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Abstract 
We study the nonlinear coupled evolution equations which model the transient 
MHD natural convection and mass transfer flow of viscous, incompressible and elec-
trically conducting fluid between two infinite vertical plates in the presence of the 
transversal magnetic field, thermal radiation, thermal diffusion and diffusion-thermo 
effects. Both analytical and numerical methods are used for this study.  
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1. Introduction 

Heat and mass transfer flow of an electrically conducting fluid between parallel plates 
in the presence of a magnetic field and thermal radiation is of a special significance 
both naturally and in many industrial applications such as magnetohydrodynamic 
power generators, pumps, cooling of nuclear reactors, geothermal systems, thermal in-
sulators, nuclear waste disposal, petroleum and polymer technology, heat exchangers 
and others [1]. One of the earliest studies in this field was carried out by [2]. They ana-
lyzed the influence of the effects of a transverse uniform magnetic field on the flow of a 
viscous incompressible electrically conducting fluid exiting through parallel stationary 
plates that are insulated. Since then, several aspects of this problem have been investi-
gated [3]. 
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It has been found that an energy flux can be generated not only by temperature gra-
dients but also by concentration gradients. The heat transfer caused by concentration 
gradient is called the diffusion-thermo or Dufour effect while mass transfer caused by 
temperature gradients is called Soret or thermal diffusion effect. Thus, Soret effect is 
referred to species differentiation developing in an initial homogenous mixture sub-
mitted to a thermal gradient and the Dufour effect referred to the heat flux produced by 
a concentration gradient. Fouriers neglect these effects on the basis that they are of a 
smaller order of magnitude, than the effects described and Ficks laws in heat and mass 
transfer processes [4]. [5] found that the thermal diffusion effect assumes significance 
for instance in isotope separation and in mixtures between gases with very light mole-
cular weight (H2, He) and for medium molecular weight (N2, air), the diffusion-thermo 
effects constitute a substantial effect such that it cannot be ignored. Hence several mod-
els with Soret and Dufour effect in different heat and mass transfer problems have been 
studied. Recently, [6] considered Dufour effect on the free-convection and mass trans-
fer flow in a vertical channel when the boundaries are subjected to symmetric concen-
tration and thermal input. [7] presented a theoretical treatment of unsteady hydro-
magnetic flow and heat and mass transfer of an incompressible electrically-conducting 
and radiating fluid in a vertical filled with porous medium taking into account the Soret 
number. [4] considered the effect of thermo-diffusion on MHD mixed convective heat 
and mass transfer flow of a viscous fluid through a porous medium with radiation, heat 
generation and chemical reaction. 

The role of thermal radiation on MHD flow and heat transfer problem continues to 
have great deal of interest. For instance at high operating temperature, radiation effect 
can be quite significant. For instance, in many processes in engineering areas such as 
Nuclear power plants, gas turbines and the various propulsion devices for aircraft, mis-
siles, satellites and space vehicles, knowledge of thermal radiation effect becomes very 
important for the design of the pertinent equipment [8]. [9] explained the behaviors of 
chemically reacted unsteady MHD free convection flow in the presence of thermal dif-
fusion and diffusion thermo. [10] analyzed Soret and Dufour effects on unsteady MHD 
mixed convection flow past a radiative vertical porous plate embedded in a porous 
medium with chemical reaction. [11] discussed the effect of Soret and Dufour num-
ber on an unsteady magnetohydrodynamic free convective fluid flow past a vertical 
porous plate in the presence of suction or injection. [9] studied chemical reaction ef-
fect on an unsteady MHD free convection flow past an infinite vertical accelerated 
plate with constant heat flux, thermal diffusion and diffusion thermo. [12] examined 
the thermal radiation effect on the MHD three-dimensional flow of Eyring-power 
fluid. More recently, [13] carried out a parametric study on radiation, Soret and Du-
four effects in MHD channel flow bounded by a long wavy wall and a uniformly 
moving parallel at wall. 

In the present article, we consider the thermal diffusion and diffusion-thermo effect 
on MHD free convection and mass transfer flow which, will be analysed by means of 
non-linear Rosseland diffusion approximation.  
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2. Mathematical Analysis 

Consider a two-dimensional transient combined free convective and mass transfer flow 
of a viscous, incompressible and electrically conduction fluid between two infinite ver-
tical parallel plates. A uniform transverse magnetic field of magnitude 0B  is applied in 
the presence of an incident radiation flux of intensity rq , which absorbed by the plate 
and transferred to the fluid as shown in Figure 1. At time 0t ≤ , both the fluid and 
plates are assumed to be at rest at constant temperature 0T  and constant concentra-
tion 0C  respectively. At time 0t >  the temperature of the plate situated at 0y′ =  
and concentration rise to wT  and wC  while the other plate at a distance H  from it, 
is fixed and maintained at temperature 0T . The stream wise coordinate is denoted by 
x′  taken vertically upward direction and that normal to it is denoted by y′ . The flow 
is assumed laminar and fully developed means that the axial ( -x direction) velocity de-
pends only on transverse coordinate, y′ . Therefore from the continuity equation, the 
transverse velocity, the variable v  is equated to zero. Since the plates are of infinite 
length, the velocity, temperature and concentration are function of y′  and t′  alone. 
Using the Boussinesq’s approximation, the governing equations for the present physical 
situation in the dimensional form are:  
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22
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t y
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where 0T  is the initial temperature of the fluid and porous plates, T ′  is the dimen-
sional temperature of the fluid, α  is the thermal diffusivity, K  is the thermal  

 

 
Figure 1. Schematic diagram of the problem. 
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conductivity, ρ  is the density of the fluid, β  is the coefficient of the thermal expan-
sion, 1σ  is the fluid electrical conductivity, g  is the gravitational acceleration and 

0B  is the strength of applied magnetic field. The flow is assumed laminar and fully de-
veloped. Meaning that the axial ( -x direction) velocity depends only on transverse 
coordinate, y′ .  

4

*

4
3r

Tq
y

σ
κ

′∂
= −

′∂
                           (4) 

The quantity rq  appearing on the right hand side of Equation (2) represents the ra-
diative heat flux in the -y′ direction where the radiative heat flux in the -x direction is 
considered insignificant in comparison with that in the -y′ direction. The radiative 
heat flux term in the problem is simplified by using the Rosseland diffusion approxima-
tion for an optically thick fluid according to [14], where σ  is Stefan-Boltzmann con-
stant and *κ  the mean absorption coefficient. 

This approximation is valid for intensive absorption, that is, for an optically thick 
boundary layer. Despite these shortcomings, the Rosseland approximation has been 
used with success in a variety of problems ranging from the transport of radiation 
through gases at low density to the study of the effects of radiation on blast waves by 
nuclear explosion [14]. 

The required initial and boundary conditions to be satisfied are  

0
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                 (5) 

To obtain the non-dimensional form of the above equations, the following dimen-
sionless variables are introduced.  
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Using Equations ((4) and (6)) in Equations (1)-(3), we obtain the following dimen-
sionless equations for velocity, temperature and concentration respectively. 
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0; 1; 1;   at  0
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u y

t
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>  = = = =
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3. Analytical Solution 

The governing equations presented in the previous section are highly nonlinear and ex-
hibited no exact solutions. In general such solution can be very useful in validating 
computer routines of complicated time dependent two or three-dimensional free con-
vective and radiating conducting fluid and comparison with experimental data. It is 
therefore of interest to reduce the governing equations of the present problem to the 
form that can be solved analytically. A special case of the present problem that exhibit 
analytical solution is the problem of steady state MHD natural convection flow in a ver-
tical channel in a presence of thermal radiation, thermal diffusion and diffusion-thermo 
effects. The resulting steady state equations and boundary conditions for this special 
case can be written as  
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the boundary conditions are  
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                    (14) 

To construct analytical solutions of Equations ((11) to (13)) subject to (14), it is as-
sumed that the radiation parameter is small and taking a power series expansion in the 
radiation parameter R  employs a regular perturbation method.  
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where R  is the radiation parameter ( )1R . The second and higher order of terms 
of R  gives correction to 0u , 0θ  and 0φ  account for thermal radiation effects. 
Substituting Equation (15) in Equations ((11), (13)) and equating like powers of R , 
one obtains the boundary value problem for 0j =  and 1j =  as  
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The relevant boundary conditions to be satisfied are:  
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The required solutions of the governing steady state energy, concentration and mo-
mentum Equations ((16)-(21)) subject to boundary condition (22) are:  
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Using (23), we write the steady state rate of heat (Nusselt number) transfer on the 
boundary:  

( )32
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The steady state rate of mass (Sherwood number) transfer on the boundary plate 
from (24) as:  

0 1
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                  (27) 

Also, using (25), we write the skin friction coefficient as:  
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where 1 TB C= +  and the constant i sK ′  and i sχ ′  are remove in order to reduce the 
size of the work. 

4. Numerical Procedure 

The nonlinear partial differential Equations ((7)-(9)) are solved numerically using 
semi-implicit finite difference scheme. We used forward difference formulas for all 
time derivatives and approximate both the second and first spatial derivatives with 
second order central differences. The semi implicit finite difference equation corres-
ponding to Equations ((7)-(9)) is as follows:  
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Using the known values of θ  and φ  at grid point 0t =  and reducing the solu-
tion to tri-diagonal matrix we obtained temperature and concentration fields at time 

1i it t tδ+ = +  using the known values of the previous time it t=  for all 1,2, , 1i M= − . 
Then the velocity field is evaluated using the already known value of temperature and 
concentration fields obtained at 1i it t tδ+ = + . These processes are repeated till the re-
quired solution of θ , φ  and u  are gained at convergence criteria.  

( ) ( ) 4
exact num, , , , 10u uθ φ θ φ −− <                     (32) 

The iterative system does not restrict time step and the technique is always conver-
gent and unconditionally stable. 

5. Results and Discussion 

This paper, examined the transient natural convective flow through a vertical channel 
in the presence of a thermal diffusion, diffusion-thermo and radiative heat transfer un-
der the influence of a uniform magnetic field. The system of governing Equations (7)- 
(9) with the boundary conditions (10) is solved employing the finite difference method. 
The effects of the flow governing parameters on velocity, temperature, skin friction, 
Nusselt number and Sherwood number, have been shown using line graph as demon-
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strated in Figure 2 through Figure 25. These result show the variations in the velocity 
field, temperature distribution, skin friction, and heat transfer rate, influenced by the 
material parameters of the flow problem, that is, the magnetic parameter ( )M , radia-
tion parameter ( )R , temperature difference parameter ( )TC , sustention parameter 
( )N , dimensionless time ( )t , Prandtl number ( )Pr , Schmidt number ( )Sc , thermal 
diffusion parameter tS  and diffusion-thermo parameter ( )fD . The radiation para-
meter R  is in the range of 0 1R≤ ≤  because terms associated with R  behave as 
strong heat sources and large value of R  leads to finite time temperature blow up (see 
[15]). Prandtl number 0.71, 1.0, 3.0 and 7.0, which physically represent air, electrolyte 
solution, saturated liquid freon and water respectively. In air the diffusing chemical 
species of common interest have Schmidt number 0.1 1.0 [16]: the work consider 3NH  
for 0.78Sc = , H  for 0.22Sc =  and 2H O  for 0.60Sc =  respectively. Moreover 
time is selected in the range 0.02 1t≤ ≤ , in order to capture the steady state situation 
for air and water. Besides all other parameter is choosing arbitrary.  

Figures 2-4 display the velocity, temperature and concentration profiles for different 
values of dimensionless time t  when other controlling parameters are fixed. It is ob-
served that velocity, temperature as well as concentration increases as dimensionless 
time t  increases and attains steady state.  

Figure 5 indicates that high values of sustention parameter substantially increase the 
velocity. 

Figures 6-8 depict the effect of Prandtl number on velocity, temperature and con-
centration. It is seen that an increase in the values of Pr  leads to the decrease in fluid 
velocity, temperature and concentration. This may be attributed to the fact that at 
higher Prandtl number, convection currents become weak and qualitatively decreases 
the temperature, which leads to decrease in velocity and concentration. 

Figure 9 illustrates the effect of magnetic M  parameter on velocity. It is seen that 
an increase in the values of leads to the decrease in fluid velocity. This is true since 
magnetic parameter produce resistive force, which acts opposite direction to the fluid 

 

 
Figure 2. Velocity profile when 0.01TC = , Pr 0.71= , 0.001R = , 0.22Sc =  and 0.02tS = . 
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Figure 3. Temperature profile when 0.01TC = , 0.02fD = , 1N =  Pr 0.71= , 0.001R = , 

0.78Sc =  and 0.02tS = . 
 

 
Figure 4. Concentration profile when 0.02fD = , 1N = , Pr 0.71= , 0.001R =  and 0.78Sc = . 

 

 
Figure 5. Velocity profile when 0.01TC = , 0.02fD = , 1M = , Pr 0.71= , 0.001R = , 

0.22Sc = , 0.02tS =  and 0.2t = . 
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Figure 6. Velocity profile when 0.01TC = , 0.02fD = , 1M = , 1N = , 0.001R = , 

0.22Sc = , 0.02tS =  and 0.2t = . 
 

 
Figure 7. Temperature profile when 0.01TC = , 0.02fD = , 1N = , 0.001R = , 0.78Sc =  

and 0.2t = . 
 

 
Figure 8. Concentration profile when 0.02tD = , 1N = , 0.001R = , 0.78Sc = , 0.02tS =  
and 0.2t = . 
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Figure 9. Velocity profile when 0.01TC = , 0.02fD = , 1N = , Pr 0.71= , 0.001R = , 

0.22Sc = , 0.02tS =  and 0.2t = . 
 

motion. This is an important controlling mechanism inflow and heat transfer processes 
so that the finished product meet the desire quality specification. 

Figure 10 show the influence of Schmidt Sc  number on velocity. The velocity is 
observed to descend with Schmidt number when other numerical values are treated 
constant. 

Figure 11 and Figure 12 illustrate the disparity in both velocity and temperature due 
to a change in thermal-diffusion parameter fD  when other parameters are fixed. 
From these Figures it is noted that the effect of fD  is to increase both velocity and 
temperature respectively. 

Figures 13-15 explain the effect of increasing diffusion-thermo parameter. With all 
other parameters constant, the velocity, temperature and concentration increases with 
increase in tS .  

Figure 16 and Figure 17 illustrate the effect of temperature difference parameter 

TC  on velocity and temperature profiles, respectively. It is observed that as the value of 

TC  increases there is corresponding increase in the temperature of the fluid, and hence 
cause increase in velocity. 

Figure 18 and Figure 19 inspect the influence of the radiation parameter R  on the 
velocity and temperature, respectively. It is observed that the impact of R  has insigni-
ficant effect on both velocity and temperature. 

Figures 20-22 present variation of skin friction at 0y =  for different values of R , 

fD , tS  and t . The results show that the values of skin friction increases with increase 
of R , fD  and tS  respectively. In addition the result show that skin friction increas-
es with dimensionless time t  until steady state is attain. 

Figures 23-25 present the variation of rate of heat transfer for different values of R , 

fD , tS  and t  at 0y = . It is observed in Figure 23 that the rate of heat transfer in-
creases with increase in R . The physical fact is that an increase in radiation adds more  
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Figure 10. Velocity profile when 0.01TC = , 0.02fD = , 1M = , 1N = , Pr 0.71=  

0.001R = , 0.02tS =  and 0.2t = . 
 

 

Figure 11. Velocity profile when 0.01TC = , 1M = , 1N = , Pr 0.71= , 0.001R = , 
0.78Sc = , 0.02tS =  and 0.2t = . 

 

 

Figure 12. Temperature profile when 0.01TC = , 1N = , Pr 0.71= , 0.001R = , 0.78Sc =  
and 0.2t = . 



I. B. Yabo 
 

2366 

 

Figure 13. Velocity profile when 0.01TC = , 0.02fD = , 1M = , 1N = , Pr 0.71= , 

0.001R = , 0.78Sc = , and 0.2t = . 
 

 

Figure 14. Temperature profile when 0.01TC = , 1N = , Pr 0.71= , 0.001R = , 0.78Sc =  
and 0.2t = . 

 

 

Figure 15. Concentration profile when 0.02tD = , 1N = , Pr 0.71= , 0.001R = , 0.078Sc =  
and 0.2t = . 



I. B. Yabo 
 

2367 

 

Figure 16. Velocity profile when 0.02tD = , 1M = , 1N = , Pr 0.71= , 0.001R = , 
0.78Sc = , 0.02tS =  and 0.2t = . 

 

 

Figure 17. Temperature profile when 0.02tD = , 1N = , Pr 0.71= , 0.001R = , 0.78Sc =  
and 0.2t = . 

 

 

Figure 18. Velocity profile when TC , 0.02fD = , 1M = , 1N = , Pr 0.71= , 0.001R = , 

0.78Sc = , 0.02tS =  and 0.2t = . 
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Figure 19. Temperature profile when 0.01TC = , 0.02tD = , 1N = , Pr 0.71= , 0.001R = , 
0.78Sc =  and 0.2t = . 

 

 

Figure 20. Skin friction against R  at 0y = . 
 

 

Figure 21. Skin friction against fD  at 0y = . 
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Figure 22. Skin friction against tS  at 0y = . 
 

 

Figure 23. Nusselt number against R  at 0y = . 
 

 

Figure 24. Nusselt number against fD  at 0y = . 
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Figure 25. Nusselt number against tS  at 0y = . 
 

heat to the fluid and lead to an increase temperature, which correspond to the increase 
in rate of heat transfer. Figure 24 and Figure 25 show that the effect of fD  and tS  
has insignificant effect to the values of rate of heat transfer. Furthermore as dimension 
time increases the rate of heat transfer decreases (see Figures 23-25). This may be at-
tributed that the heat is been driven away from plate 0y =  through fluid to the other 
plate 1y = .  

6. Result Validation 

In order to verify the accuracy of our results, the analytical solutions (steadystate) ob-
tained from Equation (25) by Perturbation method was compared with that of numeri-
cal solution derived by semi-implicit finite difference from Equation (29). These com-
puted results are tabulated in Table 1. It is interesting to observe from this Table 1 that 
the transient and steady state solutions results (under some limiting conditions) are in 
very good agreement at large value of time, which clearly shows the correctness of our 
numerical (computed) scheme. 

7. Conclusions 

Transient MHD natural convection flow in a vertical channel in a presence of thermal 
radiation, thermal diffusion and diffusion-thermo effects confined between two infinite 
vertical parallel plates has been investigated. The model representing the present phys-
ical situation is highly nonlinear due to the presence of thermal radiation effect. The 
non-linear differential equations under appropriate initial and boundary condition are 
numerically solved using implicit finite difference method. Also analytical solutions are 
derived by regular perturbation method for steady state situation. The impact of the es-
sential dimensionless controlling parameter on velocity, temperature, concentration, 
skin-friction and Nusselt number is presented with the aid of line graphs and discussed.  
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Table 1. Comparison between numerical values of transient velocity obtained using finite differ-
ence method and steady state velocity obtained by Perturbation method.  

 Analytical solutions (Perturbation method) 
Numerical solutions at large time  

(t = 1.0) (implicit finite difference method) 

y  ( )u y  ( ),u y t  

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0 

0.052829450187355 

0.088409716341568 

0.108861470010599 

0.116391069074050 

0.113075548985047 

0.100883411538198 

0.081694327474669 

0.057317950114637 

0.029512028310309 

0.0 

0.0 

0.052891525028535 

0.088323183046247 

0.108659409815396 

0.116111597365865 

0.112759421899413 

0.100571136321596 

0.081423079561766 

0.057118614533452 

0.029406666832307 

0.0 

 
From the indicated results of the problem, the following observations were concluded: 

1) As the radiation, temperature difference, sustention parameter, thermal-diffusion, 
diffusion-thermo, and non-dimensional time parameters increase, both the velocity and 
temperature increase while velocity decreases with Schmidt number and magnetic pa-
rameter.  

2) Increasing Prandtl number reduces values of velocity, temperature and concentra-
tion.  

3) Skin friction, Nusselt and concentration increase with time.  
4) The values of Nusselt number are higher in case of radiation and contrast in case 

of thermal-diffusion and diffusion-thermo at 0y = .  
5) Good agreement between steady state and transient solution was found after some 

sufficiently large time t .  
6) During numerical computation, it is found that the time required reaching steady 

state velocity and temperature is directly proportional to the Prandtl number of the 
working fluid. That is the time required to reach steady state velocity and temperature 
is approximately 0.71 (dimensionless time) for air ( )Pr 0.71=  for fixed values of other 
controlling parameters.  
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