
Journal of Applied Mathematics and Physics, 2016, 4, 2290-2300 
http://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

DOI: 10.4236/jamp.2016.412220  December 29, 2016 

 
 
 

Entropy of Causal Horizons 

Eric M. Howard 

Department of Physics and Astronomy, Macquarie University, Sydney, Australia 

 
 
 

Abstract 
We analyze spacetimes with horizons and study the thermodynamic aspects of causal 
horizons, suggesting that the resemblance between gravitational and thermodynamic 
systems has a deeper quantum mechanical origin. We find that the observer depen-
dence of such horizons is a direct consequence of associating a temperature and en-
tropy to a spacetime. The geometrical picture of a horizon acting as a one-way mem- 
brane for information flow can be accepted as a natural interpretation of assigning a 
quantum field theory to a spacetime with boundary, ultimately leading to a close 
connection with thermodynamics. 
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1. Introduction 

The interaction between gravity and thermodynamics has become a subject of growing 
interest since the discovery of Bekenstein-Hawking entropy [1]. The analogy between 
black hole mechanics and thermodynamics led Bekenstein [2] and Hawking to argue 
that black holes should be viewed as true thermodynamic systems, characterized by en-
tropy and temperature [3]. 

Several authors have worked on extending black hole entropy to the more general 
case where the connection between entropy and area would generalize to any horizon, 
like accelerated horizons in Rindler spacetime. One intriguing conclusion was the idea 
that horizon entropy arises in a natural way just because gravity is emergent from 
thermodynamics. The new perspective motivated Jacobson [4] [5], Padmanabhan [6] 
[7] and Verlinde to suggest an interpretation of gravity as a thermodynamic phenome-
non [8]. 
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While the concepts of temperature and entropy remain associated to spacetimes with 
horizons, a theory that fully explains the quantum structure of spacetime should ulti-
mately remain independent of any microscopic description of the horizons themselves. 
The hard part here is the lack of understanding about the nature of the microstates 
whose counting would produce the horizon entropy, while the geometrical picture [9] 
of the black hole entropy would still remain a good approximation for the theory. 

The notion of entropy is closely connected to the accessibility of information, there-
fore, an observer dependent concept. If a geometrical interpretation of gravity is ac-
cepted, surfaces acting as one-way membranes for information will exist, leading to a 
deeper connection with thermodynamics. An inevitable connection between one-way 
membranes that arise in a spacetime with horizons and thermodynamical entropy is 
already obvious here [10]. 

The interesting fact is that so far we have knowledge only about two types of physical 
processes which can lead to distinct regions of spacetime; some of them completely 
disconnected from each other so that information from one spacetime patch will not be 
accessible to an observer located within another patch: light and gravity. Therefore, 
some strong connections between light, gravity and thermodynamics must exist. The 
AdS/CFT conjecture is intimately connected to this argument. 

The extreme conditions for quantum, relativistic and gravitational regimes: the very 
small, the very heavy and the very fast, seem to intersect at a fundamental level, leading 
to a more general principle that so far seems to have eluded our complete understand-
ing. A theory formulating a full description of the quantum structure of the spacetime 
should be responsible to explain all three extreme conditions and in this context, 
should involve themodynamics principles in its basic arguments. 

If the connection between thermodynamics and spacetimes with horizons has a fun-
damental meaning, the argument should be able to be extended to any general horizon. 
Therefore, we can assign entropy to any horizon, irrespective of whether the horizons 
are observer independent (black holes) or observer and coordinate dependent (de Sitter 
and Rindler horizons). 

Our argument here is that the entropy of spacetimes arises because there is information 
hidden behind the horizon, generating different spacetime regions, causally disconnected 
by an entangling null surface acting as a one-way information barrier. An exploration 
of the Quantum Field Theory of such a spacetime should suggest a natural association 
with a temperature. The inertial observer will ascribe the entropy given by the loga-
rithm of the number of internal states. Since a horizon is capable to block information 
from an observer, it is feasible to associate entropy with the horizon. Here we show that 
the entropy of an event in flat empty space depends on the observer who measures it. 
We argue this dependence originates in a pure quantum mechanical effect of the fact 
that for an accelerated observer, the event is hidden behind the Rindler horizon. 

2. Horizon Entropy and Observers 

The idea of entanglement entropy has emerged as a measure of entanglement in order 
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to explain the internal correlations within a quantum system. In quantum field theory, 
the entanglement between spatial regions on a fixed Cauchy surface region and its 
complement, is found to be divergent because of the presence of short range correla-
tions near the entangling surface that separates the spacetime regions [11]. 

Entropy can be viewed as a measure of missing or unavailable information about a 
system. It would be expected that some entropy to be associated with the event horizon, 
since it hides information. The horizon has “entanglement entropy” associated with the 
quantum field nearby, produced by tracing out its interior inaccessible modes and ul-
timately correlated with the exterior accessible (to the observer) modes of the field. For 
a fixed background spacetime continuum, the entanglement entropy is infinite and a 
short distance cut-off on the field degrees of freedom needs to be introduced in order to 
obtain finite entropy if the cut-off is near the Planck scale, the entropy is of the same 
order of magnitude as the horizon itself. 

The divergence of the entanglement entropy requires an ultraviolet cut-off at Planck 
scale. In order to regulate this divergence, gravity should be treated as a quantum field. 
As gravity is non-renormalizable, the entanglement entropy should also be non-renor- 
malizable. Furthermore, a complete theory of quantum gravity should explain the cut- 
off and solve the divergence of the entanglement entropy together with the ultraviolet 
problem [12]. 

Sorkin [13] [14] has proposed the idea that entanglement entropy offers a micro-
scopic explanation for Bekenstein-Hawking entropy. In Quantum field theory, space 
can be partitioned into subregions. The degrees of freedom can be isolated inside the 
horizon from the surrounding spacetime, allowing a state on the Cauchy surface to be a 
pure state like the vacuum, whereas the region of spacetime outside the horizon may 
contain mixed states such as a thermal state of non-zero temperature. 

In this way, the horizon will posses entropy, while offering a clear division of degrees 
of freedom outside the horizon that are observable, and degrees of freedom behind the 
horizon that are not perceived by any observer. 

At a conceptual level, the entanglement entropy does not represent the ignorance of 
the observer about state of the spacetime region behind the horizon but a measure of 
the observer’s ignorance about the state outside the horizon that is due to the observer’s 
inability to measure the states behind the horizon. The increase of entropy on the hori-
zon is an effect of the entanglement as well as simple relativistic causality. 

The mathematical form of the association of temperature with the horizon is univer-
sal and it does not distinguish between different types of horizons (Rindler horizon in 
flat space, Schwarzschild black hole event horizon, de Sitter horizon). The fact that the 
temperature and entropy both arise in the same way, suggest a strong direct association 
of entropy with all horizons [15]. 

We extend this concept to Rindler horizons or any type of horizons that exhibit 
causal order. We know that Rindler coordinates describe an observer moving along a 
constant acceleration path [16]. In Minkowski spacetime, Rindler coordinates depict 
the near-horizon limit of a black hole. In AdS spacetime, Rindler coordinates divide 
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AdS in two causally disconnected regions, known as left and right (in causal contact 
with the observer) Rindler wedges. Thermodynamical entropy is here produced by va-
riables that are observable (energy of a system), whereas other variables (exact positions 
of particles) remain unobservable. 

As a consequence, the entropy ascribed to a localized system by different observers is 
not necessarily the same. The entropy of an event in flat empty space will be differently 
ascribed by an inertial and a Rindler observer. The entropy seen by a Rindler observer 
should have a bound given by RindlerE T , where RindlerE  is the energy of an object as-
sociated with an event observed by the Rindler observer and T the temperature meas-
ured by the observer. 

For an inertial observer, the vacuum state is given by the Minkowski vacuum 0 . 
The excitation of the vacuum that could be due to the presence of an object is given by 
the density matrix 

1

1 1; 1; ,
n

i
i i

n
ρ

=

= ∑                        (1) 

The perturbation of the vacuum state is in an undetermined microstate. The 1;i  is 
Minkowski states represented by the n possible microstates of the perturbation. 

The measured entropy will also contain an additional contribution introduced by the 
acceleration of the Rindler observer [17]. The measured energy RindlerE Eδ=  is given 
by the difference in Killing energies when the perturbation is present and when it is 
not. The entropy of each state will be divergent. The Rindler object entropy RindlerS  is 
the similar difference Sδ  between the two entropies in the right Rindler wedge, in 
causal contact with the observer. 

The entropy as measured by an inertial observer is given by 

ln ln .S Tr nρ ρ= − =                       (2) 

with ρ  being the density matrix Rindlerρ  equivalent for a Rindler observer. 
For a perturbation with the energy Eδ , the density matrix 1Rρ  for a Rindler ob-

server can be calculated by integrating the unobservable modes. The entropy will be-
come ( )1 1 1lnR RS Tr ρ ρ= − . The inertial vacuum state density matrix in Rindler frame 
is 0Rρ  with entropy ( )0 01 0ln RS Tr ρ ρ= − . 

For the Rindler observer, the difference in entropies 1 0S S Sδ = −  is the entropy of 
the vacuum state. Near the horizon, for κ →∞  we have a non-vanishing entropy 

2πS E Eδ βδ δ
κ

= =                       (3) 

where 1Tβ −= . 
The Rindler observer will not measure the same entropy of the perturbation. Fol-

lowing Sorkin hypothesis for black hole entropy and apply to all causal horizons [18] 
the increase of entanglement entropy is a direct consequence of the fact that a Rindler 
horizon is a causal barrier that separates two causally disconnected regions of space-
time. The whole spacetime is visible to the inertial observer, therefore in causal contact 
with the observer. 
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The entropy measured by a Rindler observer is given by the right Rindler wedge in 
causal contact with the observer, when the object crosses the Rindler horizon. The en-
tropies associated with this perturbation by a Minkowski and Rindler observer behave 
in different ways. 

If we trace the Minkowski vacuum 0 0  over the left Rindler wedge, the thermal 
density matrix 0Rρ  will contain all the information that a Rindler observer can access 
in the Minkowski vacuum: 

0 left 0 0 .R Trρ =                         (4) 

We consider a new density matrix 1Rρ  corresponding to the Rindler description of 
the state Rindlerρ , containing information about the object added to the Minkowski va-
cuum 0  and further compare it to 0Rρ . The density matrix 0Rρ  represents the 
thermal equilibrium. The new density matrix 1Rρ  is 

1 left Rindler left
1

1 1; 1; .
n

R
i

Tr Tr i i
n

ρ ρ
=

= = ∑                (5) 

If 1 0R Rρ ρ δρ= + , for κ →∞  we only take into account states with 0 1Rδρ ρ  . 
The difference in entropy is 

( ) ( ) ( )
( )( ) ( )( )

1 1 0 0 0

1 0

ln ln lnR R R R R

R R

S Tr Tr Tr

Tr H Tr H E

δ ρ ρ ρ ρ δρ ρ

δρ β β ρ ρ βδ

− = −

= − = − − ≡ −



        (6) 

with 0Trδρ ≈ , E the measured energy and ( )1
0 expZ Hρ β−= − . Here H is the Ha-

miltonian in Rindler frame. The difference Eδ  is defined as a difference in expecta-
tion values of the Rindler Hamiltonian between the two states. 

If the perturbation on the Rindler density matrix 0Rρ  is very small, we have the new 
density matrix 1 0R Rρ ρ δρ= + , with “ 0Rδρ ρ ”. In the limit of large numbers 

1E Tne−
 , the approximation still holds and 1RTrρ  can be eliminated. 

The difference in entropies Sδ  using a Taylor expansion 0Rρ  is 

( ) ( )0 0

0

ln
1 ln ln ,R R

R

S Tr Tr Tr
ρ ρ

δ ρ ρ
δ δρ δρ ρ δρ ρ

δρ
=

 
   ≈ − = − + = −     
 

    (7) 

with 1 0R RTr Trρ ρ=  and 0Rρ  much larger than δρ . 
As the initial density matrix is thermal, we have ( )0 e eH T H T

R Trρ − −=  and 

( )
( )1 0 ,R RTr H ES Tr H T

T T

ρ ρ δδ δρ
 −  ≈ − − = =             (8) 

with ( ) 0Tr δρ = . 
If by introducing a perturbation, the energy increases by Eδ , but the entropy can’t 

be increased by more than the amount of thermal energy, independent of the nature of 
the excitation. This energy bound arises from tracing over the left Rindler wedge, being 
a direct consequence of the existence of the horizon itself, as a causal barrier between 
spacetime regions. 

The energy bound will be given by 
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max .ES S
T
δδ δ< =                         (9) 

For a Rindler observer, when quantum mechanical effects are taken into account, the 
entropy and energy are linked by the Bekenstein bound, associated with thermody-
namics, the holographic principle and the covariant entropy bound of quantum gravity. 
Bekenstein conjectured the entropy bound to be a universally valid principle for com-
plete systems in nature. Using quantum statistics, Bekenstein showed that the entropy 
bound holds for complete systems with non-interacting massless quantum fields in flat 
spacetime, idea criticized by several authors (Unwin, Page, Unruh, Wald, Pelath). 

If a system violates this bound (highly entropic object) for a perturbation with large 
number of internal states, described by a large entropy with fixed energy, the entropy 
and energy appear independent to an inertial observer. The interesting fact is that this 
bound does not depend on the gravitational constant, suggesting a geometric nature of 
the horizon entropy and ultimately an emergent origin of gravity. 

An observer that falls into a black hole will have access to a different amount of in-
formation compared to another observer that is stationary outside the horizon. Simi-
larly, a Rindler observer will have access to different regions of spacetime in compari-
son to the inertial observer. The inertial observer measures zero temperature and en-
tropy for the vacuum state, whereas a Rindler observer measures a finite temperature 
and non-zero divergent entropy. Entropy and temperature is apparently observer de-
pendent, due to the effects of the quantum field on the horizon. 

If the field configuration of the vacuum state behind the horizon is traced over, a 
density matrix ρ  for the field configuration outside the horizon can be detected. The 
behaviour of the horizon as a one way membrane blocking all the information to the 
outside observer suggests an observer dependent entropy that can be associated with 
any causal horizon [19]. The entropy arises from quantum cross-correlations which ex-
ist across the horizon. The quantum state of the horizon is a correlated state with a 
component inside the horizon and another one outside. If the observer traces over the 
states behind the horizon, the spacetime outside the horizon will be given by a density 
matrix [20]. The spacetime will contain two isolated regions, separated by the surface 
horizon whereas the description of each spacetime region will be given by tracing over 
the other complementary region. The thermal density matrix and therefore the temper-
ature of the horizon can be obtained from the integration of modes that are hidden by 
the horizon. 

The increase in entropy is due to a separate contribution originated in the quantum 
field within the spacetime near the horizon, concept closely related to the entanglement 
entropy generated by correlations between quantum fields on each side of the horizon. 
The entropy measures the lack of information about the measurement outcomes im-
plied by the Heisenberg uncertainty relation and at the same time measures the amount 
of entanglement between the two sides of the horizon. In other words, the von Neu-
mann entropy describes the observer statistical ignorance of the specific microstate (a 
translation of the classical entropy of Gibbs and Boltzmann) while expressing the 
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amount of entanglement [21]. This idea supports a possible equivalence between inter-
pretations of von Neumann entanglement entropy and Boltzmann statistical entropy 
concepts. Zeilinger, Brukner, Popescu and Brunner have already suggested a connec-
tion between randomness and information gain in a quantum measurement. Objects 
may reach the uniform energy distribution state or thermal equilibrium until they be-
come quantum entangled with the environment. While quantum uncertainty gives rise 
to entanglement, this process will cause local thermal equilibrium with the surround-
ings within a finite time. 

An analysis of the thermodynamics across a horizon discloses a strong relation be-
tween thermality and von Neumann entropy describing entanglement. The observer 
interacts with the quantum field observables defining the quantum state as a density 
matrix. The entropy will quantify the uncertainty, due to entanglement of measure-
ments of the quantum field seen by an accelerated observer. S. Lloyd has already pro-
posed the idea that quantum uncertainty gives rise to entanglement, showing that the 
Heisenberg uncertainty principle and quantum entanglement and are two inextricably 
connected phenomena. Jacobson derived Einstein’s equations from the vacuum entan-
glement entropy, on the understanding of a connection between the semi-classical 
Einstein equations and a maximal vacuum entanglement hypothesis [22]. 

If the horizon entropy is given by the Bekenstein-Hawking formula, then the second 
law of thermodynamics leads to Einstein’s equations. More recently, Ryu-Takayanagi 
have shown that there is a deeper relationship between entanglement and gravity in the 
AdS/CFT conjecture, where the entanglement entropy between a CFT patch and its 
neighbourhood is given a minimal AdS area with the same boundary as the patch. In 
the context of the AdS/CFT correspondence, entanglement entropy is defined on the 
AdS boundary and proportional to the area of a minimal surface in the bulk of the AdS 
spacetime. 

In Rindler spacetime, the observer will have access to the right Rindler wedge and 
observe in a natural way all the thermal fluctuations, as the observer attributes a density 
matrix to a quantum state only after integrating out the unobservable modes. Here, the 
thermal fluctuations have a quantum mechanical origin, suggesting an artificial distinc-
tion between quantum and thermal properties applied to the horizon that should dis-
appear in a correct complete theory of quantum gravity. 

As a direct consequence, any matter plunging towards the horizon will take an infi-
nite amount of time in order to cross the horizon for the outside observer [23]. On the 
other hand, the quantum effects will smear the location of the horizon. Any description 
of the location of the horizon has to take into account these quantum fluctuations. The 
physics loses its predictive power about what happens to the information encoded at 
the horizon [24]. Both location of the horizon and the crossing time are unpredictable 
to the outside observer. 

The Rindler observer (or an observer outside a black hole horizon) attributes a finite 
temperature to the inertial vacuum and associates an entropy change to a horizon while 
the inertial observer (or an observer falling through the horizon) sees none of these 
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phenomena. 
The entropy of matter crossing the horizon is horizonS E Tδ δ=  where the horizon 

plays the role of a causal barrier for the Rindler observer, with inaccessible internal de-
grees of freedom and temperature horizonT . 

The concept of entropy is associated with the missing information but this does not 
lead to none zero entropy, leading to the “information loss problem” [25]. The horizon 
hides information only from the point of view of an external observer. From this pers-
pective, the Rindler entropy is observer dependent. 

The connection between entanglement entropies and areas of extremal surfaces leads 
us to the conclusion that the thermodynamic properties of a system need to be con-
ceived as observer dependent, depending on the spacetime region where the system is 
perceived. The entanglement entropy for a quantum field theory will obey the area law. 
The quantum correlations between the interior and the exterior of the horizon will ac-
count for the black hole entropy. 

Entanglement entropy was already proposed as a probe of the architecture of the 
spacetime in quantum gravity. The point here is that the quantum source of black hole 
entropy is associated with the thermal behaviour of the spacetime, suggesting a deeper 
connection between entanglement and thermodynamics [26]. As a consequence, a con-
sistent and complete theory of quantum gravity should be built in a formalism using 
histories and path integral formulations of quantum mechanics rather than the spatial 
(3 + 1) canonical quantization. In fact, the area law itself that gives a geometric charac-
ter to entropy, brings the unexpected link between gravity, spacetime geometry, ther-
modynamics and quantum field theory. The horizon will play the role of an entangling 
membrane that separates the degrees of freedom between the two sides of a black hole 
[27]. 

This idea is also backing up induced gravity models like the eternal AdS black hole, 
in AdS/CFT conjecture, with the horizon entropy being defined as the entanglement 
entropy between the microscopic degrees of freedom of the boundary CFT and its 
thermofield double [28]. The area law is also confirmed by loop quantum gravity [29] 
and spin foam theory [30] with horizon entropy defined by the entanglement entropy 
of spin-network connections crossing an entangling surface. 

3. Conclusions 

The paradigm described in this paper, relying on a study of general causal horizons [31] 
is that spacetime itself (not just the black hole interior or the event horizon) has entro-
py and can be described in geometric, macroscopic terms (area law) and thermody-
namic concepts, as a manifestation of a deeper quantum nature of spacetime that at this 
time eludes us. The obvious consequence of associating the entropy of causal horizons 
to the missing or hidden information is the fact that the entropy is proportional to ho-
rizon area, with respect to the observer that perceives the horizon. 

The thermodynamic route to gravity brings many conceptual ramifications. In such a 
paradigm where the entanglement of quantum fields can be considered the source of 
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entropy and has a geometrical nature [32], any consistent quantum gravity theory 
should take into account the thermodynamic properties of spacetime. Entropy encodes 
all information about the dynamics of spacetime and finding its extreme will lead to 
Einstein field equations, as Jacobson demonstrated. In a thermodynamic description, 
the presence of entropy leads to equipartition of energy among the degrees of freedom 
and consistent field equations [33]. 

An observer plunging into a black hole will not perceive its event horizon in the same 
way as an observer orbiting the black hole. Therefore, observers in different states of 
motion will have access to distinct patches of spacetime. The plunging observer meas-
ures distinct features compared with the observer near the black hole. At first glance, 
entropy appears to be an observer dependent notion. At the same time, each observer is 
located in a different region of the spacetime and will measure the properties of the ho-
rizon from within a distinct spacetime patch and relative to the quantum field asso-
ciated with that region. A local Rindler observer perceives a local causal horizon to-
gether with its thermal behaviour associated to an event. A connection between quan-
tum fluctuations and thermal fluctuations must exist here. 

This hypothesis is intimately related to the idea of the field equations [34], therefore, 
gravitational dynamics are associated to horizon thermodynamics. For a spacetime with 
horizons, the quantum field theory for this spacetime will possess a horizon with the 
properties of a black body of finite temperature. A connection between horizon ther-
mality and gravity becomes obvious here. 

From a different perspective, the emergence of classical spacetime continuum [35] 
seems directly related to the quantum entanglement of degrees of freedom in a 
non-perturbative description of quantum gravity [36] [37]. A good understanding of 
how classical spacetime emerges from an underlying quantum system [38] would give 
us insight into the full quantum nature of spacetime. 
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