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Abstract 
Forward-backward pursuit (FBP) algorithm is a novel two-stage greedy ap-
proach. However once its forward and backward steps were determined dur-
ing iteration, it would make computing time increased and affected the recon-
struction efficiency. This paper presents a algorithm called forward-backward 
pursuit algorithm based on weak selection (SWFBP) by introducing threshold 
strategy into FBP algorithm, and in view of that in the first few iterations, 
most of the atoms which are selected are right, so this part of atoms are di-
rectly incorporated into support set instead of using backward strategy to re-
duce them. Flexible forward and backward steps accelerate the speed of atom 
selecting and improve the reconstruction accuracy. We compared SWFBP and 
FBP algorithm via one-dimensional signal and two-dimensional image recon-
struction experiments. The simulation results demonstrate that compared 
with FBP, SWFBP algorithm has superior performance, including higher 
PSNR, faster computing speed and lower recovery time. 
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1. Introduction 

Compressed Sensing (CS) [1] [2] [3] is a new kind of signal processing theory, 
which makes use of the sparsity of signal to combine sampling and compression 
together. CS theory broke through the traditional Nyquist sampling limitation 
and achieved an efficient acquisition of signal, therefore, CS theory makes high 
speed and quality of information transmission to be possible. Once CS theory 
was proposed, it aroused scholars’ wide research. Now it is widely used in signal 
processing, wireless communication and medical imaging, etc. 

The main research of CS theory includes signal sparse transformation, design 
of measurement matrix and signal reconstruction algorithm. At present, the 
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common algorithms used in CS theory are mainly divided into two categories: 
one is linear programming algorithm based on optimization norm 1l , which 
approximates the original signal by converting the non-convex problem into 
convex problem. It mainly includes Basis Pursuit (BP) [4] which uses norm 1l  
to substitute norm 0l  with quite high computing complexity; Iterative Thre-
sholding (IT) [5] and Iterative Hard Thresholding (IHT) [6] that are derived by 
an optimization problem which is similar to OMP algorithm; Two Stage Thre-
sholding (TST) [7] that adopts Two Stage Threshold strategy to improve its re-
construction performance, etc. The other one is greedy pursuit algorithm based 
on norm 0l , which approximates the original signal by local optimization. It in-
cludes Matching Pursuit (MP) [8] and Orthogonal Matching Pursuit (OMP) [9] 
at the earliest. Later on, based on the idea of backward strategy, Compressive 
Sampling Matching Pursuit (CoSaMP) [10], Subspace Pursuit (SP) [11] were 
proposed, etc. 

On the basis of TST algorithm, N. B. Karahanoglu and H. N. Erdogan pro-
posed Forward-Backward Pursuit (FBP) in reference [12] with the feature with-
out prior information of the sparsity. FBP algorithm uses fixed forward step to 
select atoms and backward step to delete atoms, through this process to imple-
ment the support set expansion and reduction. Hence, FBP does not require K as 
a priori in contrast to SP and CoSaMP. Additionally, the backward step of FBP 
can remove some possibly misplaced atoms from the support set, which is an 
advantage over forward greedy algorithms such as OMP. But in practical appli-
cation, the major issue of FBP algorithm is time complexity, as the forward and 
backward step is a fixed size in each iteration without considering the transfor-
mation of signal in the process of iteration. The execution efficiency is low, thus 
it leads to taking more time to reconstruct signals and affects the reconstruction 
accuracy. 

To address the above issues of FBP, forward-backward pursuit algorithm 
based on weak selection (SWFBP) was proposed by introducing threshold strat-
egy into FBP algorithm to calculate the forward step, by which can make the 
forward step flexible. And for the first few iterations, most of the atoms which 
are selected are right, and they don’t need backward strategy, so this part of 
atoms would be directly incorporated into support set. Through above two me-
thods, SWFBP has flexible forward and backward steps which would bring down 
the computing complexity and improve the reconstruction performance. The 
simulation results show that SWFBP is a more efficient greedy pursuit algorithm 
without prior information of the sparsity compared with FBP. 

2. Compressed Sensing Theory and Reconstruction  
Algorithm 

2.1. Compressed Sensing Theory 

The core of CS theory is choosing an appropriate measurement matrix, by which 
can project a high-dimensional sparse signal to a low dimensional space, then 
use reconstruction algorithm to reconstruct the original high-dimensional signal 
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from low dimension projection value. Specifically, suppose that x  is a 
K-sparse, N-dimensional digital signal, that is, only K of x  are valid and non-
zero. We are interested in the case when K N . One can reconstruct signal 
x  with the following equation:  

=y xΦ                            (1) 

where y  is an M-dimensional vector indicating the measurement value. Φ  
represents an ∗M N  matrix (M < N), which called measurement matrix as 
well. Reference [13] states that if the signal x  is sparse, then it will be recon-
structed from a small number of linear projections via some optimization algo-
rithms. The original solution of sparse signal reconstruction is mathematically 
described as follow: 

0min x  subject to =y xΦ                   (2) 

However, 0l  minimization problem is NP-hard, while greedy pursuit algo-
rithms provide a favorable tool to solve this problem for approximate solutions. 
Reference [14] point out that when the measurement matrix Φ  satisfies the 
restricted isometry property (RIP), we can solve Equation (2) by 1l  optimiza-
tion problem, i.e.: 

1min x  subject to =y xΦ                   (3) 

2.2. Forward-Backward Pursuit Algorithm 

FBP algorithm is a greedy pursuit algorithm based on 0l  norm minimization 
problem, which extends the signal support set by forward and backward step. It 
receives wide attention due to its high reconstruction accuracy and the feature 
without prior information of the sparsity. The first stage of FBP algorithm is the 
forward step which expands the support set by indices of α  largest magnitude 
elements in T 1l−Φ r , where we call α  the forward step size. The second step is 
removing β  smallest magnitude projection coefficients in 

2
l−Φ

T
y w



. Simi-
lar to α , β  is referred to as the backward step size. The forward step size is 
chosen larger than the backward step size, hence the support estimate is enlarged 
by α β−  atoms at each iteration.When the sparse degree of signal is relatively 
small, the residual will constantly decrease by the process of iteration until it 
meet the termination conditions 

22

l ε≤r y  ( ε  is the termination threshold 
of iteration). As well, when the sparse degree is a large one, then it will exit the 
iteration by the termination conditions max

l l≥T . A schematic diagram of the 
FBP algorithm is depicted in Figure 1 and the pseudo-code of FBP algorithm is 
given in Algorithm 1. 

Algorithm 1: FBP Algorithm 
Input: Measurement matrix Φ , measurement vector y  
Define: Forward step α , backward step β , largest number of iterations 

maxl , termination threshold of iteration ε  
Initialize: 0 = ∅T , 0 =r y , 0l =  

while true do 
1l l= +  
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Figure 1. Description of FBP algorithms. 

 
Forward update:  
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if 

22

l ε≤r y  or max
l l≥T  then 

break 
end if 

end while 

0=x  
lT
=x w

 
Output: x  

2.3. Forward-Backward Pursuit Algorithm Based on Weak  
Selection 

The basic framework of SWFBP algorithm is similar to FBP algorithm. In the 
first few iterations, we select atoms by weak selection strategy. As most of these 
atoms are right, so join these atoms into support set directly. For the following 
iterations, first of all, through threshold strategy to expand the forward support 
set, and the forward step α  is equal to the length of this set. Then calculate the 
orthogonal projection of the measurement vector y  on this support set. Next, 
use α  to calculate the backward step β  and delete the indexes of β  smallest 
orthogonal projection coefficients. Last, calculate the new projection coefficients 
and update the residuals. Terminal condition of iteration is the same as FBP al-
gorithm. A schematic diagram of the SWFBP algorithm is depicted in  
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Figure 2. Description of SWFBP algorithms. 

 
Figure 2 and the pseudo-code of SWFBP algorithm is given in Algorithm 2. 

Algorithm 2: SWFBP Algorithm 
Input: Measurement matrix Φ , measurement vector y  
Define: Threshold parameter θ , value of step difference δ , largest number 

of iterations maxl , threshold of iteration numbers γ , termination threshold of 
iteration ε  

Initialize: 0 = ∅T , 0 =r y , 0l =  
while true do 

1l l= +  
Forward update:  

( )1T labs −=u Φ r
 

( )( )find maxJ θ= ≥ ∗u u
 

the forward step ( )length Jα =  
if l γ<=  then 
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Backward update: 
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the backward step β α δ= −  
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end if 

Projection: 
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if 

22

l ε≤r y  or max
l l≥T  then 
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break 
end if 

end while 

0=x  
lT
=x w

 
Output: x  

3. Simulations and Analysis 

Simulation environment was MATLAB R2015b. We experiment with one- di-
mensional sparse signal (Gaussian sparse signal and 0 - 1 sparse signal) and 
two-dimensional international standard test image lena.bmp by using FBP and 
SWFBP algorithm. Measurement matrix Φ  obeys Gaussian distribution. 

3.1. Reconstruction of One-Dimensional Sparse Signal 

Experimental parameters are setting as follows: length of the sparse signal N = 
256, sampling numbers M = 102, sparsity level K = 20, largest number of itera-
tions max 10l = , termination threshold of iteration 610ε −= , threshold parame-
ter 0.95θ = , value of step difference 2δ = . For FBP algorithm, the forward 
step 4α = , 10, 20 separately, and corresponding to α , the backward step 

2β = , 8, 18. Simultaneously, for SWFBP algorithm, the relationship between 
α  and β  is 2β α= − . For each combination of (K, M), do 500 times inde-
pendent experiments to compare the frequency of exact reconstruction, average 
recovery time and average normalized mean-squared error (ANMSE). The con-
dition of exact reconstruction is described as follow: 

8
2 2

ˆ 10x x x −− ≤                        (4) 

And ANMSE was calculated by Equation (5). 
500 2 2

2 2
1

1 ˆANMSE
500 i i i

i
x x x

=

= −∑                  (5) 

Among (5), ˆix  represents the reconstruction signal for ix . 
Figure 3 shows the reconstruction results of SWFBP ( )2β α= −  and FBP 

( )4, 2; 10, 8; 20, 18α β α β α β= = = = = = , under Gaussian sparse signal. From 
Figure 3, we can see that the exact reconstruction frequency of SWFBP algo-
rithm is higher than FBP algorithm whether under different sparsity or sampling 
numbers. For example, when the sparsity level K = 40, the exact reconstruction 
frequency of SWFBP is 90% and FBP’s is 85%. For recovery time, compared with 
FBP algorithm, SWFBP algorithm has improved largely, and with the increasing 
of K, the effect is more obviously. Specifically, when 45K ≥ , recovery time of 
SWFBP is 50% to 60% of FBP’s. For ANMSE, there is not much difference be-
tween SWFBP and FBP with α  increasing, but in general, SWFBP’s is lower 
than FBP’s. 

Figure 4 shows the reconstruction results of SWFBP ( )2β α= −  and FBP 
( )4, 2; 10, 8; 20, 18α β α β α β= = = = = = , under 0 - 1 sparse signal. Similar to 
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the above test, on the exact reconstruction frequency, SWFBP is not lower than 
FBP. And for ANMSE, there is also not much difference between SWFBP and 
FBP. These are because that there is no difference between non-zero element in 
0 - 1 sparse signal, also this will lead the algorithms’ reconstruction performance 
reduce greatly for which selecting the atoms according to the correlation of re-
sidual. In spite of this, the recovery time of SWFBP has improved significantly. 

3.2. Threshold Parameter 

In SWFBP algorithm, parameters involved are α , β , θ  and δ . Among 
them, α  and β  are mainly decided by θ . In this part, we experiment with 
different θ  under the condition of β α δ= −  and 2δ =  for SWFBP algo-
rithm.  

 

 
Figure 3. Reconstruction results for Gaussian sparse signal. (a) Comparison of the exact reconstruction frequency under different 
K; (b) Comparison of the exact reconstruction frequency under different M; (c) Comparison of average recovery time; (d) Com-
parison of ANMSE. 
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Figure 4. Reconstruction results for 0 - 1 sparse signal. (a) Comparison of the exact reconstruction frequency under different K; 
(b) Comparison of the exact reconstruction frequency under different M; (c) Comparison of average recovery time; (d) Compari-
son of ANMSE. 
 

Figure 5 shows the reconstruction results of SWFBP algorithm while θ  is 
equal to 0.65, 0.75, 0.85 and 0.95. From Figure 5, we know that with the increase 
of θ , the exact reconstruction frequency and average recovery time are in-
creased in the same space. In other words, the influence of parameter θ  to this 
algorithm is that with θ  increase, the exact reconstruction frequency also in-
crease, but at the cost of more recovery time. 

3.3. Reconstruction of Two-Dimensional Image 

In order to further illustrate the reconstruction performance of SWFBP algo-
rithm, in this part, we experiment with two-dimensional standard image 256 × 
256 Lena. The parameters are setting the same as part 3.1. We choose two indi-
cators to judge the reconstruction performance of algorithm: Recovery time, 
Peak Signal to Noise Ratio (PSNR), through the following two formulas to cal-
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culate PSNE. 

( )PSNR 20 lg 255 MSE= ∗                   (6) 

( ) ( )( )2

1 1

1 ˆMSE , ,
M N

m n
x m n x m n

M N = =

= −
∗ ∑∑               (7) 

Figure 6 shows the curve of recovery time and PSNR under different sam-
pling numbers respectively. It can be seen that compared with FBP, performance 
of SWFBP are all have certain improved. By introducing the threshold strategy 
in SWFBP algorithm, the iteration times decreased, thus the recovery time is 
shorten greatly, all are maintained under 3 seconds. When sampling number is 
70, SWFBP algorithm has 1 dB gain in the PSNR over FBP algorithm, and the 
recovery time is only 40% of FBP algorithm.  

 

 
Figure 5. (a) Comparison of exact reconstruction frequency under different threshold θ ; (b) Comparison of average recovery 
time under different threshold θ . 
 

 
Figure 6. (a) Comparison of recovery time for two-dimensional image; (b) Comparison of PSNR for two-dimensional image. 
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Figure 7. Reconstruction images for Lena by FBP and SWFBP at M/N = 0.4.(a) Original 
image; (b) SWFBP ( )2β α= − ; (c)FBP ( )4, 2α β= = ; (d) FBP ( )10, 8α β= = ; (e)FBP 

( )20, 18α β= = . 

 
Table 1. Comparison of recovery time and PSNR under different sampling rate. 

Indicators Recovery time (s) PSNR (dB) 
Sampling rate (M/N) 0.3 0.4 0.5 0.6 0.3 0.4 0.5 0.6 
FBP ( )4, 2α β= =  3.075 5.523 6.584 7.407 18.221 24.246 26.695 28.768 
FBP ( )10, 8α β= =  3.301 5.885 7.733 9.585 19.468 24.319 26.892 29.010 
FBP ( )20, 18α β= =  4.103 5.967 8.479 10.727 21.011 24.455 26.931 29.065 
SWFBP ( )2β α= −  1.631 2.126 2.691 2.979 22.934 25.559 27.141 29.523 

 
Figure 7 shows the reconstruction images of Lena under sampling rate M/N = 

0.4. As shown in Figure 7, the reconstruction image of SWFBP is clearer than 
FBP’s visually, i.e. the improved algorithm has higher accuracy in image sparse 
approximation. 

Table 1 shows the recovery time and PSNR under different sampling rate for 
FBP and SWFBP algorithm. From the date in Table 1, we can draw a conclusion 
that SWFBP has advantages in no matter recovery time or PSNR. 

4. Conclusion 

On the basis of FBP algorithm, in this paper, SWFBP algorithm was proposed. 
By adapting a simple threshold strategy to FBP algorithm, the proposed algo-
rithm SWFBP can be flexibly the forward and backward steps, and thus to com-
bine the high reconstruction accuracy and flexible atom selecting mechanism of 
weak selection together. The simulation results demonstrate that SWFBP algo-
rithm provides a better performance and lower computation cost compared to 
FBP algorithm. In particular, while the sparse signal obeys Gaussian distribution, 
the exact reconstruction frequency and accuracy are better than FBP, and while 
the sparse signal obeys 0 - 1 distribution, the exact reconstruction frequency and 
precise are approximate to FBP’s. Reconstruction results of two-dimensional 
images show that the reconstruction performances of SWFBP have certainly im-
proved while its recovery time is decreased obviously. Despite of this, the atom 
selecting method is still not match enough so far, and we hope to find a solution 
to perfect the atom selecting mechanism in the future. 
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