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Abstract 
In this paper, an alternating direction Galerkin finite element method is presented 
for solving 2D time fractional reaction sub-diffusion equation with nonlinear source 
term. Firstly, one order implicit-explicit method is used for time discretization, then 
Galerkin finite element method is adopted for spatial discretization and obtain a fully 
discrete linear system. Secondly, Galerkin alternating direction procedure for the 
system is derived by adding an extra term. Finally, the stability and convergence of 
the method are analyzed rigorously. Numerical results confirm the accuracy and effi-
ciency of the proposed method. 
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1. Introduction 

In this paper, we consider the following two-dimensional nonlinear fractional reaction- 
subdiffusion equation  
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with boundary and initial conditions  
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where 0 1α< < , ( )1 2diag ,A κ κ= , ( )xφ  is sufficiently smooth function. For sim-
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plicity, we assume coefficients 1κ , 2κ  and κ  are positive constants in this paper. In 
fact, our method and its corresponding theoretic result are also valid for variable coeffi-
cients. ( )1

0 ,tD u x tα−  is the Riemann-Liouville time fractional derivative of order 1 α−  
defined by [1]  

( ) ( )1
0 0, , ,t tD u x t D u x t

t
α α− −∂  =  ∂

                     (3) 

where α−
tD0  denotes the Riemann-Liouville fractional integral operator defined as [1]  

( ) ( ) ( )( ) 1
0 0

1, , d ,   0.
t

tD u x t u x s t s sαα α
α

−− = − >
Γ ∫               (4) 

In addition, we assume that the nonlinear source term ( ), ,f u x t  satisfies the Lipschitz 
condition with respect to u , i.e., there exists a positive constant L  such that  

( ) ( )1 2 1 2 1 2, , , , ,   , .f u x t f u x t L u u u u− ≤ − ∀ ∈  

Problem (1) can be considered as a model for reaction-diffusion phenomena with 
anomalous diffusion, which has been widely applied in various fields of science and en-
gineering. Generally, solutions of (1) can’t be obtained by analytical approach. So, there 
are various numerical methods developed for solving (1). Li and Ding [2] proposed 
higher order finite difference methods for solving 1D linear reaction and anomalous- 
diffusion equations. Zhuang, Liu and Anh, et al. [3] presented an implicit finite element 
method for solving 1D nonlinear fractional reaction-subdiffusion process. Dehghan, 
Abbaszadeh and Mohebbi [4] analyzed a meshless Galerkin method with radial basis 
functions of 2D linear fractional reaction-subdiffusion process. Yu, Jiang and Xu [5] 
derived an implicit compact finite difference scheme for solving 2D nonlinear fraction-
al reaction-subdiffusion equation. 

Alternating direction implicit (ADI) method was proposed by Peaceman, Rachford 
and Douglas [6] [7] [8] in 1950’s for multidimensional differential equations of integer 
order, which could reduce original multidimensional problem into a sequences of one- 
dimensional problems. Since the first ADI based finite difference (FD) scheme pre-
sented for 2D space fractional diffusion equation by Meerschaert, Scheffler and Tadje-
ran [9], there are many literatures about various multidimensional fractional differen-
tial equations numerically solved by ADI technique. The following problem is always 
discussed:  

( )
2 2

0 1 22 2 , , ,C
t

u uD u f x y t
x y

α κ κ∂ ∂
= + +

∂ ∂
                    (5) 

where 0
C

tD uα  is Caputo fractional derivative of order s  defined as [1]  

( ) ( ) ( ) ( )1
0 0

1, , , , d ,   1 , .
t mC

t
uD u x y t t x y m m m

m t

α
αα

ας ς ς α
α

− − ∂
= − − < < ∈
Γ − ∂∫   

In the case of 0 1α< < , Zhang and Sun [10] presented an ADI FE scheme and ana-
lyzed its stability and convergence property by energy method. Cui [11] constructed a 
compact ADI FD scheme and discussed its stability by Fourier method. In the case of 
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1 2α< < , Zhang, Sun and Zhao [12] proposed a Crank-Nicolson compact ADI FD 
scheme, where stability and convergence property are also proved by energy method. 
Wang and Vong [13] presented another compact ADI FD scheme, where the original 
equation was first transformed into an equivalent form and then discretized by com-
pact FD scheme combining with ADI technique. Li, Xu and Luo [14] presented an ADI 
finite element (FE) scheme for Equation (5), where stability and L2 error estimate are 
analyzed. ADI orthogonal spline collocation (OSC) scheme was developed by Fair-
weather, Yang and Xu, et al. [15] for solving Equation (5); stability and error estimate 
in various norms ( )0,1,2jH j =  are given. The equivalent form of Equation (5) as 
following  

( )
2 2

1
0 1 22 2 , , ,   0 1,t

u u uD f x y t
t x y

α κ κ α−  ∂ ∂ ∂
= + + < < ∂ ∂ ∂ 

             (6) 

is also often studied. For instances, Cui [16] presented a compact ADI FD scheme, 
where the local truncation error was analyzed and the stability was discussed by the 
Fourier method. Furthermore, the author analyzed the cause of low time accuracy 
when ( )0,1 2α ∈  and gave a remedy. Zhang and Sun [17] proposed a Crank-Nicol- 
son compact ADI FD scheme for Equation (6), where stability and two error estimates 
are proved rigorously by energy method. Yao, Sun and Wu, et al. [18] first transformed 
Equation (6) into an equivalent form of Caputo fractional derivative and then derived a 
compact ADI FD scheme. Their numerical experiments show better numerical perfor-
mance than the scheme in [16]. Compact ADI FD schemes were also derived for solv-
ing 2D/3D linear time fractional convection-diffusion equations [19] [20] [21] and 2D 
linear time fractional diffusion equations of distributed-order [22] [23]. 

There are also lots of ADI based numerical methods for multidimensional space frac-
tional differential equations. Fast iterative ADI FD schemes [24] [25] are designed for 
2D/3D linear space fractional diffusion equations, which are first order accuracy in 
both time and space and have the advantage of low computational work and low mem-
ory storage. High order accurate ADI FD schemes are proposed for 2D linear space 
fractional diffusion equations [26] [27] and two-sided space fractional convection-dif- 
fusion equations [28], which are based on weighted and shifted Grünwald operators or 
Lubich operators approximating Riemann-Liouville fractional derivatives respectively. 
Spectral direction splitting methods [29] are derived for 2D space fractional differential 
equations. Semi-implicit alternating direction FD scheme [30] and ADI FE scheme [31] 
are used for solving 2D fractional Fitz Hugh-Nagumo monodomain model, which con-
sists of a coupled 2D space fractional nonlinear reaction-diffusion equation and an or-
dinary differential equation, on irregular domain and rectangle domain respectively. 
ADI Galerkin-Legendre spectral method [32] is developed for 2D Riesz space fractional 
nonlinear reaction-diffusion equation. 

Most of the above mentioned works contribute on linear fractional differential equa-
tions and finite difference method combined with ADI technique. A few work consider 
ADI FEM [14] [31] or nonlinear fractional differential equations [30] [31] [32]. Com-
pared with FD method, FE method has the advantage of easily handling variable coeffi-
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cients problem and boundary conditions. And many realistic problems involve nonli-
near fractional differential equations. Based on these motivations, our attention in this 
paper will focus on developing ADI FE schemes for efficiently solving a class of nonli-
near time fractional differential equations. This is the first time ADI FE scheme pro-
posed and analyzed rigorously for nonlinear fractional differential equations. We will 
use problem (1.1) as a model problem to illustrate our approach. 

The outline of this paper is organized as follows. In Section 2, we introduce some 
preliminaries and notations which will be used later. The formulation of ADI finite 
element method for nonlinear time fractional reaction-subdiffusion equation is pre-
sented in Section 3. The stability and error estimates of the proposed method are dis-
cussed in Section 4. In convenience of computation, we give the matrix form of ADI fi-
nite element scheme in Section 5. Some numerical experiments are displayed in Section 
6. It aims to confirm our theoretical results. In the end, some concluding remarks are 
given in Section 5. 

In the following, C  and iC  denote generic positive constants independent of τ , 
N  and n , and their value will not be the same in different equations or inequalities. 

2. Preliminary and Notations 

Let Ω  be a bounded and open domain in 2 . Denote the inner product and norm 
on ( )2L Ω  by  

( ) ( ) ( ) ( )2, d , , .f g f x g x x f f f
Ω

= =∫  

Recall that the Sobolev space ( )kH Ω  is the closure of ( )C∞ Ω  in the norm 
1 22
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≤ + ≤

 ∂ =
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∑  

Denote by ( )1
0H Ω  the closure of ( )0C∞ Ω  in the norm 1⋅ ; it is well known that an 

equivalent norm on ( )1
0H Ω  is  

1 222
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If X  is a normed space with norm X⋅ , recall that  

( ) [ ] ( ) ( )( )1 222
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∞
≤ ≤
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Denote ( ){ }2, , ,x y xyv v v v v L= ∈ Ω . Let ( ), 2h r r ≥  be the finite dimensional sub-
space of ( )1

0H Ω  and satisfy  

( )1
, 0 ,h r H⊂ ∩ Ω   
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and  

( ) ( ) ( )
2

1
0

, 0,1,0,
,   ,   2 .inf

m
m s s

i j s
i jmh r
i j m

v
h Ch v v H H s r

x yχ

χ
∈ ==

+ =

 ∂ −  ≤ ∈ Ω ∩ ∩ Ω ≤ ≤ ∂ ∂ 
 
∑ ∑


  

In convenience, the following notations will be used. For a positvie integer N , let 

nt nτ= , 0,1, ,n N=   where T Nτ =  is the time step. Denote the grid function  

( ) ( ) ( ), ,   , , .n n n
n nu x t u f u x t f u= =  

Define linear operator ( ) ( )1 2
0: H LΩ → Ω  by  

( ): ,u A u uκ= −∇ ⋅ ∇ +                          (7) 

and its variational form  

( ) ( ) ( ), : , , ,Au v A u v u vκ= ∇ ∇ +  

and corresponding energy norm by  

( ) ( )1 22 21 2 1 2: , .AAu u u A u uκ= = ∇ +  

Obviously, we have  

( ) 2 2, .A A Au v u v≤  

Some useful lemmas are given as follows.  
Lemma 1. [3] Let  

( )1 ,   0,1, 2,jw j j jα α= + − =  

then jw  satisfy the following properties  
1) 0 1, 0,   0,1, 2,jw w j= > =  ,  
2) 1,   0,1, 2,j jw w j+> =  .  
Lemma 2. [3] If ( ) [ ]2 0,y t T∈ , then  

( ) ( ) ( ) ( ) ( )
1

0 1 0 1 1
0

,

0 1

n
n

t n t n n j j n j
j

D y t D y t y t w w y t R
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α α
αµ

−
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+ + + −
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− = + − + 

 
≤ ≤ −

∑  

where ( )1αµ τ α= Γ + , nRα  is bounded by  
1 .n

nR Cw α
α τ +≤  

We state here for convenience the discrete version of Gronwall’s inequality.  
Lemma 3. [33] Suppose that ,φ ψ  and χ  are nonnegative functions defined for 

, 0,1, ,t n n Nτ= =  , and that χ  is nondecreasing. If  
1

0
,    0,1, , ,

k

k k k n
n

C k Nφ ψ χ τ φ
−

=

+ ≤ + =∑ 
 

where C  is a positive constant, then  

e ,   0,1, , .Ck
k k k k Nτφ ψ χ+ ≤ =   
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3. Formulation of ADI FEM  

Integrating both sides of (1) with respect to the time variable t  from nt  to 1nt + , and 
noticing the definition (3) and (7), we can obtain  

[ ]( ) ( )( ) ( )11
0 1 0 , , d .ntn n

t n t n tn
u u D u t D u t f u x t tα α ++ − −

+− = − − − + ∫          (8) 

Applying Lemma 2 and the following integration formula  

( ) ( ) ( )1 2, , d ,nt n
tn

f u x t t f uτ τ+ = +∫   

Equation (8) is equivalent to  

( ) ( )
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1 1
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0
,
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n n n j n n

j j
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+

=

 
+ + − = + + 

 
∑            (9) 

where the remainder term ( )2nR Rα α τ= +  can be bounded by  
1 .nR Cw α

α τ +≤                            (10) 

The weak form of Equation (9) is: find ( )1 1
0

nu H+ ∈ Ω  such that for any ( )1
0v H∈ Ω ,  
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∑ 
            (11) 

Then the finite element approximation to Equation (11) is: find ,
n

h rU ∈  such that 
for any ,h rV ∈ ,  
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or equivalently  
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( ) ( ) ( ) ( ) ( )( )

1 1
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, , , , ,
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The choice of the initial values 0U  will be discussed later. 
Let 1 1n n nE U U+ += − , then 1 1n n nU E U+ += + , (12) can be transformed into  

( )( ) ( )
( ) ( )
( ) ( ) ( ) ( )( )

1 1

1

1
0

1 , ,
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, , , ,
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−
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      (13) 

so that the alternating-direction Galerkin scheme of (1) can be defined as, for  
0, , 1n N= − ,  
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( )
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where  

( ) ( ) ( )
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1
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             , , , .
1 1

n n n
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n j n j n

j j
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w w A U V U V f U V

µκ µ
µκ
µ τκ
µκ µκ

−
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+
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 Ψ = − − ∇ ∇ +
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(15) 

Remark 1. Numerical experiments in Section 6 demonstrate that the ADI Galerkin 
finite element scheme (14) has bad numerical performance for 0 1 2α< < . Similar 
phenomena have been reported in [11] [16] and [17], where compact ADI finite differ-
ence schemes are designed respectively for solving 2D linear time fractional sub-diffu- 
sion equations. To construct ADI finite element method, the third term  

( )

2 2 1 2
1 2

2 ,
1

nE V
x y x y

µ κ κ
µκ

+ ∂ ∂
 ∂ ∂ ∂ ∂+  

 

in left hand side of (14) is extra added. Its effect on temporal accuracy cannot be ig-
nored when 0 1 2α< < . To balance it, we can add a correction term  

( )

2 2 2
1 2

2 ,
1

nE V
x y x y

µ κ κ
µκ

 ∂ ∂
 ∂ ∂ ∂ ∂+  

                       (16) 

on the right hand side of (14). By the way, the similar remedy was also adopted by [11] 
[16] in finite difference framework. 

In conclusion, when 0 1 2α< < , it is beneficial to use the following scheme for 
1n ≥   

( ) ( )
( )

( )
2 2 1 2

1 1 1 2
,2, , , , ,

1 1

n
n n n

h r
E VE V A E V V V
x y x y

µ κ κµ
µκ µκ

+
+ +  ∂ ∂

+ ∇ ∇ + = Ψ ∀ ∈ + ∂ ∂ ∂ ∂+  
   (17) 

where  

( ) ( )
( )

2 2 2
1 2

2 , ,
1

n
n n E VV V

x y x y
µ κ κ

µκ

 ∂ ∂
Ψ = Ψ +  ∂ ∂ ∂ ∂+  
  

nΨ  is defined by (15). And for 0n =  the approximation is still given by (14). 
In the following, we will focus our attention on the ADI Galerkin finite element 

scheme (14).  

4. Stability and Error Estimate  

Firstly, we introduce some notation and lemmas. Given a smooth function ( ),u x t , 
define [ ] ,: 0, h rW T →  by  

( )( ) ( ) ,, , 0,   ,h rA u W V u W V Vκ∇ − ∇ + − = ∀ ∈              (18) 

or equivalently  

( )( ) ,, 0,   .h rA
u W V V− = ∀ ∈   
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The operator defined in (18) has the following approximate properties:  
Lemma 4. [34] Let u Wη = −  for 0,1,2k = , 2,p = ∞ , 0,1j =  there exists a con-

stant C , independent of meshsize h , such that  

( ) ( )
,   1 .

p j p s

k k
s j

k k
L H L H

uCh s r
t t
η −∂ ∂

≤ ≤ ≤
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                (19) 

Lemma 5. [33] If   denote the operators d ,t t
∂
∂

 and 
2

2t
∂
∂

, then  
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2 2 ,

n
r n

rCh u Ch
x y
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η− −
∂

≤ +
∂ ∂


                   (20) 

where ( )1d n n n
tv v v τ−= − .  

Lemma 6. Let   and jw  are defined in (7) and Lemma 1, respectively. For any 
positive integer n  and ( )1

0v H∈ Ω , let  
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j jA Aj
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+
=

= + − =∑         (21) 

then it holds that  
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2
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− −
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− −
= =

= + ≥ ∀ ≥∑ ∑  

Proof. When 0n = , it is easily get ( ) 21 1 0
A

v v= ≥ . Now we consider 1n ≥ . Note 
that  

( ) 21 1 1, ,n n n
AA
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( ) ( )2 21 11,
2
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A AA
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and 1j jw w +> , we get  
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−
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∑



 

By direct algebraic calculation, and noticing the properties of jw  in Lemma 1, we 
obtain  

( ) ( ) ( )

( ) ( )

( )

1 1 1 12 2 21 1 1
1

0 1 1 0

1 22 21 1
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1 21
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−
+

− −
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= + ≥

∑ ∑ ∑∑

∑ ∑

∑



 

The proof is completed.  
Next, we consider the stability of the ADI Galerkin method (14). Define the follow-

ing problem dependent norm for any ( )1
0v H∈ ∩ Ω ,  
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1 222 2
2 1 2: ,

1
vv v

x y
µ κ κ

µκ

 ∂ = +
 + ∂ ∂ 

                   (22) 

which will be used in stability analysis. 
Assume the initial value 0U  has an error 0

,h rUδ ∈ , which will cause the solution 
of ADI Galerkin scheme (14), ( )1 0 1kU k N+ ≤ ≤ − , has a perturbation 1

,
k

h rUδ + ∈ . 
Then the stability property of ADI Galerkin methods can be represented as following:  

Theorem 1. The ADI Galerkin method (14) is stable with respect to initial value 0U  
in the problem dependent norm (22), i.e., there exist a positive constant Θ  which 
independent of k  such that  

1 0kU Uδ δ+ ≤ Θ  

holds for any 0 1k N≤ ≤ − .  
Proof. The equivalent form of (14) is:  

( ) ( ) ( )( )

( ) ( )( )

2 12 21
1 1 1 2

1
0

d
, , , ,

1

, , .

nn tn n n j
j jA Aj
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U VU V U V w w U V
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U V f U V

τµ κ κµ
µκ

τ

+−
+ + −

+
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  ∂  ∂  + + − +   + ∂ ∂ ∂ ∂   

= +

∑ 
 (23) 

Then the perturbation equation of (23) can be written as  

( ) ( ) ( )( )

( ) ( )

1
1 1

1
0

2 12 2
1 2

, , ,

d
, , , ,

1

n
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j jA Aj
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−
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  ∂ ∂  + = +
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         (24) 

where ( ) ( )n n n nf f U U f Uδ δ= + −  and ,h rV ∈ . 
Taking 12 nV Uδ +=  in (24), employing Schwartz inequality and the notation ( )⋅ , 

yields  

( ) ( ) ( )
2 22 2 22 21 1 11 2

1

2
1

2 .

n n n n n

n n

U U U U U
x y x y

f U

µ κ κδ δ µ δ δ δ
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+

 ∂ ∂ − + + −
 + ∂ ∂ ∂ ∂ 
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  (25) 

Further, by Lipschitz property of f  and Schwartz inequality, we can estimate the 
right hand side of (25) as  

2 21 12 2 .n n n n n nf U L U U L U L Uτ δ δ τ δ δ τ δ τ δ+ +⋅ ≤ ≤ +        (26) 

Summing for 0,1, ,n k= 
 in (25) and using (26) and Lemma 6, we can write  

( )

( )

22 221 11 2

22 22 2 20 0 11 2

0 0

1

.
1

k k

k k
n n

n n

U U
x y

U U L U L U
x y

µ κ κδ δ
µκ

µ κ κδ δ τ δ τ δ
µκ

+ +

+

= =

∂
+

+ ∂ ∂

∂
≤ + + +

+ ∂ ∂ ∑ ∑
       (27) 

For sufficiently small τ , it follows from (27) that  
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( )
22 2 22 21 1 01 2

1 2
1

.
1

k
k k n

n
U U C U C U

x y
µ κ κδ δ δ τ δ

µκ
+ +

=

∂
+ ≤ +

+ ∂ ∂ ∑  

Using discrete Gronwall inequality, we have  

( ) ( )
22 2 2 22 11 1 0 01 2 2 2

1 1e e .
1

C k C Tk kU U C U C U
x y

τµ κ κδ δ δ δ
µκ

++ +∂
+ ≤ ⋅ ≤ ⋅

+ ∂ ∂
 

Let 2
1e

C TCΘ = , we conclude 1 0kU Uδ δ+ ≤ Θ . The proof is completed.  

Theorem 2. Let u  and { }
1

Nn

n
U

=
 denote the solutions of (1) and (14) respectively.  

Assume that ( ) ( ]( ) ( ]( )2 2 2, 0, ; , 0, ;r r
t xytu L H u L T H u L T L∞∈ ∈ ∈ , where 2r ≥ . Then, 

for τ  sufficiently small,  

( )
0

,max n n r

n N
U u C hατ

≤ ≤
− ≤ +  

provided the initial value 0U  satisfy  

( )
2

0 0 0 0 .rU W U W Ch
x y

ατ ∂
− + − ≤

∂ ∂
 

Proof. Denote ,n n n n n nU W u Wξ η= − = − , then n n n nU u ξ η− = − . With W  as in 
(18) we have from (11) that  

( ) ( ) ( )( )

( ) ( )( ) ( )

( )

1
1 1

1
0

2 12 2
1 2

1

2 2 2
1 11 2

, , ,

d
,

1

, , d ,

d d ,
1

n
n n n j

j jA Aj

n
t

n n n
t

n n
t t

W V W V w w W V

W V
x y x y

W V f u R V V

Vu
x y x y

α

µ

τµ κ κ
µκ

τ τ η

τµ κ κ η
µκ

−
+ + −

+
=

+

+

+ +

 
+ + − 

 

  ∂ ∂  +
 + ∂ ∂ ∂ ∂ 

= + + −

 ∂ ∂
+ − + ∂ ∂ ∂ ∂ 

∑ 

         (28) 

Subtracting (28) from (23) leads to  

( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

( )

1
1 1

1
0

2 12 2
1 2

1

2 2 2
1 11 2

, , ,

d
,

1

, , , d ,

d d ,
1

n
n n n j

j jA Aj

n
t

n n n n
t

n n
t t

V V w w V

V
x y x y

V f U f u V R V V

u V
x y x y

α

ξ µ ξ ξ

ξτµ κ κ
µκ

ξ τ τ η

τµ κ κ η
µκ

−
+ + −

+
=

+

+

+ +

 
+ + − 

 

  ∂ ∂  +
 + ∂ ∂ ∂ ∂ 

= + − − +

 ∂ ∂
+ − + ∂ ∂ ∂ ∂ 

∑ 

         (29) 

Taking 12 nV ξ += , by Schwartz inequality and using the notation ( )⋅ , then (29) 
reduces to  
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( )

( )
( )

2 22 2 1 22 21 1 1 2

1 1

2 2 2 1
1 11 2

2
1

2 d

2
   d d

1

n n
n n n

n n n n
t

n
n n

t t

x y x y

L R

u
x y x y

α

µ κ κ ξ ξξ ξ µ ξ
µκ

τ ξ η τ η ξ

τµ κ κ ξη
µκ

+
+ +

+ +

+
+ +

 ∂ ∂ − + + −
 + ∂ ∂ ∂ ∂ 

≤ − + + ⋅

∂ ∂
+ − ⋅

+ ∂ ∂ ∂ ∂



        (30) 

Now, by Young inequality and Schwartz inequality, we can write  

( ) ( )2 2 2 21 1 1 12 d d ,n n n n n n n n
t tL Cτ ξ η τ η ξ τ ξ η η τ ξ+ + + +− + ⋅ ≤ + + +  

2 22 21 1 12 ,n n nn
n A

n n

w
R R R w

w wα α α
µκ κξ ξ µ ξ

µ κ µ
+ + +⋅ ≤ + ≤ +  

( ) ( )
2 22 2 1 2 2 1

1 1 1 12 d d d d .
n n

n n n n
t t t tu u

x y x y x y x y
ξ ξη η

+ +
+ + + +∂ ∂ ∂ ∂
− ⋅ ≤ − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

Substitute the above three inequalities into the right hand side of (30), and sum for 
0,1, , 1n N= − . Employing Lemma 6, we can write  

( )

( )

22 22 1 2

22 0 1 12 2 2 20 2 1

0 0

2 222 21 22 1 1 1 2

0 1 1

1

d

d d .
1

N
N

N N
n n

t
n n n

nN N N
n n n

t t
n n n

x y

C C R
x y w

C u C
x y x y

α

µ κ κ ξξ
µκ

ξ κξ µ τ η η
µ

µ κ κ ξτµ η τ ξ τ
µκ

− −
+

= =

−
+ +

= = =

∂
+

+ ∂ ∂

 ∂ ≤ + + + +
 ∂ ∂ 

∂ ∂
+ − + +

∂ ∂ + ∂ ∂

∑ ∑

∑ ∑ ∑

 

By discrete Gronwall inequality, if τ  sufficiently small, we can estimate  

( )

( )

22 22 1 2

22 0 12 2 20 2 1

0

221 12 2 1 1

0 0

1

d

   d d .

N
N

N
n n

t
n

N N
n n

t t
n nn

x y

C C
x y

R C u
w x yα

µ κ κ ξξ
µκ

ξξ µ τ η η

κ τµ η
µ

−
+

=

− −
+ +

= =

∂
+

+ ∂ ∂

 ∂ ≤ + + +
 ∂ ∂ 

∂
+ + −

∂ ∂

∑

∑ ∑

 

Consequently, we obtain  

( )

( )

22 0 12 2 2 20 2 1

0

221 12 2 1 1

0 0

d

d d .

N
N n n

t
n

N N
n n

t t
n nn

C C
x y

R C u
w x yα

ξξ ξ µ τ η η

κ τµ η
µ

−
+

=

− −
+ +

= =

 ∂ ≤ + + +
 ∂ ∂ 

∂
+ + −

∂ ∂

∑

∑ ∑

        (31) 

Using the triangle inequality and (31), we get  
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( )
( )

( )

2 2 2

22 0 12 2 2 20 2 1

0

221 12 2 1 1

0 0

d

d d .

N N N N

N
N n n

t
n

N N
n n

t t
n nn

U u C

C C C
x y

R C u
w x yα

ξ η

ξξ µ η τ η η

κ τµ η
µ

−
+

=

− −
+ +

= =

− ≤ +

 ∂ ≤ + + + +
 ∂ ∂ 

∂
+ + −

∂ ∂

∑

∑ ∑

   (32) 

It remains to estimate terms on the right-hand side of (32). Firstly, by Lemma 3, we 
can conclude  

( ) ( )2

2 2 22 ,r
N r

L L L HCh uη η ∞ ∞≤ ≤                     (33) 

( ) ( )2

1 2 2 22

0
.r

N
n r

L L L H
n

N Ch uτ η τ η ∞ ∞

−

=

≤ ≤∑                  (34) 

By (10) and ( )1αµ τ α= Γ + , we easily get  
1 12 2 2 2

0 0
.

N N

n
n nn

R C w CN CT
w

α α α α
α

κ τ τ τ
µ

− −
+ +

= =

≤ = =∑ ∑              (35) 

Secondly, using calculus equality  

( )11 1d dn

n

tn
t tt

s sη η
τ

++ = ∫  

and Hölder inequality, we have  

( )12 21 1d d .n

n

tn
t tt

s sη η
τ

++ ≤ ∫  

Further, combined with Lemma 3, we can write  

( ) ( )

( ) ( )2 2 2

1 12 2 211
0

0 0
2 22

d d = d

.r

N N t Tnn
t t ttnn n

r
t tL L L H

s s s s

Ch u

τ η η η

η

− −
++

= =

≤

= ≤

∑ ∑∫ ∫
              (36) 

Since  

( )
2 2

1 1d d ,n n
t tx y x y
η η+ + ∂ ∂

=  ∂ ∂ ∂ ∂ 
 

similar as (36), we can prove  

( )
( )2 2

22 221
1

0
d .

N
n t

t
n L L

x y x y
ητ η

−
+

=

∂∂
≤

∂ ∂ ∂ ∂∑  

Additionally, according to Lemma 3 and Lemma 4, we have  

( )

( )
( )2

2 2

22
2 2 2|| || .r

rt
t L H

L L

Ch u
x y
η −∂

≤
∂ ∂

 

As a result, we obtain  
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( )
( )

( )
( )2

2 2

22 221 22 22 1 2 2

0
d .r

N
rn t

t t L H
n L L

Ch u
x y x y

αητµ η µ τ
−

−+

=

∂∂
≤ ≤

∂ ∂ ∂ ∂∑        (37) 

Similar as (37), we can write  

( )
( ) ( )2 2

2 2

22 221 22 1 2 2

0
d .

N
n t

t xyt L L
n L L

uu C u
x y x y

ατµ µ τ
−

+

=

∂∂
≤ ≤

∂ ∂ ∂ ∂∑          (38) 

Combining (33)-(38), and recalling 2r ≥  gives  

( )
0

,max n n r

n N
U u C hατ

≤ ≤
− ≤ +  

provided 0U  is chosen so that 0ξ  and 2 0 x yατ ξ∂ ∂ ∂  are ( )rh . This com-
pletes the proof.  

Remark 2. Although in our theoretic analysis, we only obtain ( )O ατ  accuracy in 
temporal error, numerical experiments in Section 6 demonstrate that temporal error is 
( )O τ  if 1 2 1α< < . Checking the above analysis process, we will find the error esti-

mates in (37) and (38) are obstacles to obtain ( )O τ  temporal error theoretically. This 
suggests we may take alternative analysis techniques to improve the error estimates in 
(37) and (38). 

Note that we may choose the initial approximation as 0 0U W= , where 0W  from 
(18),  

( )( ) ( )0
,, , 0,   .h rA W V W V Vφ κ φ∇ − ∇ + − = ∀ ∈  

This involves an elliptic problem to be solved. With this choice,  

0 0 2 0 0.x yξ ξ ξ= ∇ = ∂ ∂ ∂ =  

In practical computations, it is often sufficient to take 0U  as interpolants of φ  in 

,h r .  

5. Matrix Form of ADI FEM  

Equations (14) define the ADI finite element method in inner product form. To describe 
the algebraic problem to which these equations lead, suppose , , ,

x y
h r h r h r= ⊗   ,  

where ,
x

h r  and ,
y

h r  are finite-dimensional subspaces of ( )1
0H I , and let { } ,

1, 1

x yN N
i j i j

ϕθ
= =

  

be a tensor product basis for ,h r , where { } 1
xN

i i
ϕ

=
 and { } 1

N y
j j

θ
=

 are bases for the sub-
spaces ,

x
h r  and ,

y
h r , respectively. Let  

( ) ( ) ( ) ( )
1 1

, ,
yx NN

nn
ij i j

i j
U x y x yβ ϕ θ

= =

= ∑∑  

so that  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 11

1 1
, ,   .

yx NN
n n n nn

ij i j ij ij ij
i j

E x y x yγ ϕ θ γ β β+ + ++

= =

= = −∑∑  

For convenience, we denote  
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( ) ( )1 ,   and  1 ,   1, 2.i i iλ µκ µκ λ µκ µκ= + = + =  

If in (14) we choose , 1, , , 1, ,k m x yV k N m Nϕ θ= = =  , and then  

( ) ( ) ( ) ( ){ } ( )1
1 2 1 2

1 1
, , , , .

yx NN
n n

i j k m i j k m i j k m i j k m ij
i j

ϕθ ϕ θ λ ϕθ ϕ θ λ κ θ ϕ θ λ λ ϕθ ϕ θ γ +

= =

 ′ ′ ′ ′ ′ ′ ′ ′+ + + = Ψ ∑∑ (39) 

We define the matrices  

( ) ( )( ) ( ) ( )( )d ,   d
x x y y

x i j y i jI IN N N N
C x x x C y y yϕ ϕ θ θ

× ×
= =∫ ∫  

( ) ( )( ) ( ) ( )( )d ,   d
x x y y

x i j y i jI IN N N N
B x x x B y y yϕ ϕ θ θ

× ×
′ ′ ′ ′= =∫ ∫  

and let  

( ) ( ) ( ) ( ) ( ) ( ) T

11 12 1 21, , , , , , ,
y x y

p p p p p p
N N Nβ β β β β β =     

with ( )pγ  defined similarly. Then the matrix form of (39) is  
( ) ( )1

1 2 1 2 ,n n
x y x y x y x yC C B C C B B Bλ λ λ λ γ + ⊗ + ⊗ + ⊗ + ⊗ = Ψ         (40) 

where, from (14), the components of ( )nΨ  are given by  

( ) ( ) ( ) ( ) ( )

( )( )

1

1 2 1
0 ,

, ,
1

n
n n n j

km x y x y x y j j
j k m

n
k m

C C B C C B w w

f U

λ λ λ β β

τ ϕ θ
µκ

−
−

+
=

   Ψ = ⊗ + ⊗ + ⊗ − + −  
   

+
+

∑
 

and ⊗  denotes the tensor product. We may factor (40) in the form  
( ) ( )1

1 2 ,
y y x x

n n
x N x N N y N yC I B I I C I Bλ λ γ +   ⊗ + ⊗ ⊗ + ⊗ = Ψ    

which is equivalent to  

( ) ( ) ( )

( ) ( ) ( )

1
1

1 1
2

ˆ ,

ˆ ,
x

n n
x x N y

n n
N y y

C B I

I C B

λ γ

λ γ γ

+

+ +

 + ⊗ = Ψ  
  ⊗ + = 

 

where 
xNI  and 

yNI  denote the identity matrices of order xN  and yN , respectively. 
Thus we determine ( )1nγ +  by solving two sets of independent one-dimensional prob-
lems, first  

( ) ( ) ( )1 1
1 ˆ ,    1, 2, , ,n n

x x m m yC B m Nλ γ + ++ = Ψ =   

in the x -direction, where ( )T

1 2 ,ˆ ˆ ˆ ˆ, , ,
xm m m N mγ γ γ γ=  , followed by  

( ) ( ) ( )1 1
2 ˆ ,   1, 2, , ,n n

y y l l xC B l Nλ γ γ+ ++ = =   

in the y -direction, where ( )T

1 2 ,, , ,
yl l l l Nγ γ γ γ=  . Clearly the computation of each of 

the vectors ( )ˆ nγ  and ( )nγ  is highly parallel. 

6. Numerical Experiments  

In this section, two numerical examples are given to demonstrate the effectiveness and 
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accuracy of the ADI Galerkin finite element methods. In all numerical examples, we 
take the linear tensor product basis  

( )

[ ]
( ) [ ]
( ) [ ]

0 1

1 1

1

1

0, , ,
, , ,

1 , , ,

0, , ,

i

i i i

i
i i i

i Nx

x x x
x x x x

x x x x x

x x x

ζ
ϕ ζ

−

− −

+

+

 ∈
 ∈

=  − ∈

  ∈  

 

where ( ) ( ) 1,x x
i i i i i ix x x h h x xζ += − = − . ( )j yθ  is constructed in a similar way. In all 

examples, we will take the same spatial step size h  in each direction, i.e. x y
i jh h h= = . 

In our numerical simulation, we present the errors in 2L  norm  

( ), ,N Nerr h U uτ = −  

and numerical convergence orders are computed by  

( )
( )

( )
( )2 2

2 , , 2
,     .log log

, ,t h

err h err h
err h err h

τ τ
γ γ

τ τ
   

= =      
   

 

Example 1. Consider the following problem  

( ) ( ) ( ) ( ) ( )

( ) ( ]

2 2
1

0 2 2

, , , , , ,
, , , , , ,

, , 0,

t
u x y t u x y t u x y t

D u x y t f u x y t
t x y

x y t T

α−  ∂ ∂ ∂
= + − + 

∂ ∂ ∂  
∈Ω×

 

where  

( ) ( )
2 1 4 2 26, , , 2 sin sin sin sin ,

2
f u x y t u t t x y t x yα

α
+ 

= − + + +  Γ + 
 

with initial and boundary conditions  

( ) ( ), , 0,   , ,0 ,u x y t x y t T= ∈∂Ω < ≤  

( ) ( ), ,0 0,    , ,u x y x y= ∈Ω  

where ( ) ( )0,π 0,π ,   1TΩ = × = . The exact solution of this equation is  

( ) 2, , sin sin .u x y t t x y=  

Table 1 shows the L2 norm errors and the temporal convergence orders for α  = 0.6, 
0.7, 0.8, 0.9 with fixed π 64h =  using ADI Galerkin finite element scheme (14). 
Computational results in Table 1 illustrate that our ADI Galerkin finite element 
scheme has first order accuracy in time, which is better than our predicted α  order in 
Theorem 2.  

To investigate the necessary of the correction term (16) in ADI scheme (17) if  
10
2

α< < , we have compared the two ADI Galerkin finite element scheme (14) and (17)  

for α  = 0.1, 0.2, 0.3, 0.4, with fixed π 64h = . For saving space, we only present the 
comparison results of 0.1α =  in Table 2, the others cases are similar. The first three 
columns of Table 2 show the L2 norm errors and its corresponding temporal conver-
gence orders using ADI scheme (14). Computational results demonstrate the temporal  
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Table 1. L2 errors and temporal convergence orders, fixing h = π/64. 

τ 
α = 0.6  α = 0.7  α = 0.8  α = 0.9 

err(τ, h) γt  err(τ, h) γt  err(τ, h) γt  err(τ, h) γt 

1/8 7.54e−02 -- 8.59e−02 -- 9.52e−02 -- 1.03e−01 -- 

1/16 3.71e−02 1.02 4.45e−02 0.95 5.00e−02 0.93 5.43e−02 0.92 

1/32 1.83e−02 1.02 2.27e−02 0.97 2.56e−02 0.97 2.76e−02 0.98 

1/64 8.89e−03 1.04 1.13e−02 1.01 1.27e−02 1.01 1.36e−02 1.02 

1/128 4.13e−03 1.11 5.37e−03 1.07 6.02e−03 1.08 6.44e−03 1.08 

1/256 1.70e−03 1.28 2.31e−03 1.22 2.61e−03 1.21 2.81e−03 1.20 

 
Table 2. Comparison between ADI scheme (14) and (17) for α = 0.1, h = π/64. 

ADI Scheme (14)  ADI Scheme (17) 

τ err(τ, h) γt  τ err(τ, h) γt 

1/64 8.48e−02 -- 1/16 6.96e−02 -- 

1/128 8.45e−02 0.01 1/32 3.37e−02 1.05 

1/256 7.99e−02 0.08 1/64 1.61e−02 1.07 

1/512 7.37e−02 0.12 1/128 7.43e−03 1.12 

1/1024 6.71e−02 0.14 1/256 3.19e−03 1.22 

 
convergence order is 0.1, which also suggest our theoretical order α  proved in Theo-
rem 2 is optimal. The last three columns of Table 2 display the L2 norm errors and its 
corresponding temporal convergence orders using ADI scheme (17). As we can see, the 
experiment convergence order is approximately one now. It indicates that the correc-
tion term (16) in ADI scheme (17) is beneficial to keep the temporal accuracy. In a 
word, Table 2 shows ADI scheme (17) has better numerical performance than ADI  

scheme (14) if 10
2

α< < .  

Table 3 shows the L2 norm errors and the spatial convergence orders for α  = 0.6, 
0.7, 0.8, 0.9 with fixed 1 5000τ =  using ADI Galerkin finite element scheme (14). The 
numerical results in Table 3 suggest our ADI Galerkin finite element scheme gets 
second order accuracy in space, which is consistent with our theoretical result in Theo-
rem 2.  

Example 2. Consider the following problem  

( ) ( ) ( ) ( ) ( )

( ) ( ]

2 2
1

0 2 2

, , , , , ,
, , , , , ,

, , 0,

t
u x y t u x y t u x y t

D u x y t f u x y t
t x y

x y t T

α−  ∂ ∂ ∂
= + − + 

∂ ∂ ∂  
∈Ω×

 

where  

( ) ( ) ( )( ) ( ) ( )3 33 1 6 3 32, , , 2 1 1 1 1 ,
2

f u x y t u t t xy x y t x y x yα

α
+ 

= − + + − − + − −  Γ + 
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with initial and boundary conditions  

( ) ( ), , 0,   , ,0 ,u x y t x y t T= ∈∂Ω < ≤  

( ) ( ), ,0 0,   , ,u x y x y= ∈Ω  

where ( ) ( )0,π 0,πΩ = × , 1T = . The exact solution of this equation is  

( ) ( ) ( )2, , π π .u x y t t x x y y= − −  

The nonlinearity of Example 2 is stronger than Example 1. In the following simula-
tion, we have to take much smaller temporal step τ  than Example 1 to obtain good 
numerical performance. Table 4 shows the L2 norm errors and the temporal conver-
gence orders for α  = 0.6, 0.7, 0.8, 0.9 with fixed π 64h =  using ADI Galerkin finite 
element scheme (14). Computational results in Table 4 illustrate that our ADI Galerkin 
finite element scheme is first order temporal accuracy again, if 1 2 1α< < . 

Table 5 displays the comparison between the two ADI Galerkin finite element 
scheme (14) and (17) for 0.2α = , with fixed π 128h = . From Table 5, we can con-
clude that: 1) The first three columns show the order of temporal accuracy of ADI 
scheme (14) is 0.2 for 0.2α = , confirming our theoretical result in Theorem 2 again; 2) 
The last three columns illustrate the ADI scheme (17) has first order temporal accuracy, 
indicating the essentiality of the correction term (16) to keep temporal accuracy once 
again; 3) To obtain the same level of temporal truncation error, ADI scheme (17) can 
take much smaller time step τ  than ADI scheme (14) due to its higher accuracy. It 
also suggests that high order of temporal accuracy is important to time-dependent non-
linear problem. 
 
Table 3. L2 errors and spatial convergence orders, fixing τ = 1/5000. 

h 
α = 0.6  α = 0.7  α = 0.8  α = 0.9 

err(τ, h) γh  err(τ, h) γh  err(τ, h) γh  err(τ, h) γh 

π/8 5.63e−02 -- 5.60e−02 -- 5.57e−02 -- 5.54e−02 -- 

π/16 1.41e−02 2.00 1.40e−02 2.00 1.39e−02 2.00 1.38e−02 2.01 

π/32 3.33e−03 2.04 3.39e−03 2.05 3.36e−03 2.05 3.33e−03 2.05 

π/64 7.50e−04 2.19 7.21e−04 2.23 7.06e−04 2.25 6.93e−04 2.26 

 
Table 4. L2 errors and temporal convergence orders, fixing h = π/64. 

τ 
α = 0.6  α = 0.7  α = 0.8  α = 0.9 

err(τ, h) γt  err(τ, h) γt  err(τ, h) γt  err(τ, h) γt 

1/32  5.78e−01 --  5.84e−01 --  5.89e−01 --  5.93e−01 -- 

1/64  2.83e−01 1.03 2.86e−01 1.03 2.89e−01 1.03 2.91e−01 1.03 

1/128 1.38e−01 1.04 1.40e−01 1.03 1.41e−01 1.04 1.42e−01 1.04 

1/256 6.62e−02 1.06 6.71e−02 1.06 6.77e−02 1.06 6.81e−02 1.06 

1/512 3.06e−02 1.11 3.10e−02 1.11 3.13e−02 1.11 3.15e−02 1.11 
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Table 5. Comparison between ADI scheme (14) and (17) for α = 0.2, h = π/128. 

ADI Scheme (14)  ADI Scheme (17) 

τ err(τ, h) γt  τ err(τ, h) γt 

1/512 4.12e−02 -- 1/128 1.42e−01 -- 

1/1024 3.57e−02 0.21 1/256 6.99e−02 1.02 

1/2048 3.08e−02 0.21 1/512 3.42e−02 1.03 

1/4096 2.58e−02 0.26 1/1024 1.64e−02 1.06 

 
Table 6. L2 errors and spatial convergence orders, fixing τ = 1/5000. 

h 
α = 0.6  α = 0.7  α = 0.8  α = 0.9 

err(τ, h) γh  err(τ, h) γh  err(τ, h) γh  err(τ, h) γh 

π/8 3.85e−01 --  3.82e−01 --  3.79e−01 --  3.76e−01 -- 

π/16 9.93e−02 1.95 9.85e−02 1.96 9.77e−02 1.96 9.70e−02 1.95 

π/32 2.35e−02 2.08 2.32e−02 2.09 2.30e−02 2.09 2.28e−02 2.09 

π/64 4.29e−03 2.45 4.20e−03 2.47 4.13e−03 2.48 4.06e−03 2.49 

 
Table 6 shows the L2 norm errors and the spatial convergence orders for α  = 0.6, 

0.7, 0.8, 0.9 with fixed 1 5000τ =  using ADI Galerkin finite element scheme (14). It 
can be shown from Table 6 that the numerical results are in accordance with the theo-
retical analysis in Theorem 2.  

7. Conclusion  

In this work, we proposed an alternating direction Galerkin finite element method for 
2D nonlinear time fractional reaction sub-diffusion equation in the Riemann-Liouville 
type. The stability and convergence of the method are proved for ( )0,1α ∈ . Numerical 
results show that our error estimate is optimal. Like the other ADI schemes [16] [17], 
the temporal accuracy of our ADI Galerkin finite element method becomes very low if 

( )0,1 2α ∈ . A remedy is introduced by adding a correction term (15) to keep temporal 
accuracy. 
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