
Open Journal of Modelling and Simulation, 2017, 5, 47-58
http://www.scirp.org/journal/ojmsi

ISSN Online: 2327-4026
ISSN Print: 2327-4018

DOI: 10.4236/ojmsi.2017.51004 January 12, 2017

Analysis of the Multi-Pivot Quicksort Process

Mahmoud Ragab1, Beih El-Sayed El-Desouky2, Nora Nader2

1Department of Mathematics, Faculty of Science, Al Azhar University, Cairo, Egypt
2Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt

Abstract
In this paper, we study a new version from Dual-pivot Quicksort algorithm when we
have some other number k of pivots. Hence, we discuss the idea of picking k pi-
vots 1 2, , , ki i i by random way and splitting the list simultaneously according to
these. The modified version generalizes these results for multi process. We show that
the average number of swaps done by Multi-pivot Quicksort process and we present
a special case. Moreover, we obtain a relationship between the average number of
swaps of Multi-pivot Quicksort and Stirling numbers of the first kind.

Keywords
Quicksort, Convergence, Multi-Pivot Quicksort Process, Stirling Number of the First
Kind

1. Introduction

Quicksort studied in many books such as [1] [2] and [3]. It is an exhaustively anatom-
ize sorting algorithm and following the idea of divide-and-conquer on an input con-
sisting of n items [4]. Quicksort used a pivot item to divide its input items into two
partitions; the items in one sublist seem diminutive or identically tantamount to the
pivot; the items in the other sublist seem more sizably voluminous than or equipollent
to the pivot, after then it uses recursion to order these sublists. It is prominent that the
input consists of n items with different keys in arbitrary order and the pivot is picked
by just picking an item, and then on average Quicksort utilizes ()2 lnn n O n+ com-
parisons between items from the input. The Partial Quicksort algorithm analyzed by
Ragab [5] [6] and [7] depends on the idea of the standard Quicksort. It uses a smart
strategy to find the l smallest elements out of n distinct elements and sort them.
Yaroslavskiy declared in 2009 that he had made some improvements for the Quicksort
algorithm, the demand being drawn by experiments.

Yaroslavskiy’s algorithm replaced the new standard Quicksort algorithm in Oracle’s
Java 7 runtime library. This algorithm uses two items as pivots to divide the items. If

How to cite this paper: Ragab, M., El-
Desouky, B.E.-S. and Nader, N. (2017) Ana-
lysis of the Multi-Pivot Quicksort Process.
Open Journal of Modelling and Simulation,
5, 47-58.
http://dx.doi.org/10.4236/ojmsi.2017.51004

Received: September 26, 2016
Accepted: January 9, 2017
Published: January 12, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ojmsi
http://dx.doi.org/10.4236/ojmsi.2017.51004
http://www.scirp.org
http://dx.doi.org/10.4236/ojmsi.2017.51004
http://creativecommons.org/licenses/by/4.0/

M. Ragab et al.

48

two pivots 1p and 2p such that 1 2p p< are used, the splitting step sublists the re-
maining 2n − items into three sublists, items more minute than or equipollent to 1p ,
items between 1p and 2p , and items more sizably voluminous than or equipollent to

2p . Recursion is then applied to the three sublists. It came as a surprise that two pivots
should avail, since in his thesis [8] Sedgewick had introduced and explained a Dual-
pivot technique inferior to classical Quicksort. Hence, Hennequin in his thesis studied
the general technique of using 1k − pivot items [2].

We analyze the limiting distribution of the number of swaps needed by the duality
process is proposed. It is known to be the unique fixed point of a certain distributional
transformation T with zero mean and finite variance. Depending on the results of [1]
and [9], we analyze the Multi-pivot Quicksort when we selected k pivots and we
study the relationship with Striling numbers of the first kind.

2. Multi -Pivot Quicksort

Later, many researchers has received the interest of the visualization of multi-pivot
Quicksort in accordance with Yaroslavskiy proposed the duality pivot process which
outperforms standard Quicksort by Java JVM. After that, this algorithm has been ex-
plained in terms of comparisons and swaps by Wild and Nebel [10].

A normal expansion of duality process would be to have some other number k of
pivots. Hence, we cogitation the approximation of pick k pivots 1 2, , , ki i i by ran-
dom way and splitting the list simultaneously according to these. let a random permu-
tation of the list { }1,2, ,n be given to be ordered using this variant, with all the !n
substitution. The k rightmost item are picked as pivots are compared to each other
and interchange, if they are out of order.

There are n k− items are swaps to the pivots and the list is splitted to 1k + sub-
lists. The partition step can be worked as follows. We compare the leftmost item to pi-
vot which chosen by random way; if this pivot is bigger than it, it is compared with
another pivot which was smaller than the first pivot. Otherwise it is swaped with a big-
ger pivot (to the right) and after a series of number of swaps are inserted to its place
between any two pivots, or to the left of the smallest pivot or to the right of the biggest
pivot. We continue with the same technique, until all items are examined.

Each item of the n k− items swaps with the pivots by binary tree, first each item is
swaps with the median of the sorted list of the pivots. If it is compared with the first
element, otherwise is compared with the third element and after a collection of swaps is
inserted to its placement.

For the pervious process, there are k sublists. If we let that the input is a random
permutation { }1

, ,
kn nU U

 of { }1, 2,3, , n .
We assume that 1k ≥ be an integer. The method “ k -pivot quicksort” performs as

follows:
As long as n k≤ then sort the input directly. When kn > , order the first k items

such that
1 2 kn n nU U U< < < and set

11 , ,np U= 
kk np U= . In the splitting step,

the remaining n k− items are divided to 1k + sets 0 1, , , kL L L where an item x
belongs to set hL as long as 1h hp x p +< < . The sets 0 1, , , kL L L are then ordered
recursively. Assume that 1k ≥ be fixed. As for duality Quicksort process, if we assume

M. Ragab et al.

49

that ,n kS and nP give the random variables that count the swaps required to sort n
items when we select k pivot items, uniformly selected from the list and partitioning
respectively. The total number of swaps needed by Multi-pivot Quicksort sorting inputs
given by

0, 1, ,, ,
k k k k

d

n k n a a aS P S S S∗= + + + + (1)

where
0 ,a kS random variable that count the number of swaps made for sort the items

smaller than first pivot
1,kaS∗ denote the number of swaps need to order the items be-

tween first pivot and the second pivot. ,ka kS denote the number of swaps need to or-
der the items between 1k − pivot and the k pivot. The random variables

0 ,a kS ,

,1 2 ,,ka a kS S∗
 and

,k kaS have the same distribution and independent of
1 2
, , ,

kn n nU U U
and d means the equality in distribution.

The average number of swaps done by the multi algorithm applied to an list of n
items by k -pivot Quicksort given by the following recurrence

() () () () (),0 1
0

, , , ,

1 .
k k

k

d

an k n k a k a k
a a n k

E S E P E S E S E S
n
k

∗

+ + = −

= + + + +
 
 
 

∑


 (2)

() ()
21

1 1
, 1, 1, ,1

1, ,
k

k
n

n n
U

d

n k k U U k n U kn n nUnU U
E S T n k E S E S E S

n
k

∗

− − − −

   = + + + +           
 
 

∑∑ ∑ 

where
1 2 kn n nU U U< < < refers to the pivots in increasing order, see [11] and [12].

Let () () (),T n k c k n d k= + be the expected value of a “toll function” during the

first recursive call, where ()c k and ()d k are constants and
1

1,U kn
E S

−

 
 
 

 denotes

the average number of swaps for ordering the sublist of
1

1nU − items less than
1nU by

the Multi-Pivot Quicksort on k pivots to simplify the relation by noting that the pi-
vots are selected by the random way and the sums are equal,

() () ()

() () () ()

1 2
1

1
11

,

1 2

,1, 1 ,
1 1 1

1

1,
1

1 ...

1 1 .
1

n n k
k k

n k

n k n k n

kU k U U n U kn n n nU U Un n n

n

U U

k

k

E S c k n d k

E S E S E S
n
k

n
c k n d k k E S

n k
k

− + − +
∗

− − − −
= = + = +

− +

−
=

= +

    + + +            
 
 

− 
= + + +  −   

 
 

∑ ∑ ∑

∑








By collecting terms with a common factor (),kE S


, when 1 1n k≤ ≤ − + . Fix
{ }1,2, , 1 .n k∈ − +  There are 1k + methods of picking { }1,2, , 1j n k∈ − + with

ja =  .

() () () () ()
1

, 1,
1

1 1 .
1

n k

n k k

n
E S c k n d k k E S

n k
k

− +

−
=

− 
= + + +  −   

 
 

∑






 (3)

Multiplying both sides by
n
k
 
 
 

, the recurrence relation becomes

M. Ragab et al.

50

() () () () ()
1

, 1,
1

1 ,
1

n k

n k k

n n n
E S c k n d k k E S

k k k

− +

−
=

−      = + + +       −     
∑







multiplying by nz and summing over n ., hence we get the generating function for
the average number of swaps [10]. Let (),n n ka E S= and consider the generating func-

tion ()
0

n
n

n
g z a z

∞

=

= ∑

() () () 1
0 0 0 1

1 .
1

n
n n n

n
n n n

n n n
a z c k n d k z k a z

k k k

∞ ∞ ∞

−
= = = =

 −       = + + +         −      
∑ ∑ ∑ ∑





 (4)

We find that

() ()

() ()
0 0

1 1
!

.
!

n n
n n

n n

kk

n
a z n n n k a z

k k

z g z
k

∞ ∞

= =

 
= − − 

 

=

∑ ∑ 

Such that () ()kg z gives the k-th order derivative of ().g z In the right-hand side

of Equation (4), the first sum becomes

() () () ()

()() ()()()
()

0 0

2

!

1

1

k
n n

n n

k

k

n zc k n d k z c k n d k z
k k

z c k z k d k z

z

∞ ∞

= =

+

      + = +        

+ + −
=

−

∑ ∑
.

The recurrence becomes as follows
() () () () ()()

() () () ()

()() ()()()
()

() ()

0 0

0

2

1
1

1!

1
1

1
1 ,

11

k k
n n

n n

k
n

n

k k

k

g z z n n
c k n d k z g z k z

k kk

n n zc k n d k z k g z
k k z

z c k z k d k z zk g z
zz

∞ ∞

= =

∞

=

+

−    = + + +     −   

      = + + +       −    

+ + −  = + +  − −

∑ ∑

∑ (5)

In the right -hand side of Equation (5). The first sum becomes in this form because it
may be easily explained by mathematical induction that the k-th order derivative of

() ()() () ()()
()2

0

1
,

1
n

n

c k z d k z
c k n d k z

z

∞

=

+ −
+ =

−
∑

is

()() ()()()
() 2

1
.

1 k

c k z k d k z

z +

+ + −

−

The recurrence is converted to the following differential equation [13]:
() () ()() ()()()

()
() ()2

1
1 .

! 11

kk kk

k

z c k z k d k zg z z zk g z
k zz +

+ + −  = + +  − −
 (6)

Multiplying by
1

kz
z

−
 
 − 

, the previous Equation (6) is transformed to

M. Ragab et al.

51

() ()() ()() ()()()
()

() ()
11

1 .
! 1

kk

k

c k z k d k zg z z
k g x

k z

+ + −−
= + +

−
This differential equation is a Cauchy-Euler equation [14]. We change variables

1x z= − , it is () ()1h x g x= −

() () ()() () () ()2

1
1 ! 1 .k k k c k x k d k x

x h x k k h x
x

 − + +
− = + +  

 
 (7)

By using the differential operator Θ to solve the previous differential Equation (7)
which is defined by

()() ()(: ,h x xh x′Θ =

and using the mathematical induction we find that at 1n =

()(). . ,L H S h x= Θ

and

(). . .R H S xh x= 

We find

. . . . ,L H S R H S=
the relation holds at 1n = . We assume the relation holds at n k=

() ()
,

!

k kx h x
h x

k k
Θ 

= 
 

at 1,n k= + we find

()

() () ()

()

. .
1

!
1 ! 1 !

.
!

k k

L H S h x
k

h x
k k

x h x
k

Θ 
=  + 

Θ
=

+ Θ− −

=

So, it is easy to find the relation is satisfied for all values of .k

() ()
.

!

k kx h x
h x

k k
Θ 

= 
 

When we apply the operator Θ , our relation seems in the form

() () () ()() ()
()() ()()

2

! 1
1 1 1 1 ! ,k k c k x k d k x

k k h x
x

− + +
− Θ Θ− Θ− + − + =

() ()
()() ()()

2

! 1
,k

k c k x k d k x
P h x

x

− + +
Θ = (8)

where ()kP Θ is called as the initial polynomial and is given as follows, see [15],

() () () ()1 1 !,k
k kP kθΘ = − − +

where () () ()1 1k kΘ = Θ Θ− Θ− + with 0k ≥ , denotes the falling factorial. If we use
the fundamental theorem of algebra which proposed that a polynomial of degree n

M. Ragab et al.

52

has n complex roots with multiplicities. Notice that −2 is constantly a simple root
because,

() () ()() () ()
() ()() () ()
() () ()2

2 1 2 3 2 1 1 !

1 2 3 1 1 !

1 1 ! 1 ! 0.

k
k

k

k

P k k

k k

k k

− = − − − − + + − +

= − − − − − +

= − + − + =





And we get

() () () ()
1

1
0

12 1 ! 1 ! 1 0.
2

k

k k
j

P k k H
j

−

+
=

− = + = − + − <
− −∑

Setting 2kr = − and the residual roots be 1 2 1, , , kr r r − , see [16]. Our polynomial be

in the form

()() ()() ()
()() ()()

1 2 1 2

! 1
2 .k

k c k x k d k x
r r r h x

x−

− + +
Θ− Θ− Θ− Θ+ =

This differential equation can be written as

()() ()
()() ()()

1 2

! (1
2 ,k

k c k z k d k z
S h z

z
θ θ−

− + +
+ = (9)

where () ()() ()1 1 2 1k kS r r r− −Θ = Θ− Θ− Θ− to solve our differential equation, we as-
sume that there are two functions ()1h z and ()2h z where

() () ()1 2 .h z h z h z+ =
Then

()() ()() () ()()
()() ()()

()() () ()()

1 2 1 2

2

2

2

! 1
.

!1 !
,

kr r r h z h z

k c k z k d k z

z
d k c k kc k k

zz

Θ− Θ− Θ− Θ+ +

− + +
=

−+
= +



By using the property of linearity of differential operator

()() ()() () ()()
1 2 1 1 2

1 !
2 .k

c k k
r r r h z

z−

+
Θ − Θ− Θ− Θ+ =

()() ()() ()
() ()()

1 2 1 2

!
2 ,k

d k c k k
r r r h z

z−

−
Θ − Θ− Θ− Θ+ =

if we apply k times the solution, we get

() ()()
()() ()1 12

1 2 1

1 ! log .
2 2 2

irk
i i

k

c k k zh z d z
r r r z =

−

+
= +

− − − − − −

 (10)

() ()()
() ()()

2
11 2

! ,
1 1 1

i
k

r
i

i

d k c kkh z w z
r r z =

−
= +

− − ∑


 (11)

where id and iw are constants of integration. Note that

() () ()12 .K kP S −Θ = Θ+ Θ
Therefore, to evaluate ()1 2kS − − , we find

M. Ragab et al.

53

() ()1

1

0

2 2 ,

2 1 1.
2

k K

k

j

S P

k j

−

−

=

− = −

− 
= − −  − − 

∑



 (12)

() ()11 ! 1 .kk H += − + − (13)

Moreover

()1 !.kP kk− = −
Combining both solutions,

() ()
()

() () ()()
12

1

log 1 ,
1

rk i
i i

k

c k d kc k z
h z e z

H k zz =
+

−−
= + +

−
 (14)

such that i i ie w d= + . To solve this system of of equations, we should calculate the
constants of integration

() () () ()11 1 1 0.kh h h −= = = =


In terms of series;

() ()
() ()() () () ()

0 0 1 01

1 1 .
1

k n in n n
n i

n n i nk

c k c k d kr
g x n H n x e x x

nH k

∞ ∞ ∞

= = = =+

− 
= + − + − + −  

∑ ∑∑ ∑ (15)

The third sum of Equation (15) collects to the solution a stationary contribution.
Furthermore, the root 1k + when k is even, participates a constant and the root

2kr = − , collects ()1ks n + , with ks R∈ . Eliciting the coefficients, the average number
of swaps for Multi-pivot Quicksort is

() ()() ()
1

1
1n n

k

c k
a n H n O n

H +

= + − +
−

 (16)

The number of methods to permute a list of n items into k cycles counted by the
Stirling numbers of the first kind (), ,s n k see [17].

We show the relation between the number of swaps done by the multi Quicksort
process and Sirling number of the first kind. Form Equation (17) we assume that

(),n n ka E S= and consider the generating function ()
0

n
n

n
g z a z

∞

=

= ∑

() () 1
0 0 0 1

, 1 .
1

n
n n n

n
n n n

n n n
a z T n k z k a z

k k k

∞ ∞ ∞

−
= = = =

 −      
= + +       −      

∑ ∑ ∑ ∑




 (17)

The relation is converted to a k-th order differential equation
() () () ()() () ()

0

1
1 .

1!

k k
n

n

g z z n n
c k n d k k g z z

k kk

∞

=

 −    
= + + +    −    
∑

This differential equation is a Cauchy-Euler equation. We use the deferential opera-
tor Θ for the solution of the differential equation. It is defined as follows

()() (): ,g z zg zΘ = 

also, by induction

M. Ragab et al.

54

() ()
!

k kz g z
g z

k k
Θ 

= 
 

applying the operator Θ ,our equation becomes

() () () () ()
0

1
1

1
n

n

n n
g z c k n d k k g z z

k k k

∞

=

Θ  −       = + + +        −      
∑

()() () ()

() () () ()
0

1 2 1

1
1

1
n

n

k g z

n n
c k n d k k g z z

k k

∞

=

Θ Θ− Θ− Θ− +

 −     = + + +      −    
∑



() () () () () ()
0

1
! 1 ,

1
n

k
n

n n
g z k c k n d k k g z z

k k

∞

=

 −     Θ = + + +      −    
∑

where () ()() ()1 2 1k kΘ = Θ Θ− Θ− Θ− + is falling factorial, see [18].

() () () () ()() () ()
() () ()

0

1 !!! ! 1
! ! 1 ! 1 1 !

n
k

n

nng x k c k n d k k k g x z
k n k k n k

∞

=

 −
Θ = + + + 

− − − − +  
∑

() () () () () ()()() () ()

() () () () () ()

0 0

0 0

1 1 2 1

1 1, 1 .

n n
k k

n n

n n
k

n n

g z n c k n d k z k k n n n k g z z

n c k n d k z k k s n k g z z

∞ ∞

= =

∞ ∞

= =

 Θ = + + + − − − + 

 = + + + − − 

∑ ∑

∑ ∑



where () ()() ()1, 1 1 2 1s n k n n n k− − = − − − + is Stirling numbers of the first kind,
see [19]. we use the relation

() () () ()
0

, , where 0,0 land 0, 0 for 0,
n

k
n

k
x s n k x s s k k

=

= = = >∑

hence

() () () () ()

() () ()

0 0

0

,

 1 1, 1 .

k
r n

k
r n

n

n

s k r g z n c k n d k z

k k s n k g z z

∞

= =

∞

=

 Θ ⋅ = + 

+ + − −

∑ ∑

∑

() () () ()

() ()

0 0 0 0

0 0

, ,

 1 1, 1

n k
r n l n

n
n r n l

n n
n

n n

a s n r z c k n d k s k l n z

k k s n k a z z

∞ ∞

= = = =

∞ ∞

= =

  Θ ⋅ = +     
 + + − −  
 

∑ ∑ ∑ ∑

∑ ∑

() () () ()

() ()

0 0 0 0

0
0 0

, ,

 1 1, 1 ,

n k
r n l n

n
n r n l

n
n

n n r
n r

a s n r z c k n d k s k l n z

k k s r k a z

∞ ∞

= = = =

∞
∞
= −

= =

  Θ ⋅ = +     

+ + − −  

∑ ∑ ∑ ∑

∑∑

by equality the coefficients we obtain

() () () () () ()
0 0 0 0

, , 1 1, 1
n k n

r l
n n r

r n l r
a s n r c k n d k s k l n k k s r k a

∞

−
= = = =

  Θ = + + + − −      
∑ ∑ ∑ ∑

()
() () () () ()

0 0 0

0

1 , 1 1, 1
,

k n
l

n n rn
r n l r

r

a c k n d k s k l n k k s r k a
s n r

∞

−
= = =

=

  = + + + − −      Θ
∑ ∑ ∑

∑

M. Ragab et al.

55

3. Quicksort

In this section we show the average number of swaps needed by the Quicksort is a par-
ticular case form the public case of the multi-pivot Quicksort [20]. For 1k =

1 1
1 ,

d

n n U n Un n
S P S S∗

− −= + + (18)

where nP give the random variables which counting the number of swaps needed for
splitting the list of n items, such that the classical algorithm is applied to an list of n
different items [5]. We find that 0 1 0S S= = such that if 2n ≥ , the following recur-
rence holds. We find the average number of swaps done by the Quicksort from Equa-
tion (2) we find at 1k = the equation becomes

() () () ()
1 1

1 ,
d

n n U n Un n
E S E P E S E S∗

− −= + + (19)

Assume that if we need to sort list of n of different items, where their positions in
the list are counted from left to right by 1,2, , n [6]. First, the item at position 1
compared with the pivot. The number of items which are bigger than pivot and were
animated during split operation is

()1 .
1

n k k
n
−

⋅ −
−

Subsequently, we consider as well that pivots are uniformly picked and noticing that
we have to number the final swap with the pivot at the end of split operation [21], we
get

()()
()

1 21 .
1 6 3

n k k n
n n
− −

+ = +
−∑

So, we find the toll function given by

() 2 .
6 3
nT n cn d= + = +

We find 1
6

c = , 2 .
3

d = So the recurrence becomes

() () ()
1 1

1

1
1

2 1 ,
6 3

nd

n U n Un n
Un

nE S E S E S
n

∗
− −

=

= + + +∑ (20)

() ()
1

1

1
1

2 2 .
6 3

nd

n Un
Un

nE S E S
n −

=

= + + ∑ (21)

We solve this recurrence relation by transforming into a differential equation. First
multiply both sides by n

() ()
1

1
11

4 2 .
6

n

n Un
Un

nnE S n E S −
=

+ = + 
 

∑

Let ()n na E S=

1
1

1
=1

2= 2 ,
6 3

n

n UnUn

nna n a
−

 + + 
 

∑

multiplying by nz and summing over n , so as to get the generating function for the

M. Ragab et al.

56

average number of swaps consider the generating function ()
0

n
n

n
g z a z

∞

=

= ∑

1
1

1
0 0 0 1

2 3 2
6

n
n n n

n Unn n n Un

nna z n z a z
∞ ∞ ∞

−
= = = =

+ = + 
 

∑ ∑ ∑ ∑

() ()

() ()

()
()

()
()

0

3

3

2 2
6 3 1

1 21 1
6 3 2

11

1 2 1 2
6 3 6 3 2 .

11

n

n

n zzg z n z g z
z

z z z
zg z

zz

z z z
zg z

zz

∞

=

   = + +   −   
 + + −    = +  − −

 − + −    = +  − −

∑

 (22)

Multiplying by
1

1
z

z

−
 
 − 

, the differential equation is simplified to

() ()
() ()

()
()2

1 21 1
6 31 2 .

1

z z
z g z g z

z

+ + −
− = +

−


We can solve this differential equation using basic principles

() () ()
()2

5 1
6 21 2
1

z
z g z g z

z

−
− − =

−
 (23)

This differential equation is a Cauchy-Euler equation [22]. We change variables
1x z= − , it is () ()1h x g x= −

() ()
()

()2

1 21 1
6 31 2 ,

x x
xh x h x

x

 − + + 
− = + 

  
 



we use the differential operator Θ to solve the differential equation which defined as
follows

()() ():h x xh xΘ = 

applying the operator Θ , our equation becomes

()() ()
()

2

1 21 1
6 31 2

x x
h x

x

− + +
− Θ− =

() ()1 2

1 2
6 3

x x
P h x

x

− +
Θ =

() ()1 2

1
2

x
P h x

x
Θ =

() ()1
1

2
P h x

x
Θ =

M. Ragab et al.

57

and applying the pervious technique we find the solution of the differential equation
given by

() ()
12

1 21
log 6 36 ,

2 1
3

z
h z e z

zz

 − 
 = + +

 − 
 

 (24)

where 1e is constant of integration. In terms of series

() () ()() ()1
0 0 02

1
16 1 1 .

1 2
nn n n

n
n n n

r
g x n H n x e x x

nH

∞ ∞ ∞

= = =

  −
= + − + − + −  

∑ ∑ ∑ (25)

Extracting the coefficients, the expected number of swaps for Multi-pivot Quicksort
is

() () ()1 1
3 ng x n H o n= + + (26)

4. Conclusion

We study a new version from Dual-pivot Quicksort algorithm when we have some
other number k of pivots. Hence, we discuss the idea of picking k pivots 1 2, , , ki i i
by random way and splitting the list simultaneously according to these. Moreover, we
derive a generalization of this result for multi process. We show that the average num-
ber of swaps done by Multi-pivot Quicksort process and we present a special case. Fur-
thermore, we present the relationship between the average number of swaps of Mul-
ti-pivot Quicksort and Stirling numbers of the first kind.

Acknowledgements

We thank the Editor and the referee for their comments.

References
[1] Ragab, M., El-Desouky, B.S. and Nader, N. (2016) On the Convergence of the Dual-Pivot

Quicksort Process. Open Journal of Modelling and Simulation, 4, 1-15.
https://doi.org/10.4236/ojmsi.2016.41001

[2] Hennequin, P. (1991) Analyse en moyenne d’algorithmes: Tri rapide et arbres de recherche.
Ph.D. Thesis, Ecole Politechnique, Palaiseau.

[3] Sedgewick, R. and Flajolet, P. (1996) An Introduction to the Analysis of Algorithms. Addi-
son-Wesley, Longman, 1-492.

[4] Hoare, C.A.R. (1962) Quicksort. Computer Journal, 5, 10-15.
https://doi.org/10.1093/comjnl/5.1.10

[5] Ragab, M. (2011) Partial Quicksort and Weighted Branching Processes. Ph.D. Thesis, 28-
35.

[6] Ragab, M. and Rosler, U. (2014) The Quicksort Process. Stochastic Processes and Their
Applications, 2, 1036-1054. https://doi.org/10.1016/j.spa.2013.09.014

[7] Ragab, M. (2015) On the Quicksort Algorithm and Its Related Process. Journal of Mathe-
matical Modeling and Operations Research, 13-30.

[8] Sedgewic, R.K. (1975) Quicksort. Ph.D. Thesis, Garland Publishing.

https://doi.org/10.4236/ojmsi.2016.41001
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1016/j.spa.2013.09.014

M. Ragab et al.

58

[9] Iliopoulos, V. and Penman, D.P. (2012) Dual Pivot Quicksort. Discrete Mathematics, Algo-
rithms and Applications, 4, Article ID: 1250041.
https://doi.org/10.1142/S1793830912500413

[10] Wild, S. and Nebel, M.E. (2012) Average Case Analysis of Java 7’s Dual Pivot Quicksort.
Proceedings of the 20th European Symposium on Algorithms (ESA’12), 825-836.
https://doi.org/10.1007/978-3-642-33090-2_71

[11] Iliopoulos, V. (2013) Quicksorting on Multiple Pivots and a Vandermonde Matrix. Seminar
in the Department of Mathematical Sciences, University of Essex, Colchester.

[12] Iliopoulos, V. (2013) The Quicksort Algorithm and Related Topics. PhD Thesis, Depart-
ment of Mathematical Sciences, University of Essex, Colchester.
http://repository.essex.ac.uk/13266

[13] Regnier, M. (1989) A Limiting Distribution for Quicksort. RAIRO—Theoretical Informat-
ics and Application, 23, 335-343.

[14] Roesler, U. (1992) A Fixed Point Theorem for Distributions. Stochastic Processes and Their
Applications, 42, 195-214. https://doi.org/10.1016/0304-4149(92)90035-O

[15] Rosler, U. (2001) On the Analysis of Stochastic Divide and Conquer Algorithms. Algorith-
mica, 29, 238-261. https://doi.org/10.1007/BF02679621

[16] Fill, J.A. and Janson, S. (2001) Approximating the Limiting Quicksort Distribution. Ran-
dom Structures Algorithms, 19, 376-406. https://doi.org/10.1002/rsa.10007

[17] El-Desouky, B.S. and Cakic, N.P. (2011) Generalized Higher Order Stirling Numbers. Ma-
thematical and Computer Modelling, 54, 2848-2857.
https://doi.org/10.1016/j.mcm.2011.07.005

[18] El-Desouky, B.S., Cakic, N.P. and Mansour, T. (2010) Modified Approach to Generalized
Stirling Numbers via Differential Operators. Applied Mathematics Letters, 23, 115-120.
https://doi.org/10.1016/j.aml.2009.08.018

[19] El-Desouky, B.S, El-Bedwehy, N., Mustafa, A. and Menem, F. (2014) A Family of Genera-
lized Stirling Numbers of the First Kind. Applied Mathematics, 5, 1573-1585.
https://doi.org/10.4236/am.2014.510150

[20] Fill, J.A. and Janson, S. (2004) The Number of Bit Comparisons Used by Quicksort: An Av-
erage-Case Analysis. ACM-SIAM Symposium on Discrete Algorithms, New Orleans, 11-13
January 2004, 300-307.

[21] Knuth, D.E. (1973) The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, Upper Saddle River.

[22] El-Desouky, B.S. (2011) Generalized String Numbers of the First Kind: Modified Approach.
Journal of Pure and Mathematics Advances and Applications, 5, 43-59.

https://doi.org/10.1142/S1793830912500413
https://doi.org/10.1007/978-3-642-33090-2_71
http://repository.essex.ac.uk/13266
https://doi.org/10.1016/0304-4149(92)90035-O
https://doi.org/10.1007/BF02679621
https://doi.org/10.1002/rsa.10007
https://doi.org/10.1016/j.mcm.2011.07.005
https://doi.org/10.1016/j.aml.2009.08.018
https://doi.org/10.4236/am.2014.510150

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact ojmsi@scirp.org

http://papersubmission.scirp.org/
mailto:ojmsi@scirp.org

	Analysis of the Multi-Pivot Quicksort Process
	Abstract
	Keywords
	1. Introduction
	2. Multi -Pivot Quicksort
	3. Quicksort
	4. Conclusion
	Acknowledgements
	References

