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Abstract 
It is in general accepted that the concept of continuous trajectories for particles is at 
odds with the relativistic quantum mechanics. Namely, when examining the evolu-
tion of entangled quantum objects according to frames of coordinates in relative move- 
ment, one gets contradictory trajectories. Such a situation is typically derived from 
the famous “Hardy’s paradox”. However, it is argued here that if the rationale ignores 
the principle of quantum contextuality, as happens typically when using Hardy’s 
thought-experiment, the conclusion—rejection of the assumption of trajectories—is 
questionable. The issue is exemplified by an additional example: the 101 property of 
spin 1 bosons implies conflicting trajectories when the singlet state of two such bo-
sons is examined according to frames in relative movement. It is concluded here that 
in the absence of a rationale which doesn’t violate the quantum contextuality, there 
are no sufficient arguments for refuting the possibility of a substructure of the quan-
tum mechanics, consisting in particles following continuous trajectories. 
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1. Introduction 

The formalism of the quantum mechanics (QM) proved itself able to explain many 
phenomena in the microscopic world. Though, when the question is asked whether the 
QM is an ultimate theory, with no substructure, it is difficult to give a definite answer. 
The measurement process was not explained in entirety, until now, with the QM for-
malism. For the final step of the measurement, i.e. with a macroscopic apparatus, J. von 
Neumann introduced the postulate of wave-function collapse. Next, the nonlocal cor-
relations appearing in the phenomenon of entanglement seem to imply that results of 
present measurements depend on data of future experiments. 
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Different attempts were done for eliminating the collapse postulate. A widely known 
attempt is due to L. de Broglie [1], and later on to D. Bohm [2] [3], who proposed a 
substructure of the QM consisting in particles which travel along continuous trajecto-
ries. For these trajectories, the wave-function is supposed to represent some sort of 
guide-wave, defining which trajectories are allowed and which are forbidden. Thus, 
when detection is reported at a certain position in space, it is assumed that a particle 
was present at that position prior to the detection, and that the position pertains to a 
continuous trajectory of the particle. 

However, the Bohmian mechanics was proved unfit for explaining the evolution of 
identical quantum particles. As proved by P. Ghose [4] [5] [6] (see also the experiments 
of Brida [7] [8]), and recently by S. Wechsler [9], the velocity formula in Bohm’s me-
chanics leads to clash with the experiment.1 

Though, a particular formula in some formalism may be replaced, eventually, within 
an improved formalism. Therefore, the present article poses a more general problem: 
leaving aside any particular formula, is the very idea of particles following continuous 
trajectories, wrong?  
By continuous trajectories it’s understood here that a particle doesn’t jump from a re-
gion in space, to another region, space-separated from the former by a gap in which the 
wave-function is null. 

Since 1992 when L. Hardy published his famous “paradox” [14], it is believed that the 
idea of continuous trajectories is at odds with the theory of relativity. It is known that 
the theory of relativity excludes the existence of a preferred frame, s.t. the evolution of a 
quantum system may be examined according to any frame of coordinates and leads to 
the same final predictions. Hardy’s article showed that the concept of elements of reali-
ty appears as contradictory, when the evolution of two entangled particles is examined 
according to frames of coordinates in relative movement. The elements of reality can 
easily be translated into trajectories for particles, which therefore appear as contradic-
tory—see for instance [15] [16].  

The present article brings an additional example of contradiction between trajecto-
ries. The analysis is done on the singlet states of spin 1 bosons, using the 101 property 
of these bosons. According to different frames of coordinates the wave-function of the 
system evolves differently, s.t. one infers a different pair of trajectories for the entangled 
particles. However, at an attentive examination, one can see that what changes from 
frame to frame is the quantum context: while one of the bosons—let’s name it A — 
passes through an apparatus A, the other boson—let’s name it B —passes according 
to one frame through an apparatus B, and according to another frame, through an ap-
paratus C.  

The principle of quantum contextuality states the following: 
Given an operator Â  which commutes with two operators, B̂  and Ĉ , which do 

not commute with one another, a measurement of Â  together with B̂  may produce 
a different result for Â  than a measurement of Â  together with Ĉ ; the operator 

 

 

1A debate, mainly lead by Marchildon [10] [11] [12], arose around P. Ghose’s first articles against Bohm’s 
formalism, but P. Ghose refuted the criticism [13], and later on, he proved that the Bohmian velocity leads to 
a contradiction in connection with the so-called “quantum equilibrium” [6]. 
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B̂  (or Ĉ ) represents the context of the measurement of Â . 
For the proof of this principle see for instance [17] and the references inside, and [18].  

Berndl and Goldstein [19] applied this principle to “Hardy’s paradox” pointing to a 
problem with the quantum contextuality.2 

The present text analyses the consequences of the contextuality on the supposed sub-
structure. The path followed by A  when exiting the apparatus A, appears as ambi-
guous, depending on the frame by which one judges. Such a situation is unacceptable: if 
the concept of trajectories is correct, the path taken by the boson A  is only one.  

Given that the reasoning with moving frames predicts contradictory trajectories, the 
question arises what exactly is wrong here: the concept of trajectories, or the use of 
moving frames in combination with ambiguous contexts? 

If a concept is wrong, it should lead to contradictions also when judging within one 
single frame. So, for ruling out the concept of trajectories for particles, a proof which 
reasons in one single frame of coordinates is needed. Whether such a proof can be done, 
it’s for the moment an open question.3 Anyway, as long as no such proof is available, a 
substructure of the QM, with particles following continuous trajectories, is not ex-
cluded.  

The next sections are organized as follows: Section 2 presents the main physical 
properties to be used in the text. Section 3 examines the evolution of a singlet of bosons 
according to the QM, in a rest-frame—the frame in which the setups are at rest. Section 
4 does the analysis in the light of the hypothesis of trajectories, first according to the 
rest-frame, then, according to a frame in movement with respect to the rest-frame. A 
contradiction is shown to appear, and is explained as arising from making predictions 
for one and the same result in the presence of differing contexts. Section 5 contains 
discussions and stresses questions that remain open. Section 6 contains conclusions. 
The Appendixes detail part of the calculi done in the text. 

2. Some Properties of the Spin 1 Bosons 

We are going to work, for simplicity, with a system of units in which 1= .  
The properties of spin 1 bosons relevant here were presented in [18]. They are briefly 

reminded below.  
Since the spin 1 bosons have the total squared spin equal to 2, given any three direc-

tions in space mutually orthogonal two by two—let’s call them X, Y, Z—the squared 
spin-projections 2SX , 2SY , 2SZ , obey the 101 property. Namely, at a measurement of 
these three observables, two of them produce the outcome 1, and the remaining one 
produces the outcome zero. 

Two spin 1 bosons can form the entangled state 

( )  1 1 1 1
3

1 0 0ψ ′ ′= − −Q Q Q Q Q Q                (1) 

 

 

2Berndl and Goldstein pointed to the fact that standard QM makes predictions only for what is measured— 
elements of reality can’t be measured—and argued that if Hardy’s rationale would have dealt only with meas-
ured observables, the quantum contextuality principle would eliminate the paradox. 
3M. Zirpel tried to do an anti-trajectory proof reasoning in a single frame of coordinates [20]. He tried to rely 
on CHSH-type experiments on entangled particles and on the violation of the CHSH inequalities. However, 
he also assumed ambiguous contexts, exactly as if working with moving frames. 
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where Q is an arbitrary direction in space, and { } 1 , , 10 ′
Q Q Q

 are the eigenstates of 
the operator 2ŜQ  corresponding to the eigenvalues 1, 0 and again 1—see the formulas 
(A1) and (A2) in Appendix A. Note that the eigenvalue 1 is degenerated. The state (1) 
represents a singlet state—the total spin of the two particles is zero—see explanation in 
[18]. 

In this text, each product of states is ordered with the state of boson A  on the left, 
and the state of boson B  on the right; a base like { } 1 , , 10 ′

Q Q Q
 will be denoted 

in short as {Q}. 
Four properties will be extensively used in the next sections: 
(a) The state (1) is invariant at the change of the direction Q. That can be easily 

proved by substituting in (1) the equations (A2) with arbitrary angles θ and φ—see 
Appendix A, or the proof in [18].  

(b) The expression of the state (1) reveals the nonlocal property of this state, that if 
one particle is tested on some direction whatsoever, the other particle behaves as if it 
got on that direction, the same squared spin projection.  

(c) If two directions are mutually perpendicular, ( )⊥P R , the operators 2ŜP  and 
2ŜR  commute, as one can check on the matrices (A1) for two vectors P and R of angles 

θp , φp , respectively θR , φR , chosen so that 0=P R . Therefore, the respective ob-
servables 2SP  and 2SR  can be measured on the same particle and in any order. 

(d) For ( )⊥P R  the 101 property entails: 
2 20 1S S= ⇒ =R P                            (2) 

It has to be noticed that the opposite implication is not true. 
About the property (b), attention should be paid to the fact that this property acts as 

long as the entanglement is preserved. If the entanglement is broken, i.e. if it is trun-
cated to a single product of independent states of the two bosons, the nonlocal correla-
tion between particles is destroyed. 

3. A Thought-Experiment and Its Quantum Analysis  
in the Rest-Frame 

Two spin 1 bosons, A  and B , are produced in the singlet state (1). Then, they fly 
apart, the boson A  to the station of the experimenter Alice, and the boson B  to the 
station of the experimenter Bob. Each boson passes through a series of Stern-Gerlach 
apparatuses (SGs), Figure 1. The SGs in each station are organized in pairs. In each 
pair, the first SG, called below “splitter”, splits the incident wave-packet into three 
wave-packets corresponding to the three spin-projections on the magnetic field direc-
tion. The second SG in the pair, called below “merger”, has the magnetic field opposite 
to that of the splitter, s.t. it merges the three wave-packets back into one. The magnetic 
field directions of the splitters are shown in Figure 2. 

Note 1: with the today techniques, the SG merger doesn’t restore the wave-packets 
that entered the splitter, with high-fidelity. Also, these apparatuses are long, which is 
inconvenient too. High-precision, much smaller apparatuses are desirable. However, 
what is examined here is a thought-experiment, technical difficulties being left aside 
hoping for future improvements. 
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Figure 1. An experiment with the singlet of spin 1 bosons. The two bosons enter simultaneously 
the setups in the two stations. Each boson passes through a couple of SG pairs. For distinguishing 
between splitter and merger, the index of the label of the latter is marked with an upper bar. For 
clarity, the paths of the boson A  are orange colored, and those of the boson B  light-blue 
colored. The dark paths and the arrows will be explained in later sections. The axis t indicates the 
time in a frame where the two stations are at rest—named here “rest-frame”. Detectors—violet— 
are placed on the paths 0b′  and c0, and on the final splitter-merger pairs, for selecting the pairs 

which produce 2 2 1S S′ = =B C , and the final results. 

 

 
Figure 2. 6 particular directions in space. This figure is adapted from [17]. Each one from the 6 
directions of the splitters passes through one of the dots on the cube and through the cube center 
O (not shown). The red dots correspond to the reference axes X, Y, Z. The green dots corres-
pond to directions on which it is assumed in the text that the squared spin-projection is zero. The 
blue dots correspond to directions on which the squared spin-projection is assumed to be 1. The 
black dots are auxiliary, needed in the calculi in Appendix A. 
 

By rest-frame is understood here the frame of coordinates according to which both 
Alice’s and Bob’s setups, are at rest. 

Note 2: in the present proof we work with the squared spin-projections. However, an 
SG doesn’t split a wave-packet according to the squared spin projections, but only ac-
cording to the simple spin projections. We overcome the problem by placing a detector 
only on the central beam exiting a splitter, and/or on the beam exiting a merger. If the 
central wave-packet exiting a splitter SGQ  produces a detection, the result obtained is 

2 0S =Q . But if the wave-packet exiting a merger SGQ  produces a detection, the result 
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is 2 1S =Q . 
The experiment is supposed to be performed in a dynamical way: a detector is placed 

on a beam after the respective wave-packet exited the SG apparatus. 
Figure 1 shows that the first measurements done by the experimenters are along the 

direction ′B  at Alice’s station, and along the direction C  at Bob’s station. In this 
experiment we retain only the pairs which produce 2 2 1S S′ = =B C . That truncates the 
wave-function (1) to 

 
1 1 1 1'2 11 1 1

5 2 3

 ι 2  2ι 2 51
3 3 33

ϑ ′ ′ ′ ′
 ′

′ = +
 
 

+ +
− B B B B

C C
     (3) 

as one can check by setting in (1) ′=Q B , then using the transformation (A18) in 
Appendix A. 

In continuation we describe the main steps of the evolution of the wave-function ac-
cording to the rest-frame, the frame of coordinates by which all the setups are at rest.  

When the boson B  exits the splitter SGA  the boson A  travels toward the 
merger SG ′A . The wave-function describing this situation is obtained by passing in (3) 
from the base { ′B } to the base { ′A }—transformation (A17), and from the base { C } to 
{ A }—transformation (A19), 

1 1 1 12 0 0 0 0
45

1 1 ι 1 3 15        .
2 2

ι 3  ι 3
2 2

2 2

 ι 3
2

ϑ ′ ′
′ ′

′ ′

 ′ ′
=



′ ′+ +
+



+ +
− +A A A A

A A A A

A A A A

   (4) 

One can see that if the observables 2S ′A  and 2SA  were measured, the joint result 
2 2 0S S′ = =A A  could be obtained with the probability, 4/45. This fact will have a special 

importance in Section 4. 
Next, when the boson A  exits the splitter SG ′D , the boson B  travels toward the 

merger SGA . The wave-function for this situation is obtained by substituting in (4) 
the transformation (A16) from the base { ′A } to the base { ′D }, 

1 1 1 1 1 12 1 30 0 0  .
215 2

ι 3 ι ι 3
2 2 2

ϑ ′ ′
′ ′

 ′ ′ ′
 = + +
 
 

+ + +A A D D A A
D A D

 (5) 

Finally the boson B  exits the splitter SGD . Using the base-transformation (A15) 
the wave-function becomes 

ι 1 1 1 1 1 1 1 12 2 1 0  0
5 52 5

 ι  ι ι
2 2 2

ϑ ′ ′ ′ ′
′

′ ′ ′ ′+
= − +

+ + +D D D D D D D D
D D (6) 

On this wave-function are done measurements. One can see that three combina- 
tions of outcomes are possible: 2 0S ′ =D  and 2 1S =D ; or, 2 1S ′ =D  and 2 0S =D ; or, 

2 2 1S S′ = =D D . The combination 2 2 0S S′ = =D D  is forbidden by the property (d), section 
2, because ( )′ ⊥D D  as Figure 2 shows. Let’s stress that each one of 2SD  and 2S ′D  is 
measured on another particle. Though, as long as the entanglement is preserved—so 
happens in the wave-function (6)—the nonlocal property (b) ensures that the perpen-
dicularity of the directions D  and ′D  is “felt” by both particles in the pair. 
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4. Analysis of the Thought-Experiment Assuming  
Continuous Trajectories 

In this section we assume a substructure of the QM, consisting in particles traveling 
along definite trajectories. For distinguishing between these hypothetical particles and 
the bosons A  and B  possessing the standard properties of quantum objects, we 
denote the hypothetical particles by hA  and hB  respectively. We are going to try 
finding possible trajectories for hA  and hB . We begin by seeking trajectories com-
patible with the wave-function as it evolves in the rest-frame—Figure 1. After that, we 
will seek trajectories allowed by the wave-function as it evolves according to a frame in 
movement from Alice’s station to Bob’s station—Figure 3. 

Let’s remind that we speak here of a dynamical experiment, as said in the beginning 
of the Section 3. Therefore, the correlation between responses of the two bosons, if 
measurements were done, should have existed between the paths picked by the hypo-
thetical particles at the exit of the splitters. Indeed, the assumption of continuous tra-
jectories implies that the hypothetical particles don’t jump from one path to another. 

In the former section was shown that if the observables 2S ′A  and 2SA  were meas-
ured, one would obtain the joint result 2 2 0S S′ = =A A  with the probability, 4/45. 
Adapting this conclusion to the substructure of particles and trajectories, it entails that 
there is a non-zero probability that in the same trial of the experiment hA  choose the 
path 0a′  and hB  choose the path a0. It’s these trials on which we focus or attention 
in this section. 

4.1. Analysis According to the Rest-Frame 

The wave-function (5) shows that if hB  chose the path a0, hA  has to choose the 
path 0d′ —implication marked in Figure 1 by a light-blue arrow. That imposes further, 
according to the final wave-function (6), that hB  may take in the splitter SGD  only 
a lateral path, d+, or d–. The state (6) is tested experimentally and the trajectories ob-
tained above determine the outcome 

2 0S ′ =D  and 2 1.S =D                            (7) 

 

 
Figure 3. Trajectories according to the moving frame. If the trajectories are objective, the trajectory inferred according 
to the rest-frame should be valid here too. Though, the paths predicted at the exit of the final splitters contradict the 
predictions in the rest-frame.  
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4.2. Analysis According to the Moving Frame 

Let’s consider a frame of coordinates in movement with respect to the rest-frame. 
Passing from one frame to another one, moving with some velocity V with respect to 
the former, entails changes in the electromagnetic field and in the spin direction [21]. 
However, the velocities involved here are supposed to satisfy 2 2cV  , s.t. these 
changes can be neglected, as explained in Appendix B.  

The velocity V is also supposed to be tuned so as the boson B  exit the splitter 
SGD  while the boson A  is on its way toward the merger SG ′A —Figure 3. The 
wave-function for this situation can be obtained by substituting in (4) the transforma-
tion (A15) from the base {A} to the base {D}, 

1 1 1 1 ι 1 12 1 30 0 | 0  
215 2 2

 ι 3  ι 3
2 2

ϑ ′ ′ ′ ′
′

 ′ ′ ′+ + +
 = − 〉 +
 
 

A A A A D D
DA D

   (8) 

Since we consider the cases in which hA  chooses the path 0a′ , the wave-function 
(8) implies that hB  exits SGD  on the path d0-implication marked in Figure 3 by an 
orange arrow. At this step the boson B  is tested experimentally, and since hB  is 
on the path d0 the outcome is 2 0S =D . That already contradicts the relations (7). 

The outcome 2 0S =D  truncates the wave-function (8) to a product of independent 
states of the two bosons 

1

1 0 12 0
5

 ι 2 2 3
2 3

ϑ ′ ′ ′
′+

= −
−A A A

D                   (9) 

obtained by retaining in (8) the terms with 0 D , i.e. the terms corresponding to 
2 0S =D . Comparing (9) with the identity (21) it becomes evident that the particle hA  

would be sent by the splitter SG ′D  to a lateral path. Thus, the measured joint result 
has to be 

2 1S ′ =D  and 2 0.S =D                           (10) 

It is opposite to the predictions (7). Obviously, the reason behind this contradiction 
is the changed context: the outcome 2 1S =D  in (8) was obtained in the context that 

hA  travels on the path 0d′ , while the prediction 2 0S =D  is obtained in the context 
that hA  travels on the path 0a′ . 

5. Discussions and Open Questions 

It is not the purpose of this article to advocate for a substructure of the QM, but to 
claim that this substructure cannot be refuted in the absence of a proof that won’t ig-
nore the quantum contextuality—desirably, a proof within one and single frame of 
coordinates. 

Since the substructure discussed here is at odds with reasoning by moving frames, 
because of the ambiguity in quantum context entailed by the latter, that means the sub-
structure requires a preferred frame of coordinates. The theory of relativity holds that 
there is no preferred frame, and the relativistic QM deals by definition with the trans-
formation of wave-functions from one frame to another. If particles follow trajectories, 
these trajectories should transform covariantly from one frame to another. But the pre-
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vious sections showed a clash between trajectories found by different frames, not a co-
variant transformation. This is an argument against the above substructure. 

However, entanglements have properties outside the relativistic theory of QM: in-
stantaneous mutual influence at a distance between entangled particles is not a predic-
tion of this theory. It isn’t produced by any type of field that transforms according to 
the Lorentz transformations, but by the superposition of multiparticle amplitudes 
which occurs in multiparticle interferometry, a phenomenon alien to the physics of the 
macroscopic objects. 

Besides, if one denies the existence of a preferred frame, one comes to a harder prob-
lem: by the time-axis of the rest-frame, the boson A  is tested before the boson B . If 
A  produces the outcome 2 0S ′ =D , the boson B  can produce in continuation only 
the response 2 1S =D —relations (7).  

However, by the time-axis of the moving frame, Section 4.2, it’s the boson B  that 
is tested before A , and of course, before A  produces its response. The question aris-
es, what impedes B  to produce the outcome 2 0S =D  (which contradicts (7))? The 
future response 2 0S ′ =D  of A ? Is there interdependence between present and future? 

6. Conclusions 

The problem posed in this text was whether it is possible to assume a substructure of 
the QM, consisting in particles following defined, continuous, trajectories. It was ar-
gued that as long as there is no proof against trajectories within a single frame of coor-
dinates—more exactly, a proof that does not rely on ambiguous quantum context— 
there is no solid ground to refute this substructure. 

The analysis discussed the general possibility of trajectories for particles, in the sense 
that it did not restrict itself to any particular formalism for trajectories, as for example 
Bohm’s formalism. This generality is important because, while Bohm’s formalism was 
proved incompatible with the experiment, a different formalism may eventually be 
proved compatible. The only restriction admitted here was continuity of the trajectories, 
in the sense that a particle doesn’t jump over regions where the wave-function is null. 
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Appendix A 

The general expression of the squared spin-projection operator for an arbitrary direc-
tion Q is  

( )

( )

2 1 2 ιφ 2 2ιφ

2 1 2 ιφ 2 1 2 ιφ

2 2ιφ 1 2 ιφ 2

1 cos θ 2 2 sinθ cosθ e 1 2sin θ e
ˆ 2 sinθ cosθ e sin θ 2 sinθ cosθ e .

1 2  sin θ e 2 sinθ cosθ e 1 cos θ 2

S

− − −

− − −

−

 +   
 
 =  −  
 
  −   + 

Q    (A1) 

Here, θ  is the angle between the direction Q and the axis Z, and φ  is the angle 
between the projection of the direction Q on the x-y plane, and the axis X. The eigen-
values of this operator are 1 and 0, the eigenvalue 1 being degenerated. We will denote 
by 1 , 0 , 1′

Q Q Q , the following eigenstates: 
ιφ 1 2 -ιφ 1 2 -ιφ

1 2 ιφ 1 2 ιφιφ

e 2 sinθe 2 cosθe
, 0 cosθ , 1 sinθ .

2 sinθe 2 cosθee

11 0
2

− − −

− −

     −
     ′= =     
       −    

=Q Q Q      (A2) 

1 Q  and  1′
Q  corresponding to the eigenvalue 1, and 0 Q  corresponding to the 

eigenvalue zero. These three eigenstates form a base in the vector space of states of the 
squared spin projection. 

For the calculi that follow, one can take in Figure 1 the distance OX  as the unit, 
where the notation ⋅  means length of segment. Then, one easily finds that  

OX OY OZ 2= = =                      (A3) 

OA OE OE 3′= = =                      (A4) 

OD OD 2.′= =                          (A5) 

From this, one can deduce further the following angles and sine values:  

α∠ =ZD , sinα 2 2=                       (A6) 

β′ ′∠ = ∠ = ∠ = ∠ =XA A X E Y YE , sinβ 1 3=             (A7) 

γ′ ′∠ = ∠ = ∠ =C E BE EC , sin γ 1 2.=                  (A8) 

In Figure 1 one sees that the direction A lays in the plane x-y, s.t. it makes an angle 
θ π 2=  with the axis Z; with the axis X it makes the angle XOA β= . Then from (A2), 

ιβ ιβ

ιβιβ

e  e 0
11 , 0 0 , 1 1 .
2 e 0e

1 0
2

− −   −       ′= =     
         

=A A A            (A9) 

In Figure 1 one sees that the direction ′A  also lays in the plane x-y, s.t. it makes an 
angle π 2θ =  with the axis Z; with the axis X it makes the angle XOA β= − . There-
fore, using the formulas (A2), 

ιβ ιβ

ιβ ιβ

e e 0
1 0 , 0 , 1' 1 .

0e e

1 1 0
2 2′ ′ ′

− −

   −       =     
             

= =A A A             (A10) 
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For obtaining the eigenfunctions of 2Ŝ ′B  one can see from Figure 1 that the direc-
tion ′B  makes with the axis Z an angle θ π 2 E OB π 2 γ′ ′= + = + . The projection of 

′B  on the plane x-y is the direction ′E  which makes with X the angle  
 φ π 2 E OY π/2 β′= − = − . Using these data in (A2), 

 

ιβ ιβιβ

ιβιβ ιβ

3 e  ee
ι ι1 0 , 0 ι 2 , 1 ι 6 .

2 2 2 2  ee 3 e

ι  
2′ ′ ′

−− −

    −
    

′ = = −  
            

=B B B
    (A11) 

The direction C makes with the axis Z an angle θ π 2 EOC π 2 γ= + = + . The pro-
jection of C on the plane x-y is the direction E, which makes with X the angle  

φ π 2 YOE π 2 β.= + = +  

Thus, 
ιβ ιβ ιβ

ιβ ιβιβ

e 3 e e
ι ι1 0 , 0 ι 2 , 1 ι 6 .

2 2 2 2
3 e ee

ι
2

− − − −    
     
    ′  = = −
     

       

=C C C      (A12) 

The direction D makes an angle θ π α= −  with Z—see the formulas (A6)—while its 
projection on the plane x-y is the very axis X s.t.  φ 0= . Then, 

1 2 1 21

1 , 0 1 2 , 1 1 2  .
1 2 1 21

1 0
2

−    
     ′= =    
     −     

=D D D
           (A13) 

The direction ′D  makes with Z  the angle θ α= , and its projection on the plane 
x-y is again the axis X  s.t. φ 0= . Therefore, 

1 2 1 21

1 , 0 1 2 , 1 1 2  .
1 2 1 21

1 0
2′ ′ ′

−    
    

′= =    
     −     

=D D D
          (A14) 

The following scalar products are needed in the text and can be calculated from the 
above sets of vectors: 

 

2 ι1 1 ,        1 0 ,       1 1 0,
3 3

ι 1 10 1 ,         0 0 ,      0 1 ,
6 3 2

ι 1 11 1 ,        1 0 ,     1' 1 .
6 3 2

′= = =

′= = = −

′ ′ ′〈 = = =

D D DA A A

D D DA A A

D D DA A A

      (A15) 

2 ι1 1 ,       1 0 ,      1 1 0,
3 3

ι 1 10 1 ,     0 0 ,        0 1 ,
6 3 2

ι 1 11' 1 ,       1 0 ,      1 1 .
6 3 2

′ ′ ′

′ ′ ′

′ ′ ′

′= = − =

′= − = =

′ ′ ′= = − =

D' D' D'A A A

D' D' D'A A A

D' D' D'A A A

      (A16) 
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ι 3 ι1 1 0,      1 0 ,      1 1 ,
2 2

0 1 ι,       0 0 0,          0 1 0,

1 31 1 0,       1 1 ,       1 1 .
2 2

′ ′ ′′ ′ ′

′ ′ ′′ ′ ′

′ ′ ′′ ′ ′

′= = =

′= = =

′ ′ ′ ′= = − =

A A AB B B

A A AB B B

A A AB B B

        (A17) 

1 ι 2 ι 21 1 ,        1 0 ,       1 1
3 33
ι 2 1 10 1 ,       0 0 ,            0 1 ,

23 2 3
ι 2 1 51 1 ,       1 0 ,     1 1 .

3 62 3

′ ′ ′

′ ′ ′

′ ′ ′

′= − = − =

′= = =

′ ′ ′ ′= = − = −

C C CB B B

C C CB B B

C C CB B B

      (A18) 

ι 3 ι1 1 0,        1 0 ,         1 1 ,
2 2

0 1 ι,        0 0 0,              0 1 0,

1 31 1 0,       1 0 ,          1 1 .
2 2

′= = =

′= = =

′ ′ ′ ′= = − =

A A AC C C

A A AC C C

A A AC C C

        (A19) 

Identities: 

1 0 1 1 1ι 2 2 3 ι
2 3 2

′ ′+ + +
=A A A D D             (A20) 

1 0 1 1
.

 ι 2 2 3 ι |1 
2 3 2

′′ ′ ′ ′
′ ′+− 〉 +

= DA A A D           (A21) 

Appendix B 

The change in the electromagnetic field when passing from the lab frame to a frame 
moving with a velocity V is given by the Lorentz transformation, 

( ) ( )
( )lab

fr lab lab
21γ γ

⋅
= + × + −

V E
E E V B

V
V

             (B1) 

( )
( )lablab

fr lab
2 2c

1γ γ
⋅ 

− 
 

×= + −
V BV EB B

V
V

            (B2) 

where ( ) 1 22 21 cγ
−

= − V . We suppose here 2 2cV   s.t. we can approximate 1γ ≈  

and ignore ( )1 γ− . 

No electric field acts on the bosons in the lab, lab 0=E , as to frE , (B1), it is not re-
levant since we assume neutral particles. Thus the fields acting on the particles are the 
magnetic fields of the SGs, and with the above approximations, 

fr lab=B B                          (B3) 

The spin of a particle also changes when passing from one frame to another. Let’s 
denote as S0 the spin of the particle according the frame in which the particle is at rest.4 

 

 

4One has to distinguish between the frame in which the particle is at rest, and the rest-frame defined in this 
text as the frame in which the setups are at rest. 
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In a frame moving with a velocity U with respect to the rest-frame of the particle, the 
spin is [21] 

( )2
0

0 2 .
1 c

γ
γ

⋅
= +

+
UU S

S S                      (B4) 

The bosons in this text are considered non-relativistic particles, s.t. their absolute ve-
locities v  with respect to Alice’s and Bob’s labs, satisfy 2 2cv . Next, the velocity V 
of the moving frame defined in the subsection 4.2., with respect to Alice’s and Bob’s 
labs, satisfies 2 2V c  as said above. Therefore one can approximate 

fr lab
0 .= =S S S                           (B5) 
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