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Abstract 
In the change detection application of remote sensing, commonly the varia-
tion in the brightness values of the pixels/objects in bi-temporal image is 
used as an indicator for detecting changes. However, there exist effects, oth-
er than a change in the objects that can cause variations in the brightness 
values. One of the effects is the illumination difference on steep surfaces 
mainly steeproofs of houses in very high resolution images, specifically in 
off-nadir images. This can introduce the problem of false change detection 
results. This problem becomes more serious in images with different view- 
angles. In this study, we propose a methodology to improve the building 
change detection accuracy using imagery taken under different illumination 
conditions and different view-angles. This is done by using the Patch-Wise 
Co-Registration (PWCR) method to overcome the misregistration problem 
caused by view-angle difference and applying Topographic Correction (TC) 
methods on pixel intensities to attenuate the effect of illumination angle 
variation on the building roofs. To select a proper TC method, four of the 
most widely used correction methods, namely C-correction, Minnaert, En-
hanced Minnaert (for slope), and Cosine Correction are evaluated in this 
study. The results proved that the proposed methodology is capable to im-
prove the change detection accuracy. Specifically, the correction using the 
C-correction and Enhanced Minnaert improved the change detection accu-
racy by around 35% in an area with a large number of steep-roof houses 
imaged under various solar angles. 
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1. Introduction 

There are numerous papers published in the remote sensing literature for build-
ing change detection in which the intensity variation on the building roofs are 
taken as the change criterion since the roofs are more easily observable in the 
remote sensing images compared to other parts of the buildings. In most of stu-
dies in this field, the images used are assumed to be taken under similar imaging 
conditions regarding view-angles [1] [2] [3] [4]. In these studies, the variation in 
the brightness values alone [1] [2] [3] [4] or along with the elevation informa-
tion is used for change detection [5] [6] [7]. Recently, there is a raising interest 
in using multi view-angle images for urban and specifically building change de-
tection [8] [9]. Using multi view-angle images for urban change detection has 
two main challenges: misregistration and intensity difference. The misregistra-
tion problem comes from different layout of the high elevated objects due to the 
relief displacement effect and has already been addressed by methods using the 
back-projection concept in the literature [8] [9]. The intensity difference on the 
other hand comes from causes like seasonal or sensor specification differences 
and has been addressed by linear methods like Multivariate Alteration Detection 
(MAD) and non-linear approaches like mutual information in the literature. The 
MAD method uses a linear function to transfers the brightness values to another 
space in which the difference is highlighted [10] [11], while the non-linear ap-
proaches are based on the image histograms and the information content of the 
corresponding pixels [12]. In both cases, the variations in the brightness values 
play an important role in change detection. However, other than changes, the 
variation of pixel brightness values in bi-temporal images depends as well on 
factors such as solar angles and topographic effects which cannot be compre-
hensively addressed by the linear or non-linear approaches.  

The irradiance received from a certain point on the ground surface depends 
on four angles, which identify the solar illumination angle: solar azimuth, solar 
elevation, ground slope, and ground aspect. Figure 1 depicts a 2D schema of the 
solar illumination angle variation on a simple pitched roof. Solar illumination 
angle can vary due to steep surfaces not only from one side of the roof to anoth-
er side but also from one image to another thoroughly depending on the shape 
of the roofs and solar angles of the images. This variation results in differences in 
the radiance detected by the imaging sensors from the corresponding objects on 
the ground [13]. 

Figure 2 depicts an example of the intensity variation on steep roofs in 
bi-temporal images due to illumination angle differences. Steep surfaces of the 
roofs, largely found in the areas with high amount of rain/snowfall, can cause var-
iations in the associated pixel brightness values due to differences in the illumina-
tion angles, and not to real changes in the building roofs. This can adversely affect 
the building change detection results in either linear or non-linear methods. 

The main purpose of this study is to present a change detection framework to 
improve the building change detection using multi view-angle images. To do 
this, the PWCR method is used to overcome the misregistration problem of such 
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Figure 1. Variation of solar illumination angle (γ), due to solar radiation angle (θi) and 
roof slope (θp). 

 

 
Figure 2. Intensity variation on different parts of steep roofs in two images acquired from 
the same area. In image (a) the northern parts of the roofs are brighter compared to the 
other parts, while in (b) the eastern parts are brighter.  

 
images. Also, to compensate for intensity difference due to different solar illu-
mination angles, the TC methods are used to attenuate the brightness value var-
iations due to roof shapes.  

In this study, after registering the images in a patch-wise manner, the slope 
and angle layers are generated using one single DSM. Then, since the direct reg-
istration between the slope and aspect layers, generated in the object space, and 
images, generated in off-nadir conditions, is not possible, the layers are pro-
jected to the image spaces using the associated orientation parameters. Then, the 
TC methods are applied to the brightness values of the pixels in each patch to 
correct them. Finally, to compensate any spectral and radiometric differences 
between the bi-temporal images, MAD transform is performed to detect the 
changed buildings.  

The effect of topography, i.e., steep surfaces in our case, on the pixel bright-
ness values of the remotely sensed images has been studied for over three dec-
ades since this effect has a significant impact on the quantitative analysis of re-
motely sensed data [14]. There are numerous TC methods in the literature that 
compensate for differences in the solar illumination due to terrain shape irregu-
larities in dealing with large scale objects such as mountains and hills, generally, 
in low to moderate resolution satellite images [15]. However, to the best of our 
knowledge, it has never been used as a tool for improving the change detection 
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results in very high resolution (VHR) images. 
The hypothesis of this study is whether the intensity correction based on TC 

methods are proper for building roof change detection or if the methods mani-
pulate the brightness values excessively so that the change detection results are 
negatively affected. Thus, we tested four of the most widely used correction me-
thods (C-correction, Minnaert, Enhanced Minnaert, and Cosine Correction) and 
compared the respective results to the original brightness values without any 
corrections to see which ones perform better in building change detection.  

When it comes to building change detection, it is important to identify what 
sort of changes are concerned. Generally, remote sensing image-based change 
detection methods can detect changes in the spectral properties of the building 
roofs, such as a demolished building, or the changes in the shape of the build-
ings, such as a widened building. In this study, our interest is in detecting the 
spectral changes.  

2. Study Area 

We tested the proposed change detection framework on three images from the 
city of Fredericton, NB, Canada. The area is full of steep-roof buildings with va-
rying brightness values in different images, which creates problems for the typi-
cal change detection methods. The bi-temporal datasets are selected from two 
Worldview-2 images acquired in 2011 and 2013 with off-nadir view angles of 15˚ 
and 27˚, respectively, as well as one orthophoto of the area acquired in 2012. The 
solar azimuth and zenith angles of the satellite images are similar while the solar 
zenith angle in the orthophoto is different (Table 1) causing variations in the 
brightness values of the urban objects. Figure 8 (Row 1) depictsasample building 
in the area and illustrates how different the same buildings appear in the differ-
ent imagery.  

We made three bi-temporal combinations of the images as presented in Table 
2. The Dataset C1 images have similar solar angles, while in Datasets C2 and C3 
the solar zenith angles are highly different.  

 
Table 1. Solar zenith and azimuth angles of the imagery used in this study. 

Image name 
Solar Azimuth Angle  

(degree) 
Solar Zenith Angle  

(degree) 

WV-2 2011 154.8 23 

WV-2 2013 167.9 33.4 

Orthophoto 2012 (angles calculated  
based on Equations (12)) 

159 65 

 
Table 2. Bi-temporal imagery combinations used in this study. 

Combination ID Base image Target Image 

C1 WV-2 2011 WV-2 2013 

C2 Orthophoto 2012 WV-2 2011 

C3 Orthophoto 2012 WV-2 2013 
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The orthophoto used in this study, is generated using an Applanix Digital 
Camera with four bands: Near Infra-Red, Red, Green, and Blue (NRGB bands). 
The satellite images of WV-2 are acquired in 8 multispectral bands. However, 
for the purpose of similarity of bands, only 4 bands are selected from the WV-2 
images. The selected bands are NIR2, Red, Green, and Blue which correspond to 
the NRGB bands of the airborne camera (Table 3). 

Satellite images used in this study, are also already corrected for atmospheric 
effects. We also used the DSM of the area generated by LiDAR with 0.5 m accu-
racy which is consistent with the 0.5 m spatial resolution of the WV-2 images. 
The 15 cm pixel size of the Orthophoto 2012 is also resampled to 0.5 m using bi- 
linear interpolation. We also used a GIS building borders layer generated by the 
city of Fredericton municipality1, for identifying buildings.  

The whole process implemented in this paper is developed in MATLAB envi-
ronment.  

3. Methodology 

In the presented work, as illustrated by the flowchart in Figure 3, first the bi- 
temporal images are co-registered. Since the WV-2 images are not acquired un-
der close-to-nadir conditions, the PWCR method is used [9]. Later on, using the 
DSM, the slope and aspect layers are generated. To co-register these two layers 
to the images, the slope and aspect layers are projected into the image spaces. After 
that, the intensities of the image pixels are corrected using the TC methods.  

 
Table 3. The NRGB bands used in the datasets C2 and C3. The NRGB bands of the WV-2 
images are very close to that of the digital camera. 

(nm) NIR R G B 

Digital Airborne Camera 850 - 1100 600 - 700 500 - 600 400 - 500 

World View-2 860 - 1040 630 - 690 510 - 580 450 - 510 

 

 
Figure 3. Flowchart of the presented work. 

 

 

1http://www.fredericton.ca/en/citygovernment/Catalogue.asp (last accessed May 2015). 

http://www.fredericton.ca/en/citygovernment/Catalogue.asp
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Finally, the spectral comparison is performed by the MAD transform that is ap-
plied on the corrected brightness values to produce the change criteria from 
which the change map is generated. In this section, the major steps illustrated in 
the flowchart of Figure 3, are explained in detail. 

3.1. Patch-Wise Co-Registration 

In fact, an image is a 2D instance of a corresponding 3D ground space. Thus, a 
global generic way of co-registration of the images acquired under different 
view-angles or different projection models, especially in urban areas, is not 
possible. This is mainly because of the varying effect of relief displacement in 
different images. A solution for the co-registration of VHR images, called the 
Patch-Wise Co-Registration (PWCR) Method, is presented in [9]. This method 
first divides one of the bi-temporal images (base image) into patches; in this 
study, to disregard the problems caused by image segmentation, a GIS layer in-
cluding building borders is used to make the patches. So, that each building is 
considered as a patch. Then, using the RPCs (Rational Polynomial Coefficients) 
in satellite images, every pixel in the DSM is projected to the image spaces. This 
indirectly relates the corresponding spots in the bi-temporal imagery and patches 
are transferred from the base image to the other image (target image). Thus, in-
stead of establishing a global co-registration, such as a polynomial registration, the 
corresponding patches of the base image are produced in the target image.  

In the PWCR for every pixel 
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where, 
1kS  is the thk  patch in the base image and 

2kS  is the corresponding 
patch in the target image. G is the projection model to transfer the object coor-
dinates to the image space, which is given by Rational Function Model (RFM) 
equations (Equation (2)) for the satellite imagery. However, in datasets C2 and 
C3, since the base image is an orthophoto already co-registered to the DSM, 
there is no need to apply 1G . 

The RFM equations are 

( )
( )
( )
( )

( )

1

2

3

4

, ,
0 0 0

, ,
, ,

, ,
, ,

, ,
m m m

a b c
a b c

c b a

P X Y Z
x

P X Y Z

P X Y Z
y

P X Y Z

P X Y Z A X Y Z
= = =

=

=

= ∑∑∑

                (2) 

where x and y are normalized image coordinates, and X,Y, and Z are normalized 
ground coordinates. m is generally set to 3 [18].  
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If the RPCs of the images are not error free, or so called bias-compensated 
[19], a conformal transformation is required to fit the patches to their original 
places (refer to [9] for more information). 

3.2. Slope and Aspect Calculation 

The terrain slope ( )pθ  and aspect ( )oϕ  angles are calculated using the Equa-
tions (3) to (5). 

( ) ( )
1 22 2tan p z x z yθ  = ∂ ∂ + ∂ ∂                   (3) 

( ) ( )

( ) ( )

1, 1 1, 1, 1 1, 1 1, 1, 1

1, 11 , 1 1, 1 1, 1 , 1 1, 1

tan

2 2

8
2 2

8

i j i j i j i j i j i j

i j i j i j i j i j i j

z x
z y

Z Z Z Z Z Z
z x

h
Z Z Z Z Z Z

z y
h

α

− − − − + + − + + +

− + + + − − − + −

∂ ∂
=
∂ ∂

+ + − + +
∂ ∂ =

∆
+ + − + +

∂ ∂ =
∆

     (4) 

where, i and j are image coordinates in horizontal and vertical directions, re-
spectively and h∆  is the DSM pixel size. 

Case : 0  and  0 :
Case : 0  and  0 : 180
Case : 0  and  0 : 180
Case : 0  and  0 : 360

o

o

o

o

z x z y
z x z y
z x z y
z x z y

ϕ α
ϕ α
ϕ α
ϕ α

∂ ∂ > ∂ ∂ > =

∂ ∂ > ∂ ∂ < = −

∂ ∂ < ∂ ∂ < = +

∂ ∂ < ∂ ∂ > = −

           (5) 

As given in Equation (3) and Equation (4), slope is generated by partial deriv-
atives taking the elevation of the left and right as well as top and bottom pixels 
into account. Hence, sudden jumps of elevation values in the vicinity of the 
building borders cause high values in the slope as well as biases in the aspect. 
This causes unrealistic brightness value corrections around the building borders. 
Thus, the brightness value corrections are limited either by removing the border 
pixels from the change detection process or putting a threshold for the value of 
slope to remain within a certain neighborhood range.  

3.3. Back-Projection 

Real slope and aspect values are to be calculated in an orthometric space not in a 
projective one. DSM has an orthometric space since it maps the objects ortho-
gonally to a reference surface, while images have projective spaces. Therefore, to 
correct the image brightness values, the slope and aspect value must be trans-
ferred to the image spaces. To do so, the slope and aspect values for each DSM 
pixel are calculated in the object coordinate system and then assigned to the 
corresponding pixel in the image space using the G operator (Equation (1)). In 
Equation (1), since there exists one slope and one aspect value for every Z coor-
dinate (elevation) in the DSM space (X,Y,Z), the slope and aspect values are as-
signed to the image (x, y) values corresponding the DSM (X,Y,Z) values using 
the back-projection. Therefore, with the same back-projection used for PWCR, 
the slope and aspect angles are assigned to their corresponding image coordi-
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nates.  

3.4. Topographic Correction 

After the back-projection of the sloped and aspect layers to the images spaces, 
the TCs are applied to the brightness values. However, to use TC methods, the 
solar azimuth and solar elevation angles are also required. In satellite images, 
these angles are provided as the metadata. In this study, the two angles were 
unknown for the Orthophoto 2012 image. We used the shadow lengths to calcu-
late the solar angles. I this section, more details are provided for TC methods 
and solar angles calculations. 

3.4.1. TC Methods 
The TC methods can be divided into two groups: (1) the methods that do not 
use a Digital Elevation Model (DEM), and (2) the methods that use a DEM [14]. 

Corrections of irradiance in the group one methods were based on band ra-
tios. In those methods, the reflectance variation due to topography differences is 
assumed to change proportionally in the two bands, which is not a realistic as-
sumption in most remote sensing images. Also, those methods cause the loss of 
spectral resolution [14], which is not suitable for change detection.  

The second group of corrections considers the effect of the solar illumination 
angle on the irradiance received by the imaging sensor. The solar illumination 
angle is calculated by: 

( )cos cos cos sin sin cosi p z p z a oγ θ θ θ θ ϕ ϕ= + −            (6) 

where, iγ  is the local illumination angle; , ,p z oθ θ ϕ , and aϕ  represent terrain 
slope, solar zenith, topographic azimuth (aspect), and solar azimuth angles, re-
spectively. Once the solar illumination angle is computed for each pixel in the 
image, the flat normalized reflectance can be estimated. To do this, there are dif-
ferent approaches in the literature which are explained here. Correction methods 
based on the solar illumination angle are sub-categorized into Lambertian (LTC) 
and Non-Lambertian (NLTC) methods based on, respectively, whether or not 
they assume reflectance is independent of the observation and incident angles. 
The simplest one is the Cosine Method, which assumes the incident radiation 
reflects equally in all directions [14].  

cos
cos

z
H T

i

θ
ρ ρ

γ
 

=  
 

                       (7) 

where, Tρ  is the reflectance of an inclined surface and Hρ  is the reflectance 
of a horizontal surface. This correction neglects the effect of diffuse irradiance 
and is only based on direct solar illumination. Also, the correction is the same 
for different wavelengths. In the related literature, overcorrection has been re-
ported in satellite images using the cosine method [14]. Figure 4 illustrates how 
small a value cos iγ  can be in steep slopes on the ground for a typical remotely 
sensed image with a zenith angle around 30˚ across the values for the difference 
between the solar azimuth and aspect angles. In steep-roof buildings, the slope of  



S. Jabari, Y. Zhang 
 

9 

 
Figure 4. The value of cos iγ  versus the difference between the solar azimuth and aspect 
angles. As can be seen the inverse of cos iγ  which is the correction in the Lambertian 
methods becomes very high. 

 
the roof can reach as high as 50˚ to 60˚ which can result in over corrections on 
the roofs. 

To overcome the problems caused by non-realistic Lambertian modeling, 
Non-Lambertian models are developed which are based on a Bi-Directional Ref-
lectance Distribution Function (BRDF). BRDF is a ratio of the quantity of light 
reflected in a certain direction to the amount of light reaching the surface from 
other directions [16]. However, determination of a BRDF is rather complicated; 
thus, the semi-empirical models are developed based on non-Lambertian beha-
vior of the surfaces. The first semi-empirical model is the Minnaert correction 
which was first proposed for lunar surface studies [17]. The correction formula 
is 

cos
cos

kK
z

H T
i

θ
ρ ρ

γ
 

=  
 

                      (8) 

where, kK  is the Minnaert constant for band k. For estimation of the Minnaert 
constant for each band Equation (8) is re-written as: 

( ) ( ) cos
ln ln ln

cos
i

T H k
z

K
γ

ρ ρ
θ

 
= +  

 
                 (9) 

where, ( )ln Hρ  and kK  are the linear regression coefficients of ( )ln Tρ  ver- 

sus cos
ln

cos
i

z

γ
θ

 
 
 

 for the entire image band.  

A backwards radiance correction transformation (BRCT) model was later de-
veloped based on Minnaert model for rugged terrain in mountainous areas 
which further included the terrain slope in corrections [15], which is referred to 
as Enhanced Minnaert in this study. The related formula is given in Equation 
(10). 
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cos
cos

cos cos

kK

z
H T p

p i

θ
ρ ρ θ

θ γ

 
=   

 
                  (10) 

Here, the Minnaert constant is also calculated with regression parameters 
similar to Equation (9). The other widely used NLTC method is the C-correction 
model given by 

cos
,  

cos
z k

H T k k k
i k

C
C b m

C
θ

ρ ρ
γ

 +
= = + 

                (11) 

where, cosT k k ib mρ γ= + ; kb  and km  are the linear regression parameters of 

Tρ  versus cos iγ  for the entire image. 
As can be seen from the equations, despite the LTC method, the NLTC me-

thods are applied separately for each image band. There are numerous papers 
comparing the performance of the TC methods for specific applications [13] 
[16]. Here, we test them for compensating intensity variations to improve building 
change detection results. 

3.4.2. Solar Angles Calculation 
To calculate the solar azimuth and elevation in the Orthophoto 2012 image, the 
direction and the length of the shadows were considered in samples of elevated 
buildings. The heights of the buildings were also extracted from the DSM. Fig-
ure 5 depicts samples of the building shadows used for the angle calculation. 
Figure 6 illustrates the relation between the shadows and the angles.  

Equation (12) is used to calculate the solar zenith angle ( )zθ .  

1tan

90z

H
l

α

θ α

−  =  
 

= −
                        (12) 

where, H is building height, l is shadow length, α  is solar elevation angle. Equ-
ation (13) shows how to calculate the solar azimuth angle using the bearing an-
gle ( )θ .  

1tan x
y

θ −  ∆
=  ∆   

x∆  and y∆  are the difference between the image coordinates of the point B 
and any point on the direction of the shadow (direction AB)  

Case : 0 & 0,  180
Case : 0 & 0,  360
Case : 0 & 0,  
Case : 0 & 0,  180

a

a

a

a

x y
x y
x y
x y

ϕ θ
ϕ θ
ϕ θ
ϕ θ

∆ > ∆ > = +

∆ > ∆ < = −

∆ < ∆ < =

∆ < ∆ > = −

               (13) 

Once the angles solar azimuth, solar elevation, ground slope, and ground as-
pect are identified/calculated, the solar illumination angle can be established af-
ter which the LTC and NLTC methods can be applied to the images. 

For flat roofs: 0pθ = → cos cosi zγ θ= ; therefore, in all the TC corrections 

H Tρ ρ= . This means, using the LTC and NLTC methods, the brightness values 
of the flat roofs are not altered and only the steep ones are modified.  
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Figure 5. Shadow direction and length in the airborne image used in this study. 

 

 
Figure 6. Relation between solar azimuth and zenith angles and shadow lengths and 
direction. 

3.5. Spectral Comparison (MAD Transform) 

There are various methods for detecting changes between bi-temporal images. 
Based on the literature, MAD Transform is a robust one [11] and can compen-
sate for linear radiometric or spectral differences between the bi-temporal im-
ages [10]. Instead of direct differentiation of the bi-temporal brightness values, 
MAD Transform generates a linear transformation of the spectral content of the 
images and uses the canonical coefficients to maximize the disparity between the 
brightness values. It transfers the bi-temporal spectral vectors [ ]T1, , kX X X=   
and [ ]T1, , kY Y Y=  , k being the number of the spectral bands, into a new space,  

T TK a X b Y= −                        (14) 

in which a and b are the coefficients making a linear combination of the spectral 
bands. a and b are calculated so that { }Var T Ta X b Y−  is maximized with the 
constraints { } { }Var Var 1T Ta X b Y= = . K is the adjusted difference between the 
X and Y vectors. The Canonical Correlation Analysis is used to solve this prob-
lem. The first set of coefficients provides the highest correlation which is equal 
to lowest variation ( )1 1

T Ta X b Y− . And the stk  set generates the highest va-
riance ( )T T

k ka X b Y− , which is useful in change detection. The transformation, 
D, can be given as [10] 
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{ } ( )2T TD a X b Y I R− = −                    (15) 

where, I is the k × k unit matrix and R is a k × k diagonal matrix containing the 
sorted canonical coefficients on the diagonal. The coefficients are used to study 
the changes. Usually if the coefficient value falls within 2 ,  σ σ±  being the stan- 
dard deviation of canonical coefficients, there is no change [20]. Otherwise, a 
change is reported.  

4. Experimental Results 
4.1. TC Results 

Figure 7 and Figure 8 depict samples of buildings before and after applying the 
TC methods. Figure 8 represents the same concept as Figure 7 but with more 
details for a single building to illustrate the shaded areas more clearly. In the 
both figures Col. 1, Col. 2, and Col. 3 images display the building roofs either in 
their original format or after different correction methods for the Orthophoto 
2012, WV-2 2011, and WV-2 2013, respectively. Besides, Row 1 images display 
original brightness values without the corrections; Row 2, Row 3, Row 4, and 
Row 5 display C-correction, Enhanced Minnaert, Minnaert, and Cosine correc-
tion, respectively. Row 6 images represent the borders of the buildings in the 
PWCR transferred from the Orthophoto 2012 (Col. 1) to the target images (Col. 
2 and Col. 3).  

As illustrated by the figures, the original brightness values in all the three im-
ages (Row 1, Col. 1 to 3) have the shaded effect in different sides of the roofs de-
pending on their slope and aspect angles. However, the difference between Col. 2 
and Col.3 images of Row 1 is not very high because of their similar imaging an-
gles. Nevertheless, the difference between the Col. 1 image with either of Col 2. 
or Col 3 images in Row 1 is high. The shaded roof sides look to be attenuated in 
either of Row 2 to Row 4 images. However, in Row 4 the brightness values of the 
images are excessively manipulated so that the natural colors are distorted. In 
Row 5, not only the brightness values are excessively manipulated, but also the 
shaded effect is reversed, which means the dark and bright sides of the roofs are 
switched due to the overcorrection of the cosine method. Row 6 images show the 
PWCR results of the images. The Orthophoto 2012 image is segmented using the 
building borders GIS layer as reference. Then, the corresponding segments are 
found in the other images using the PWCR. In the Row 6 images the building 
borders are highlighted to show the performance of the PWCR method. The 
borders play an important role in this study, since if they are not known, build-
ing border pixels get falsely corrected due to their high slope and aspect values. 
As illustrated in the figures, the borders are properly detected with the PWCR 
method. 

4.2. Change Detection Results 

After applying PWCR and TCs on the images, a MAD Transform was applied 
on the mean values of the corresponding patches. In order to simply test how the  
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Figure 7. Brightness values of building roofs before and after the topographic correction. Column 1: (2012 orthophoto), Column 
2: (WV-2 2011), and Column 3: (WV-2 2013). Row 1: original brightness values without correction; Row 2: C-correction; Row 3: 
Enhanced Minnaert; Row 4: Minnaert; Row 5: Cosine. As can be seen, different sides of the roof are shaded before any corrections. 
Row 6 images represent the borders of the buildings in the PWCR transferred from the GIS building border layer (Col. 1) to the 
target images (Col. 2 and Col. 3). 
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Figure 8. An enlarged view of building roof brightness value difference before and after the topographic correction. Column 1: 
(Orthophoto 2012), Column 2: (WV-2 2011), and Column 3: (WV-2 2013). Row 1: original brightness values without correction; 
Row 2: C-correction; Row 3: Enhanced Minnaert; Row 4: Minnaert; Row 5: Cosine. As can be seen, different sides of the roof are 
shaded before any corrections. Row 6 images represent the borders of the buildings in the PWCR transferred from the building 
border GIS layer (Col. 1) to the target images (Col. 2 and Col. 3). 
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shaded roof sides in the original images and the TC outputs can affect the 
change detection, as shown in Canty [20] a threshold of 2 ,σ σ±  is the standard 
deviation of each MAD layer, is used for the MAD outputs to detect changes 
from non-changed buildings. Figure 9 shows samples of the produced change 
maps associated with the area shown in Figure 7 in the three datasets before and 
after the TC corrections.  

As illustrated in Figure 9, the area does not have any changed buildings. 
However, due to the illumination angle differences, the overall brightness values 
of the buildings vary among the different images. In the figure, the falsely de-
tected changed buildings (false positives) are hachured and the rest of the truly 
detected unchanged buildings are shown in white. As can be seen, the number of 
changed buildings (hachured buildings) after C-correction and Enhanced Min-
naert are very low compared to other corrections. In dataset C1, also, there are 
few hachured buildings which means that the original brightness values were 
sufficient for change detection without any corrections due to the similar solar 
angles if the images. 

The same fact is shown by the confusion matrices associated with the classifi-
cation of changed (ch) vs unchanged (uch) buildings in Table 4. In datasets C2 
and C3, the number of unchanged buildings labeled as changed (false positives) 
are high using the original brightness values, Minaert, and cosine methods. 
However, C-correction and Enhanced Minnaert, have low number of false posi-
tives.  

As shown in Table 4, in almost all of the cases, the number of false negatives 
(changed building detected and unchanged) is low which shows that the classifi-
er is a proper method for detecting building changes. 

5. Accuracy Assessment 

For accuracy assessment, the change detection results of the TC methods and the 
original brightness values are checked for over 150 buildings in each dataset 
combined of buildings with pitched, shed, gable, gambrel, tented, flat, hip, and 
half-hip2 roofs.  

Using the confusion matrices generated by check building information, the 
Receiver Operating Characteristic (ROC) curves, which plot sensitivity or True 
Positive Rate (TPR) versus fall-out or False Positive Rate (FPR), are generated 
for the outputs of the TC methods and the original brightness values. Table 5 
presents the equations associated with the ROC curve parameters [21]. Figure 
10 represents the ROC curves of the TC methods used in this study and also the 
original brightness values over the datasets C1 to C3. The closer the ROC curve 
to the point (0, 1) the higher the degree of discrimination between two changed 
and unchanged classes. 

The accuracy is also measured by the criterion called Area Under Curve 
(AUC) of the ROC curve, which ranges from 0 to 1, “1” being the highest dis-
crimination ability and “0” being the lowest. Using the simple ±2σ thresholding,  

 

 

2For definition of the roof types please refer to: http://en.wikipedia.org/wiki/List_of_roof_shapes. 

http://en.wikipedia.org/wiki/List_of_roof_shapes
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Figure 9. Associated produced change maps of buildings of Figure 7 for dataset C1 (Column 1), C2 (Column 2), and C3 (Column 
3) for uncorrected brightness values (row 1), C-correction (row 2), Enhanced Minnaert (row 3), Minnaert (row 4), and Cosine 
(row 5). White color represents unchanged output and hachured areas show the changed buildings.  
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Table 4. Confusion matrices for the three study datasets. 

Confusion Matrices  Dataset C1 Dataset C2 Dataset C3 

 
 ch uch OA ch uch OA ch uch OA 

C_correction 
ch 60 6 

0.94 
14 10 

0.92 
9 3 

0.97 
uch 4 100 4 147 1 141 

Cosine 
ch 62 22 

0.86 
18 117 

0.33 
10 60 

0.61 
uch 2 84 0 40 0 85 

Enhanced Minnaert 
ch 60 8 

0.93 
14 10 

0.92 
9 3 

0.97 
uch 4 98 4 147 1 141 

Minnaert 
ch 40 2 

0.85 
17 105 

0.39 
8 26 

0.82 
uch 24 104 1 52 2 118 

Original 
ch 52 0 

0.93 
15 88 

0.48 
6 54 

0.62 
uch 12 106 3 69 4 90 

ch: changed; uch: unchanged; OA: overall accuracy 
 

Table 5. Formulas related to making ROC curves. 

Parameter name formula Explanation of abbreviations 

Sensitivity (TPR) 
tp

tp fn+
 

tp (True positive): patches which are truly identified as changed. 

tn (true negative): patches which are truly identified as unchanged 

fp (false positive): patches which are falsely identified as changed. 

fn (false negative): patches which are falsely identified as unchanged 

β is the weight 
fall-out (FPR) 

fp
fp tn+  

 
we also calculated the Overall Accuracy (OA), which is the ratio of the correctly 
labeled objects to the total number of the test objects. Figure 11 represents the 
bar charts of the AUC (a) and OA (b) for the TC methods and the original val-
ues across the three datasets.  

6. Discussion 

As illustrated by ROC curves in Figure 10, in dataset C1, with satellite bi-temporal 
images, the original brightness values as well as the results of C-correction and 
Enhanced Minnaert have high discrimination capabilities, while Cosine and 
Minnaert have lower discrimination capabilities. In general, as expected, the 
original brightness values were capable of identifying changes from non-changes 
due to the similar solar illumination angles and accordingly similar brightness 
value variations of the images in dataset C1. Although, applying TC looks unne-
cessary in such a dataset, the results of C-correction and Enhance Minnaert did 
not have any negative impact in the accuracy of the results while the cosines 
and Minnaert deteriorated the accuracy compared to the original brightness 
values.  

In datasets C2 and C3, the ROC curves of the original brightness values are 
close to diagonal which means original pixel values failed to discriminate changes. 
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This is due to high amount of brightness variations in the bi-temporal images 
caused by different solar illumination angles. A similar trend is experienced with 
the Cosine method that failed to detect changes by inducing over corrections of 
the roofs. Minnaert method also produced a weak ROC curve in dataset C2. 
However, Enhanced Minnaert and C-correction produced the best ROC curves 
in datasets C2 and C3. This means that compared to the original brightness val-
ues, C-correction and Enhanced Minnaert have far higher discrimination capa-
bilities.  

As illustrated in Figure 11, The AUC and OA for the original brightness val-
ues are very low in datasets C2 and C3 and very high in dataset C1. As explained  

 

 
Figure 10. ROC curves of the three datasets of this study. 
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Figure 11. Charts for accuracy assessment of the TC methods. (a) AUC and (b) OA charts of the TC methods and the original 
values across the three datasets used in this study, (C1, C2, and C3).  
 

before, dataset C1 is composed of similar imagery in terms of the solar illumina-
tion angles and due to similar illumination angles, the dark and bright sides of 
the buildings are similar. Thus, the original values are sufficient for change de-
tection in that dataset. However, C2 and C3 are composed of images with dif-
ferent solar illumination angles in which the original brightness values did not 
perform accurately in change detection. Cosine and Minnaert methods did not 
generate high and consistent accuracies. In datasets C1 and C2, the Cosine and 
Minnaert results have lower accuracies compared to the original values that 
means the corrections have deteriorated the change detection results. Neverthe-
less, the AUC and OA yielded by the C-correction and Enhanced Minnaert me-
thods are very close to each other and are superior to the other methods even in 
dataset C1, where corrections look unnecessary. 

Overall, in dataset C1 with similar images in terms of illumination angles, as 
expected, TC looks unnecessary. However, in datasets C2 and C3 with different 
solar illumination angles, the overall accuracy is improved by around 35% using 
any of the two best corrections. i.e., C-correction and Enhanced Minnaert. 
Therefore, C-correction and Enhanced Minnaert can be used to improve change 
detection accuracies in areas with steep-roof houses images with different view- 
angles.  

Finally, from the OA produced by MAD transform and a simple ±2σ thre-
sholding, high change detection accuracies are achieved which proves that the 
proposed method for change detection that incorporates PWCR, TC methods, 
and MAD transform is capable of detecting changes even with images that are 
not generated with similar solar angles. This proves that the proposed frame- 
work for building change detection can compensate for different solar illumina-
tion angles caused by different view-angles of the images over the areas with 
high number of steep roofs. 

Further, thanks to the PWCR, only one DSM is used for change detection of 
images taken with different view-angle images while in similar imaging condi-
tions, bi-temporal DSMs should be provided for precise change detection results 
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[7]. 
In this study, since we aimed to check the TC methods on roofs, we did not go 

through the building detection methods and benefitted from the existing build-
ing border GIS layer. However, this framework can be combined with a detec-
tion or an optimized segmentation method as well.  

7. Conclusions 

If the bi-temporal images used for change detection are not taken under similar 
solar or view angles the change detection methods can produce low accuracies 
due to miss-registration and difference in illumination condition of the images. 
The major contribution of this paper is improving building change detection 
accuracies by incorporating the PWCR method and topographic correction me-
thods. 

Basically, PWCR is used where images are not generated under similar view- 
angles that increase the probability of variation in solar angles. This increases the 
risk of false change detection results caused by solar illumination angle differ-
ence. To compensate for that, we used topographic correction methods on build-
ing roofs to limit illumination difference.  

In this work, we detected the corresponding building borders in the images 
using the PWCR method. Then, the slope and aspect values calculated for the 
TC methods were projected to the image spaces for brightness value correction. 
After that, we applied TC methods to compensate for solar illumination angle 
differences on the building roofs. To find a proper correction method, we com-
pared four of the most widely used TC methods in the literature namely C-cor- 
rection, Minnaert, Enhanced Minnaert (for slope), and Cosine Correction. Within 
the tested methods, C-correction and Enhanced Minnaert presented high accu-
racies in change detection. Nevertheless, the Cosine and Minnaert methods did 
not significantly improve the change detection results and in some cases even 
deteriorated the results.  

In conclusion, using the PWCR method combined with either of Enhanced 
Minnaert or C-correction methods, higher accuracies are generated in building 
change detection. Specifically, the false change detection results caused by solar 
illumination angle difference on the roofs are reduced.  

Thus, using the presented change detection framework can help improving 
the building change detection accuracies and accordingly enable the researchers 
to incorporate a wider range of images in the automatic and semi-automatic 
change detection processes. Finally, in case the solar angles are different, the TC 
methods can be used to compensate for illumination differences on the pitched 
roofs. However, if the solar angles are similar, TC correction is not necessary. 
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