@, Applied Mathematics, 2016, 7, 2418-2423
&% Scientific

‘ ‘ Research http://www.scirp.org/journal/am
94% Publishing ISSN Online: 2152-7393
* ISSN Print: 2152-7385

On a Boundary Value Problem for a Polynomial
Pencil of the Sturm-Liouville Equation with
Spectral Parameter in Boundary Conditions

A. Adiloglu Nabiev

Department of Mathematics, Cumhuriyet University, Sivas, Turkey

Email: aadiloglu@cumhuriyet.edu.tr

How to cite this paper: Adiloglu Nabiev, Abstract

A. (2016) On a Boundary Value Problem for

a Polynomial Pencil of the Sturm-Liouville ~ The boundary value problem with a spectral parameter in the boundary conditions
Equation with Spectral Parameter in Boun-  for a polynomial pencil of the Sturm-Liouville operator is investigated. Using the
dary Conditions. Applied Mathematics, 7,

©418.943 properties of the transformation operators for such operators, the asymptotic for-

http://dx.doi.org/10.4236/am.2016.718190 mulas for eigenvalues of the boundary value problem are obtained.

Received: October 25,2016 Keywords

Accepted: December 25, 2016

Published: December 28, 2016 Sturm-Liouville Equation, Boundary Value Problem, Transformation Operator,
Spectral Theory of Differential Operators, Asymptotic Formulas, Fractional

Copyright © 2016 by author and Derivative, Eigenvalue, Eigenfunction, Polynomial Pencil

Scientific Research Publishing Inc.
This work is licensed under the Creative

Commons Attribution International
License (CC BY 4.0). -
http://creativecommons.org/licenses/by/4.0/ 1. Introduction

In this paper the boundary value problem, generated on the finite interval 0<x<=

by equation
—y"+(q0 (X)+ A0 (X)+-+-+ A",y (x)) y=A2"y 1)
and the boundary conditions
Fu(4)y(0)-y'(0) =R (2)y(n)+y'(n) =0 (2)

is considered. Here we assume that n>1, q,(x)eC[0,x],
d,(x)eC*[0,x] (k =1n —1) are complex valued functions; 1 is a complex para-

meter and
n-1
Pi(A)=iA"+Y A" =12
k=0

with the given constants f; .
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It is known that the Sturm-Liouville problems play an important role in solving
many problems in mathematical physics. There has been a growing interest in Sturm-
Liouville problems with spectral parameter in boundary conditions in recent years and
there are a lot of articles on this subject in the literature. For more detailed analysis we
refer to the papers [1]-[9] and the references therein. In the case n>1 the simple
boundary value problem for the Equation (1) with conditions
y(0)=y(m)=0 isinvestigated in [10] (also see [11]).

Note that many of these investigations are based on some integral representations for
the fundamental solutions of the Sturm-Liouville equation called transformation oper-
ators. The transformation operators for Sturm-Liouville equation and quadratic pencil
of the Sturm-Liouville equation are constructed and studied in [12] [13] and [14] [15]
respectively, while the corresponding operators for the pencil (1) are investigated in
[10] [16].

In this paper using the properties of transformation operators, the considering
boundary value problem is investigated and asymptotic formula for the eigenvalues is
obtained.

We studied in [10], the solutions y;(x,4)(j=12) of the Equation (1) satisfying
the initial conditions

Yi (0,4)=1, Y] (0,2)= (_1)j+1 i

and it is proved that in the sectors of complex plane

m+1
S :{A:msarglsw},mzo,m—l
n n

the solutions y; (x,4) have the following integral representations:

y].(x,/l)ze(’l)mi’lnX 1+ K, (x,t)e™ 2 gt (3)
()"
2

X

where v=j+%[(—l)j+m—(—l)q, Ky (%), DKy (%) and Ky, (x.),

D,K, n(X,.) belongto L (—X;+0) and L, (0;+) respectively. Moreover, if
D"tgo(x t) denotes Riemann-Liouville fractional derivative of order a(0<a <1)
(see [17]) with respect to ¢, ie.
det 1 ot
D? xt =—— x s)ds
W)= Fgyar (o)
1

p
then forall x €[0,n] the functions [D_"th] K., (xt) and

EY —
[D&tJ szm(x,t)(pzl,n) belong to L, (—X,+») and L,(0,+x) respectively. Fur-

thermore, the following equalities are valid:
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+0 moan n-1
[ Kyn (xt)e™ 2 dt ==y, 2™ e ()
k=0

B 3 ' @
(m“)lje “"t[ ‘“J K, (x.t)dt,

e moy:an n-1

I Ko (%,0)e7 2 dt = 3 g, 1270 (%)

0 k=0

(5)

)" (2i2") " jw “"[ 1]nsz(xt)dt,

0

where

k imk

7 =2"e? k=1n-1,

aél)(x):aéz)(x):yniqunil(s)ds
0
) (X) =7, klfqn ca(s)ds+(- Zyn qun o (s)a? (s)ds, j=L2;k=Ln-1 (6)

2. Asymptotic Formulas for the Solutions and Eigenvalues

By s(x,4) and c(x,A) we denote the solutions of the Equation (1) with initial con-
ditions
$(0,4)=c'(0,4)=0,5'(0,4)=c(0,4)=1. (7)
Using integral representations (3) and formulae (4), (5), it is easy to show that for
each 1€,

i " m:.n 2 m i an.
s(x,ﬂ): sm/{?: X+(—1)m(2il” )—1 NE R I Klvm(x,t)e(fl) 2i2" 4
h (8)
N (_1)m+1 (ZMn )‘1 e(-l)m+1i/1”>< .[ Ky (X,t)e(—l)"‘zu"tdt,
0
' _ n _in_l -k-1_ (1) iA"x in_l —k-1_(2) —ia"x
S' (X, A)=CosA"X == 1A T (X)€" + =Yy A Ty (X)e
2' k=0 2' k=0
v o
1 1y 1)" 2i2M
=] P | K (x:1) €7 ©)

e oo
0

1 n
+%(D&IJ KZm (X t):Ie(l) Ziintdty
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n I X 7/+ I X 7+
c(x. ) =eos i"x=3e" S L af) (1) + 24 3 Kk ()
(D)™ (4ian) e 2""{ j a(x )t (10)

()" (4ian) e j ZW(D‘;‘J t)dt,

0

c'(xA4)=-2" sm/l”x+ kz VoA (x ) ot x:i P (x)
1 (‘Umﬂiinxw D K 1 % ’ ()" ziitd
+Ee J' " ZYm(X’t)+E DO,t sz(X t) e t (11)
0

1

n
+%e<‘1)m“"x [ [DX Kyim (x,t)—%[D_”x,t] Ky, (%) 6702 dt.

=X

Let us consider the boundary problem (1), (2). Denote by A(l) the characteristic

function of this problem. Then

1 —Py (ﬂ“)
A(4)= P,(4)s(m,A)+s'(m,2) P,(A)c(mA)+c'(m,A) 12

Zeros of the function A(/I) we'll call eigenvalues of the problem (1), (2). Let
W(4,x;h) be the solution of the Equation (1) with initial conditions
w(4,0;h)=1,w'(1,0;h) =P, (4) (13)
It is clear that
w(4,xh) =P, (4)s(x,4)+c(x,2)
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14
W (A X0) = Py ()5 (% )+ (% A) (1
and
A(A)=P,(A)w(A,mh)+wW (4,m;h) (15)
From formulae (8)-(11) we find that
P(A)+iA" . ol
Wi )= By (1) TET  cos arg - Pl e Qs o9 ()
Py (4)=id" ; ! N (16)
—1 YL = K _n Im A"
- i 4 gl X 17k+1a|£2)(n)+0(/1 )e‘m ‘, Al > +o0
P n-!
w'(A,mh)= Pnl(ﬂ)cosﬂ”n—i”sinﬂ"n—% Z A" ()
1 k=
17)
oo, ond mAa 7[
Gl G ag® () o(1)e™ 4] o> 40
2iA" k=0
Then for A(4) we can write the asymptotic formula
n-1
A(2)=-2"sinA"m+e"" [i;t” +Y.6, ,1“*-1]
n-1 < n (18)
+e [M” +>h A”“J vd™ "‘0(1),|/1| — +o0
k=0
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where 6, and h, are constants. From this we conclude that there exists the constant
L>0 such that

‘Jml"n

|A(2)+ 2780 () < Le (19)

forall A, where

Cn i n-2 (ks r i n-2 (ks
Ay(2)=sinA"n—e" “(H—Zﬂ (k 1)9kj—e i (H—Z/l (k l)hk]. (20)
k k

=0 =0

From (20) we have that for sufficiently large positive integer k there are a finite

number of zeros of A;(1) in the circle O, (|/1| =nlk +%] In other words, the total

number of zeros of A;(4) in O, is equal to the total number of zeros of the func-

tion sinA"w. Moreover, there exists a positive number N such that on the circle

O, [|ﬂ| =1/k +%J the estimation

Joni

A"A (A)]> NJA[ (1)
satisfies. Hence, from (28), (30) and the equality
A(2)==A"Ag (1) +(A(2)+A"As (1)) (22)

according to Rouche’s theorem we conclude that A(4) and A"Ay(4) have the same
number of zeros in the circle O, for sufficiently large k. Using a simple asymptotic

estimations (see [2]), we obtain that zeros having sufficiently large module of the func-

tion A(ﬂ.) lie near rays argi:m, and so the eigenvalues of the problem (1),
n

(2) consist of 2n series. Solving the equation A(4)=0 asymptotically we find the
following asymptotic formula for m® series of eigenvalues of the problem (1), (2):

2imz n b(m)
Jem=e " Y+ = +0

Tk

1

n-1 |’

k — +o0 (23)

where sup
S

bs(m)‘ < 0,

Theorem 2. Boundary value problem (1), (2) has a countable number of eigenvalues.

The eigenvalues having sufficiently large module are placed near the rays

argl = m(m =0,m —1) ,and m" series of these satisfy the asymptotic formula (23).
n
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