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Abstract 
The purpose of this study was to demonstrate a simple and fast method for 
solving the time-dependent Bloch-McConnell equations describing the be-
havior of magnetization in magnetic resonance imaging (MRI) in the pres-
ence of multiple chemical exchange pools. First, the time-dependent Bloch- 
McConnell equations were reduced to a homogeneous linear differential equ-
ation, and then a simple equation was derived to solve it using a matrix opera-
tion and Kronecker tensor product. From these solutions, the longitudinal re-
laxation rate (R1ρ) and transverse relaxation rate in the rotating frame (R2ρ) 
and Z-spectra were obtained. As illustrative examples, the numerical solutions 
for linear and star-type three-pool chemical exchange models and linear, star- 
type, and kite-type four-pool chemical exchange models were presented. The 
effects of saturation time (ST) and radiofrequency irradiation power (ω1) on 
the chemical exchange saturation transfer (CEST) effect in these models were 
also investigated. Although R1ρ and R2ρ were not affected by the ST, the CEST 
effect observed in the Z-spectra increased and saturated with increasing ST. 
When ω1 was varied, the CEST effect increased with increasing ω1 in R1ρ, R2ρ, 
and Z-spectra. When ω1 was large, however, the spillover effect due to the di-
rect saturation of bulk water protons also increased, suggesting that these pa-
rameters must be determined in consideration of both the CEST and spillover 
effects. Our method will be useful for analyzing the complex CEST contrast 
mechanism and for investigating the optimal conditions for CEST MRI in the 
presence of multiple chemical exchange pools. 
 

Keywords 
Bloch-McConnell Equations, Multiple Chemical Exchange Pools, Chemical 
Exchange Saturation Transfer (CEST) Magnetic Resonance Imaging (MRI), 
Amide Proton Transfer (APT) MRI, Numerical Analysis 

How to cite this paper: Murase, K. (2017) 
Numerical Analysis of the Magnetization 
Behavior in Magnetic Resonance Imaging 
in the Presence of Multiple Chemical Ex-
change Pools. Open Journal of Applied 
Sciences, 7, 1-14. 
http://dx.doi.org/10.4236/ojapps.2017.71001  
 
Received: December 16, 2016 
Accepted: January 10, 2017 
Published: January 13, 2017 
 
Copyright © 2017 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/ojapps
http://dx.doi.org/10.4236/ojapps.2017.71001
http://www.scirp.org
http://dx.doi.org/10.4236/ojapps.2017.71001
http://creativecommons.org/licenses/by/4.0/


K. Murase 
 

2 

1. Introduction 

Chemical exchange saturation transfer (CEST) is a novel contrast mechanism for 
magnetic resonance imaging (MRI) [1] and has been increasingly used to detect 
dilute proteins via the interaction between labile solute protons and bulk water 
protons [2] [3] [4]. Moreover, amide proton transfer (APT) imaging, a particular 
type of CEST MRI that specifically probes labile amide protons of endogenous 
mobile proteins and peptides in tissue, has been explored for imaging diseases 
such as acute stroke and tumor, and is currently under intensive evaluation for 
clinical translation [5] [6]. Furthermore, various CEST agents have been actively 
developed to detect the parameters that reflect tissue pH and molecular envi-
ronment and/or to enhance the CEST effect [7]. However, CEST or APT MRI 
contrast mechanism is complex, depending on not only the concentration of 
CEST agents or amide protons, exchange and relaxation properties, but also va-
rying with experimental conditions such as magnetic field strength and radio-
frequency (RF) power [8]. When there are multiple exchangeable sites within a 
single CEST system, the CEST contrast mechanism becomes even more complex 
[9]. Thus, in analyzing the complex CEST contrast mechanism and for investi-
gating the optimal study conditions, numerical simulations are useful and effec-
tive [10] [11]. To perform extensive numerical simulations for CEST or APT 
MRI, it will be necessary to develop a simple and fast method for obtaining the 
numerical solutions to the time-dependent Bloch-McConnell equations. 

The purpose of this study was to present a simple and fast method for solving 
the time-dependent Bloch-McConnell equations for analyzing the behavior of 
magnetization in MRI in the presence of multiple chemical exchange pools. 

2. Materials and Methods 
2.1. Bloch-McConnell Equations in a Two-Pool Chemical Exchange 

Model 

Figure 1 illustrates a two-pool chemical exchange model in which pool A re- 
presents the bulk water pool. The time-dependent Bloch-McConnell equations 
in the two-pool exchange model for CEST MRI are given by [10] [11] 
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Figure 1. Illustration of a two-pool chemical exchange model. kab and kba represent the 
exchange rates from pool A to pool B and from pool B to pool A, respectively. 
 
where superscripts a and b show the parameters in pool A and pool B, respec-
tively. For example, ( )a

xM t , ( )a
yM t , and ( )a

zM t  denote the x, y, and z com-
ponents of the magnetization in the rotating frame in pool A at time t, respec-
tively. 1

aR  and 2
aR  denote the longitudinal and transverse relaxation rates, i.e., 

the reciprocals of the longitudinal ( )1
aT  and transverse relaxation times ( )2

aT  
in pool A, respectively. abk  denotes the exchange rate from spins in pool A to 
those in pool B, whereas bak  denotes that from spins in pool B to those in pool 
A. 0

aM  and 0
bM  denote the thermal equilibrium z magnetizations in pool A 

and pool B, respectively. aω∆  and bω∆  are given by aω ω−  and bω ω− , 
respectively, where aω  and bω  are the Larmor frequencies in pool A and pool 
B, respectively, and ω  is the frequency of the RF irradiation applied along the x 
axis of the rotating frame. ω1 is the amplitude of the RF irradiation. 

The differential equations given by Equation (1) can be combined into one 
vector equation (homogeneous linear differential equation) [11]: 

d
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M A M ,                          (2) 

where 
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where T in Equation (3) denotes the matrix transpose. According to Koss et al. 
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[12], the matrix A can be given by 

0 0
 

=  
 

E C
A ,                         (5) 

where E is the evolution matrix [12] and C is the constant-term matrix. Fur-
thermore, E is given by 

= +E R K .                          (6) 

In the case of A given by Equation (4), R is reduced to 
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K in Equation (6) is given by 

ab ba

ab ba

k k
k k
− 

= ⊗ − 
K I ,                    (10) 

where I is a 3-by-3 identity matrix and ⊗  denotes the Kronecker tensor prod-
uct. C in Equation (5) is given by 

[ ]T T
1 0 1 0 0 0 1a a b bR M R M = ⊗ C .              (11) 

The solution of Equation (2) can be given by [11] 

( ) ( )0tt e= AM M ,                      (12) 

where t represents the so-called saturation time and ( )0M  is the matrix of ini-
tial values at 0t = . teA  is the matrix exponential. 

2.2. Linear Three-Pool Chemical Exchange Model 

Figure 2(a) illustrates a linear three-pool chemical exchange model in which 
pool A represents the bulk water pool. In this case, R and K are given by [12] 
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(a)                                 (b) 

Figure 2. Illustration of three-pool chemical exchange models. (a) and (b) show linear 
and star-type three-pool chemical exchange models, respectively. As in the case of kab, kac, 
kca, kbc, and kcb represent the exchange rates from pool A to pool C, from pool C to pool A, 
from pool B to pool C, and from pool C to pool B, respectively. 
 
respectively. cR  in Equation (13) is given by Equation (8) in which the sub-
script a and superscript a are replaced by c. C is given by 

[ ]T T
1 0 1 0 1 0 0 0 1a a b b c cR M R M R M = ⊗ C .          (15) 

2.3. Triangular Three-Pool Chemical Exchange Model 

Figure 2(b) illustrates a triangular three-pool chemical exchange model in which 
pool A represents the bulk water pool. In this case, K is given by [12] 
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2.4. Linear Four-Pool Chemical Exchange Model 

Figure 3(a) illustrates a linear four-pool chemical exchange model in which pool 
A represents the bulk water pool. In this case, R and K are given by [12] 
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respectively. Rd in Equation (17) is given by Equation (8) in which the subscript 
a and superscript a are replaced by d. C is given by 

[ ]T T
1 0 1 0 1 0 1 0 0 0 1a a b b c c d dR M R M R M R M = ⊗ C .       (19) 

2.5. Star-Type Four-Pool Chemical Exchange Model 

Figure 3(b) illustrates a star-type four-pool chemical exchange model in which 
pool A represents the bulk water pool. In this case, K is given by [12]. 
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(a) 

     
(b)                                   (c) 

Figure 3. Illustration of four-pool chemical exchange models. (a), (b), and (c) show linear, 
star-type, and kite-type four-pool chemical exchange models, respectively. As in the case 
of kab, kad, kda, kcd, and kdc represent the exchange rates from pool A to pool D, from pool 
D to pool A, from pool C to pool D, and from pool D to pool C, respectively. 
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2.6. Kite-Type Four-Pool Chemical Exchange Model 

Figure 3(c) illustrates a kite-type four-pool chemical exchange model in which 
pool A represents the bulk water pool. Although there are no chemical exchanges 
between pool C and pool D in the star-type four-pool chemical exchange model 
(Figure 3(b)), there are exchanges between them in the kite-type model (Figure 
3(c)). In this case, K is given by [12] 
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It should be noted that mass balance imposes the following relationship be-
tween the exchange rates ( ijk  and )jik  of pool I and pool J [10]: 
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2.7. Calculation of R1ρ, R2ρ, and Z-Spectra 

The longitudinal relaxation rate in the rotating frame ( )1R ρ  was obtained from 
the negative of the largest (least negative) real eigenvalue ( )1λ  of the matrix A 
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in Equation (2), i.e., 1 1R ρ λ= −  [12] [13]. 
The transverse relaxation rate in the rotating frame ( )2R ρ  was obtained from 

the absolute value of the largest real part of the complex eigenvalue ( )2λ  of the 
matrix A in Equation (2), i.e., ( )2 2ReR ρ λ=  [13]. 

The CEST effect has usually been analyzed using the so-called Z-spectrum 
[11]. Thus, we calculated the Z-spectrum by using the following equation: 

( )off

0

Z spectrum
a
z

a

M
M
ω∆

− = ,                    (24) 

where ( )off
a
zM ω∆  denotes the z magnetization of pool A (bulk water) with 

saturation at offω∆ . It should be noted that offω∆  is the offset frequency of 
the RF irradiation from the Larmor frequency of bulk water protons, i.e.,  

off aω ω∆ = −∆ . In this study, offω∆  was varied from −3000 Hz to 3000 Hz with 
an interval of 100 Hz. 

2.8. Simulation Studies 

Because we have already treated a two-pool chemical exchange model in our 
previous paper [11], we treated three-pool and four-pool chemical exchange 
models in this study. 

First, we considered the three-pool exchange model consisting of bulk water 
(pool A) and two labile proton pools (pool B and pool C) as illustrative examples. 
In this case, we assumed that the longitudinal ( )1

aT  and transverse relaxation 
times for bulk water ( )2

aT  were 3 s and 100 ms, respectively, and were 1 s and 
15 ms for two labile protons, i.e., 1 1 1 sb cT T= =  and 2 2 15 msb cT T= =  [9]. The 
chemical shifts for two labile protons were set to be 4 ppm and 5 ppm. It should 
be noted that the chemical shifts of 4 ppm and 5 ppm correspond to offω∆  of 
1192.8 Hz and 1491.0 Hz, respectively, for the magnetic field strength of 7 T. 
Unless specifically stated, ab bak k+ , ac cak k+ , and bc cbk k+  were assumed to 
be 100 Hz, 300 Hz, and 100 Hz, respectively. 0

aM , 0
bM , and 0

cM  were assumed 
to be 1, 1/250, and 1/500, respectively. The saturation time and 1ω  were taken 
as 5 s and 50 Hz, respectively. 

For four-pool exchange models, we simulated one nuclear Overhauser effect 
site (pool D) in addition to the above bulk water (pool A) and two labile proton 
pools (pool B and pool C). We assumed that the longitudinal ( )1

dT  and trans-
verse relaxation times for pool D ( )2

dT  were 1 s and 5 ms, respectively [9]. The 
chemical shift for pool D was set to be −3.5 ppm. It should be noted that the 
chemical shift of −3.5 ppm corresponds to offω∆  of −1043.7 Hz for the mag-
netic field strength of 7 T. Unless specifically stated, ad dak k+  and cd dck k+  
were assumed to be 10 Hz and 10 Hz, respectively. 0

dM  was assumed to be 
1/500. 

Calculations were performed using MATLAB® (The MathWorks Inc., Natick, 
MA, USA) on an Intel CoreTM i7-4790 CPU (3.6 GHz) with 8-GB RAM. The 
matrix exponential and Kronecker tensor product were calculated using the 
MATLAB® functions “expm” and “kron”, respectively. 
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3. Results 

Figure 4 shows the 1R ρ  (a), 2R ρ  (b), and Z-spectra (c) as a function of offset 
frequency ( )offω∆  for various saturation times (0.5, 1, 2, 5, and 10 s) in the li-
near three-pool chemical exchange model (Figure 2(a)). It should be noted that 
the common logarithm of the 1R ρ  value was plotted in Figure 4(a) in order to 
enlarge the change in the 1R ρ  value. The peaks at 0 Hz (0 ppm), 1192.8 Hz (4 
ppm), and 1491.0 Hz (5 ppm) derive from pool A, pool B, and pool C, respec-
tively. As shown in Figure 4, 1R ρ  and 2R ρ  were not affected by the saturation 
time, whereas Z-spectra changed largely depending on the saturation time, i.e., 
Z-spectra became broad and tended to saturate with increasing saturation time. 

Figure 5 shows the 1R ρ  (a), 2R ρ  (b), and Z-spectra (c) as a function of 

offω∆  for various 1ω  values (25, 50, 100, 150, and 200 Hz) in the linear three- 
pool chemical exchange model (Figure 2(a)). As in Figure 4, the peaks at 0 Hz (0 
ppm), 1192.8 Hz (4 ppm), and 1491.0 Hz (5 ppm) derive from pool A, pool B, 
and pool C, respectively. As shown in Figure 5, all parameters became broad with 
increasing 1ω  value. 

Figure 6 shows the 1R ρ  (a), 2R ρ  (b), and Z-spectra (c) as a function of 

offω∆  for various 0
cM  values (1/500, 1/250, 1/125, 1/100, and 1/50) in the tri-

angular three-pool chemical exchange model (Figure 2(b)). As shown in Figure 
6(a) and Figure 6(c), the peaks at 1491.0 Hz (5 ppm) derived from pool C 
changed largely depending on 0

cM  in both 1R ρ  and Z-spectra. The peaks at 
1192.8 Hz (4 ppm) derived from pool B also changed but to a lesser extent. As 
shown in Figure 6(b), the 2R ρ  values increased with increasing 0

cM  value. 
Figure 7 shows the 1R ρ  (a), 2R ρ  (b), and Z-spectra (c) as a function of 

offω∆  for various 1ω  values (25, 50, 100, 150, and 200 Hz) in the linear four- 
pool chemical exchange model (Figure 3(a)). When 1ω  was small, four peaks 
were clearly observed at 0 Hz (0 ppm), 1192.8 Hz (4 ppm), 1491.0 Hz (5 ppm),  
 

   
(a)                                       (b)                                      (c) 

Figure 4. (a) 1R ρ , (b) 2R ρ , and (c) Z-spectra as a function of offset frequency ( )offω∆  for various saturation times (0.5, 1, 2, 5, 

and 10 s) in the linear three-pool chemical exchange model (Figure 2(a)). In these simulations, 1ω , 0
aM , 0

bM , and 0
cM  were 

assumed to be 50 Hz, 1, 1/250, and 1/500, respectively. ab bak k+  and ac cak k+  were assumed to be 100 Hz and 300 Hz, 

respectively. The values of other parameters such as ( )1 11a aT R=  are described in the “Simulation Studies” section. Note that all 

the data with different saturation times overlap in (a) and (b). 
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(a)                                       (b)                                      (c) 

Figure 5. (a) 1R ρ , (b) 2R ρ , and (c) Z-spectra as a function of offset frequency ( )offω∆  for various 1ω  values (25, 50, 100, 150, 

and 200 Hz) in the linear three-pool chemical exchange model (Figure 2(a)). In these simulations, saturation time, 0
aM , 0

bM , 

and 0
cM  were assumed to be 5 s, 1, 1/250, and 1/500, respectively. ab bak k+  and ac cak k+  were assumed to be 100 Hz and 300 

Hz, respectively. The values of other parameters are described in the “Simulation Studies” section. 
 

   
(a)                                       (b)                                      (c) 

Figure 6. (a) 1R ρ , (b) 2R ρ , and (c) Z-spectra as a function of offset frequency ( )offω∆  for various 0
cM  values (1/500, 1/250, 

1/125, 1/100, and 1/50) in the triangular three-pool chemical exchange model (Figure 2(b)). In these simulations, saturation time, 

1ω , 0
aM , and 0

bM  were assumed to be 5 s, 50 Hz, 1, and 1/250, respectively. ab bak k+ , ac cak k+ , and bc cbk k+  were assumed 
to be 100 Hz, 300 Hz, and 100 Hz, respectively. The values of other parameters are described in the “Simulation Studies” 
section. 
 

and −1043.7 Hz (−3.5 ppm) in the 1R ρ  and Z-spectrum plots. Note that these 
peaks derive from pool A, pool B, pool C, and pool D, respectively. The distinct 
separation among these peaks degraded with increasing 1ω  value. 

Figure 8 shows the 1R ρ  (a), 2R ρ  (b), and Z-spectra (c) as a function of 

offω∆  for various 0
dM  values (1/500, 1/250, 1/125, 1/100, and 1/50) in the 

star-type four-pool chemical exchange model (Figure 3(b)). As in Figure 7, the 
peaks at 0 Hz (0 ppm), 1192.8 Hz (4 ppm), 1491.0 Hz (5 ppm), and −1043.7 Hz 
(−3.5 ppm) derive from pool A, pool B, pool C, and pool D, respectively. As 
shown in Figure 8(a) and Figure 8(c), the peaks of 1R ρ  and Z-spectra at 
−1043.7 Hz (−3.5 ppm) derived from pool D changed depending on the 0

dM  
value. The 2R ρ  values slightly increased with increasing 0

dM  value (Figure 
8(b)). 
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(a)                                       (b)                                      (c) 

Figure 7. (a) 1R ρ , (b) 2R ρ , and (c) Z-spectra as a function of offset frequency ( )offω∆  for various 1ω  values (25, 50, 100, 150, 

and 200 Hz) in the linear four-pool chemical exchange model (Figure 3(a)). In these simulations, saturation time, 0
aM , 0

bM , 

0
cM , and 0

dM  were assumed to be 5 s, 1, 1/250, 1/500, and 1/500, respectively. ab bak k+ , ac cak k+ , and ad dak k+  were assumed 
to be 100 Hz, 300 Hz, and 10 Hz, respectively. The values of other parameters are described in the “Simulation Studies” section. 

 

   
(a)                                       (b)                                      (c) 

Figure 8. (a) 1R ρ , (b) 2R ρ , and (c) Z-spectra as a function of offset frequency ( )offω∆  for various 0
dM  values (1/500, 1/250, 

1/125, 1/100, and 1/50) in the star-type four-pool chemical exchange model (Figure 3(b)). In these simulations, saturation time,

1ω , 0
aM , 0

bM , and 0
cM  were assumed to be 5 s, 50 Hz, 1, 1/250, and 1/500, respectively. ab bak k+ , ac cak k+ , and ad dak k+  

were assumed to be 100 Hz, 300 Hz, and 10 Hz, respectively. The values of other parameters are described in the “Simulation 
Studies” section. 

 
Figure 9 shows the 1R ρ  (a), 2R ρ  (b), and Z-spectra (c) as a function of 

offω∆  for various cd dck k+  values (10, 100, 200, 500, and 1000 Hz) in the kite- 
type four-pool chemical exchange model (Figure 3(c)). As in Figure 7 and Fig-
ure 8, the peaks at 0 Hz (0 ppm), 1192.8 Hz (4 ppm), 1491.0 Hz (5 ppm), and 
−1043.7 Hz (−3.5 ppm) correspond to pool A, pool B, pool C, and pool D, respec-
tively. As shown in Figure 9(a) and Figure 9(c), the peaks of 1R ρ  and Z-spectra 
at −1043.7 Hz (−3.5 ppm) changed depending on the cd dck k+  value. The peaks 
at 1491.0 Hz (5 ppm) derived from pool C also changed but to a lesser extent. The 

2R ρ  value did not change depending on the cd dck k+  value (Figure 9(c)). 

4. Discussion 

In this study, we developed a simple equation for solving the time-dependent  
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(a)                                       (b)                                      (c) 

Figure 9. (a) 1R ρ , (b) 2R ρ , and (c) Z-spectra as a function of offset frequency ( )offω∆  for various cd dck k+  values (10, 100, 

200, 500, and 1000 Hz) in the kite-type four-pool chemical exchange model (Figure 3(c)). In these simulations, saturation time, 

1ω , 0
aM , 0

bM , 0
cM , and 0

dM  were assumed to be 5 s, 50 Hz, 1, 1/250, 1/500, and 1/500, respectively. ab bak k+ , ac cak k+ , and 

ad dak k+ were assumed to be 100 Hz, 300 Hz, and 10 Hz, respectively. The values of other parameters are described in the “Simu-
lation Studies” section. 

 
Bloch-McConnell equations in the presence of multiple chemical exchange pools 
by combining our previous method [11] and the approach presented by Koss et 
al. [12]. As described in our previous paper [11], the numerical solutions ob-
tained by our method agreed with the analytical solutions given by Mulkern and 
Williams [14]. We also compared the solutions obtained by our method for the 
two-pool exchange model with those obtained using a fourth/fifth-order Runge- 
Kutta-Fehlberg (RKF) algorithm and found that there was a good agreement 
between them [11]. These results appear to indicate the validity of our method. 
Furthermore, the computation time was considerably reduced when using our 
method (by a factor of approximately 2500 compared to the case when using the 
RKF algorithm [11]). Thus, our method can be included in the nonlinear least- 
squares fitting routine to calculate parameters such as the exchange rate or life-
time of CEST agents [10]. 

For calculating the solutions to the time-dependent Bloch-McConnell equa-
tions using Equation (12), most computation time is spent calculating the ei-
genvectors and eigenvalues of matrix A. However, it is necessary to carry out 
this calculation only once regardless of t in Equation (12). As previously de-
scribed, in this study, the matrix exponential was computed using the MATLAB® 
function “expm”, in which a scaling and squaring algorithm with Pade approxi-
mation [15] has been used. 

In our previous study [11], we used the two-pool exchange model for CEST or 
APT MRI as an illustrative example. As pointed out by Woessner et al. [10], pa-
ramagnetic CEST agents often have more than one type of exchangeable proton. 
For such cases, it is necessary to expand the Bloch-McConnell equations to mul-
ti-pool exchange models. Recently, Koss et al. [12] presented a generalized ex-
pression for the evolution matrix in the Bloch-McConnell equations in the pres-
ence of multiple chemical exchange sites. In their method, the Kronecker tensor 
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product was used [12]. As shown in this study, our method could be easily ex-
tended to multi-pool chemical exchange models by modifying matrix A in Equ-
ation (12) with use of their approach. 

As previously described, 1R ρ  was obtained from the negative of the largest 
(least negative) real eigenvalue of matrix A in Equation (2). 2R ρ  was obtained 
from the absolute value of the largest real part of the complex eigenvalue of ma-
trix A in Equation (2). We previously compared the 1R ρ  and 2R ρ  values thus 
obtained with those obtained numerically and found that there was a good agree-
ment between them [13], indicating the validity of these procedures. 

The spectral dependence of CEST is determined by sweeping the RF irradi-
ation frequency while monitoring the water resonance [1]. As previously de-
scribed, the CEST effect has usually been analyzed using the so-called Z-spectrum 
[11]. The Z-spectrum is obtained by plotting the z component of the magnetiza-
tion of pool A, i.e., bulk water proton ( )a

zM  in the form of a
zM  versus irradi-

ation offset frequency ( )offω∆  (Equation (24)). As shown in Figure 4(a) and 
Figure 4(b), 1R ρ  and 2R ρ  were not affected by the saturation time, because 
the matrix A in Equation (2) is independent of the saturation time. On the other 
hand, the Z-spectra were affected by the saturation time, i.e., the CEST effect 
observed in the Z-spectra increased and saturated with increasing saturation 
time (Figure 4(c)). When the RF irradiation power ( )1ω  was varied, the CEST 
effect increased with increasing 1ω  in 1R ρ , 2R ρ , and Z-spectra (Figure 5 and 
Figure 7). When 1ω  is large, however, its saturation bandwidth is broad and 
thus may directly saturate the bulk water, causing the so-called spillover effect 
[8]. As shown in Figure 5 and Figure 7, the separation among peaks in the 1R ρ  
and Z-spectrum plots degraded with increasing 1ω , which appears to be due to 
the spillover effect. These results suggest that 1ω  must be determined in con-
sideration of both the CEST effect and the spillover effect. Simulation studies 
with use of our method will be useful especially in such a case. 

As shown in Figure 6(b) and Figure 8(b), the 2R ρ  values increased with in-
creasing 0

cM  or 0
dM  value. When 0

cM  or 0
dM  increased, the interaction be-

tween bulk water protons and protons in pool C or pool D would increase, lead-
ing to an increase of 2

aR . Our previous study demonstrated that the 2R ρ  value 
increased with increasing 2

aR  value in a two-pool chemical exchange model [13]. 
This would also be applicable to the case of multi-pool chemical exchange mod-
els. Thus, the above finding would be able to be explained by the fact that the 

2
aR  value increases with increasing 0

cM  or 0
dM  value. 

Recently, Koss et al. [12] presented analytical expressions for 1R ρ  in the 
presence of multiple chemical exchange sites and pointed out that analytical so-
lutions facilitate understanding of the relationship between model parameters 
and the phenomenological relaxation rate constant and can lead to new metho-
dological advances. Numerical solutions also appear to be useful for optimizing 
parameters such as the saturation time and 1ω  for acquiring CEST or APT MRI 
data, because they can be easily obtained under various and/or complex study 
conditions in which analytical solutions may not always be obtained. 
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5. Conclusion 

We presented a simple and fast numerical method for solving the time-dependent 
Bloch-McConnell equations in the presence of multiple chemical exchange pools 
by combining our previous method [11] and the approach presented by Koss et 
al. [12]. The present method will be useful for analyzing the complex CEST con-
trast mechanism and for investigating the optimal conditions for CEST MRI in 
the presence of multiple chemical exchange pools. 
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