not lose energy. 
However, in SDC electrolytes, which are MIEC materials, the ions lose a large amount 
of energy. However, measuring the electric potential during hopping is difficult. We 
thus propose a determination experiment. A negatively charged metal ball (N-ball) and 
positively charged heavy metal balls (P-balls) should all be coated with plastic. Using 
springs, the three P-balls can be connected with each other, and then the N-ball can go 
through the center of them at high speed under vacuum. The speed of the N-ball may 
be unchanged after the collision. However, when an ionized gas spray is used during 
the collision, the speed of the N-ball will become small. The energy loss of the N-ball 
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can be controlled by changing the spring constant. A schematic of the explanation of 
this determination experiment is shown in Figure 8. 

4. Explanation of the Zero-Point Energy in Terms of  
Classical Thermodynamics 

Equation (17) and Equation (18) form the generalized expression of the additional 
thermodynamic law. In quantum physics, instead of   iµ , ZFϕ  and 2NEa, K.E. (kinet-
ic energy), P.E. (potential energy) and ω  are used; the energy for one particle is [21] 

d . . . .
d
S K E P E
t

ω= − = −                     (19) 

where   is Planck’s constant and ω is the frequency. The zero-point energy (E0) for 
one dimension is [21]  

0
1 1 d
2 2 d

SE
t

ω= − =                        (20) 

Equation (20) indicates that, when the separation of the Boltzmann distribution by 
1 2 ω  is needed, Maxwell’s demon should be considered. Here, 1 2 ω  should be a 
boundary belonging to space and not to the particles to separate the observed particles 
from the unobserved particles. The situation is analogous to that in which Ea is a 
boundary for the lattice structure rather than for ions [8]. Parameter   is assigned to 
the fifth spatial dimension. Then, the inevitable energy dissipation equal to 1 2 ω  
from the particles to the environment will occur as the zero-point energy. Consequently, 
the space uses not the prototypical model of Maxwell’s demon using YSZ electrolytes 
but rather the advanced model of Maxwell’s demon using SDC electrolytes. 

5. Bell’s Non-Locality Theorem Can Be Understood in Terms of  
Classical Thermodynamics 

5.1. Bell’s Non-Locality Theorem 

Bell’s theorem is a “no-go theorem” that draws a distinction between quantum me-
chanics and classical mechanics [13]. Bell’s theorem states, “No physical theory of local 
hidden variables can reproduce the predictions of quantum mechanics.”  

The inequality that Bell derived can then be written as 

( ) ( ) ( ), , , 1h h hC a c C b a C b c− − ≤                   (21) 

where ( ),  hC a b  denotes the correlation as predicted by any hidden variable theory 
and a, b and c refer to three arbitrary settings of the two analyzers. This theorem is  
 

 
Figure 8. Schematic of the explanation of the determination experiment for an additional ther-
modynamic law. When an ionized gas spray is used during the collision, the speed of the N-ball 
will become small. The energy loss of the negatively charged metal ball can be controlled by 
changing the spring constant. 
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proven by considering a system of two entangled qubits. The examples concern systems 
of particles that are entangled in spin. Quantum mechanics allows predictions of corre-
lations that would be observed if these two particles have their spin measured in differ-
ent directions.  

However, Bell was unaware of the inevitable energy dissipation during the measure-
ment. According to Brillouin [20], information means negative entropy (negentropy), 
which should be erased during the observation. Hence, the information of local hidden 
variables can be erased during the inevitable energy dissipation. 

5.2. Confounding Factor of the Inevitable Energy Dissipation 

In statistics, a confounding factor is an extraneous factor in a statistical model that cor-
relates with both the dependent variable and the independent variable in a way that ex-
plains away some of the correlation between these two variables.  

When there should be inevitable energy dissipation from particles to the environ-
ment during the measurement, combined with the relative theory, the total angular 
momentum of two entangled qubits cannot be conserved after the measurement. We 
propose the following confounding factor based on locality. 

Confounding factor: Spin is similar to a vector quantity that has a direction as the 
local hidden variable. However, the information of the direction can be erased because 
of the inevitable energy dissipation during the measurement. This information refers to 
spin in the positive or negative direction of the chosen axis after the measurement. 

5.3. Calculation of Correlation Coefficient Considering the  
Confounding Factor Based on Locality 

We consider a photon. The frequency of photons is much higher than that of radio 
waves. Within radio waves, AM broadcasting is the process of radio broadcasting using 
amplitude modulation and FM broadcasting uses frequency modulation. In principle, 
we can manipulate photons using amplitude modulation and frequency modulation. 
When the angle between a vector quantity and the chosen axis is 0θ , amplitude mod-
ulation is achieved by changing 0cosθ  and frequency modulation is achieved by 
changing 0sinθ . Then, the rest of the information (I0), deleting the amplitude modula-
tion and frequency modulation, can be defined using the following equation: 

( ) 0

0

0
0 0 0

e1 cos sin 1 e d
i

iI i
i

θ
θ

θ
θ θ θ= − + = − = ∫                (22) 

Then, the rest of the information I1 between 0θ  and 1θ  is 

1

0 1 0

0 0
1

e e ed d d
i i i

I
i i i

θ θ θ
θ

θ θ θ
θ θ θ= − =∫ ∫ ∫                   (23) 

Thus, I1 is determined only by 0θ  and 1θ . Equation (23) contains a rotational 
symmetry element; thus, the correlation coefficient should be determined by 1 0θ θ− , 
which means that we must consider only the function of the correlation coefficient in 
Equation (22). This result is obtained by considering a confounding factor due to the 
inevitable energy dissipation. When a perfect polarizer is placed in a polarized beam of 
light, Malus’ law in classical physics is 
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( ) 2
0 00, coshC θ θ=                         (24) 

In general, because of rotational symmetry, Equation (24) should be rewritten as  

( ) ( )2
1 0 1 0, coshC θ θ θ θ= −                     (25) 

In the experiment performed by Aspect [22], the definition of θ  is π 2 θ− . Then, 

( ) ( )2
1 0 1 0, sinhC θ θ θ θ= −                     (26) 

Consequently, Bell’s non-locality theorem can be understood in terms of classical 
thermodynamics. 

5.4. Determination Experiment for Local Hidden Variables  
Considering a Confounding Factor Based on Locality 

We proposed a determination experiment for local hidden variables, which is combined 
with the experiment of Aspect and a double-slit experiment. The source S produces 
pairs of photons, which are sent in opposite directions. After the detection of the left 
photons, the right photon receives the information of its position by quantum telepor-
tation. Then, an interference pattern cannot be created on the screen behind the double 
slit. A schematic of the determination experiment for the local hidden variables is 
shown in Figure 9. When an interference pattern is observed, quantum teleportation 
(non-locality) will be denied. 

6. Summary 

Inconsistencies in classical thermodynamics have been discovered in the area of SOFCs. 
The use of SDC electrolytes in SOFCs lowers the OCV to less than the Nernst voltage. 
This low OCV has been explained by Wagner’s equation, which is based on chemical 
equilibrium theory. However, Wagner’s equation is insufficient to explain the low 
OCV. By considering the separation of the Boltzmann distribution and Maxwell’s de-
mon, we proposed an additional thermodynamic law based on an advanced model of 
Maxwell’s demon. The zero-point energy can be explained by this additional thermo-
dynamic law. Then, inevitable energy dissipation equal to 1 2 ω  from the particles to 
the environment will occur as the zero-point energy. Consequently, the space uses not 
the prototypical model of Maxwell’s demon, but rather the advanced model of 
 

 
Figure 9. Schematic of the determination experiment for local hidden variables. The source S 
produces pairs of photons, which are sent in opposite directions. After the detection of the left 
photons, the right photon receives the information by quantum teleportation. When an interfe-
rence pattern is observed, quantum teleportation (non-locality) will be denied. 
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Maxwell’s demon. Bell’s non-locality theorem can be explained by this additional 
thermodynamic law. Spin is similar to a vector quantity with direction as a local hidden 
variable. According to Brillouin, the information of the direction can be erased because 
of the inevitable energy dissipation during the measurement. We proposed a determi-
nation experiment for local hidden variables, which was combined with the experiment 
by aspect and a double-slit experiment. When an interference pattern is observed, 
quantum teleportation (non-locality) will be denied. Bell’s non-locality theorem can be 
local with this additional thermodynamic law. 
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