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Abstract 
 
We study the eight infinite sequences of triples of natural numbers  2 1 2 3 2 7,4 ,n n nA F F F   ,  2 1,nB F   

2 5 2 74 ,n nF F  ,  2 1 2 1 2 3,5 ,4   n n nC F F F ,  2 3 2 1,4 ,5  n nD F F 2 3nF  and  2 1 2 3 , 2 7,n n nL  ,4L L
 2 1,4L L 2 5 2 7n n n   , , L  2 1 2 1 , 2 3nL,5  n nL L ,4  2 3 2 1 2 3 . The sequences  

and 
,4 L L ,5  n n nL , ,A B C

D  are built from the Fibonacci numbers nF  while the sequences , ,  and  from the Lu-
cas numbers n . Each triple in the sequences 

   
L , ,A B C  and D  has the property  (i. e., adding  4D  4  

to the product of any two different components of them is a square). Similarly, each triple in the sequences 
, ,  and   has the property . We show some interesting properties of these sequences that 

give various methods how to get squares from them. 
   20D 

 
Keywords: Fibonacci Numbers, Lucas Numbers, Square, Symmetric Sum, Alternating Sum, Product, 

Component 

1. Introduction 

For integers ,  and c , let us write  provided  a b
b

a c
2=a b c . For the triples  = , ,X a b c ,  = , ,Y d e f  

and = , , X a b c    the notation 
Y

X X  means that 

,  and 
d

bca
e

ca b
f

ab c . When , let us 

write 

 ,k k = ,Y k
k

X X  for 
Y

X X . Hence, X  is the  D k  tri- 

ple (see [1] ) if and only if there is a triple X  such that 
k

X X . 
We now construct the infinite sequences A , ,  

and  of the D riples and  ,  and   
 the  D iples. They are 

B

, 4

C

2 3,F
D  4 -

-tr
t

of
 , 
A F


2 120 n n 

2 1,



 
, , 2 7nF   2 5 2 7,n n nF F  2 1, 4B F 2 1,5 FC F n n  
,  and 2 3n4F  2 3n2 3 , 4D F 2 1,5 n nF F  2 1,nL   

, , 2 7n 2 34 ,nL L  7n2 1 2 5, 4n nL L  2, L  2 1,nL   

2 1 2 3 , 2 3 2 1 2 3  n n n , where the 
Fibonacci and Lucas sequences of natural numbers 

4n nL 5 ,L  L, 4L L ,5
nF  

and n  are defined by the recurrence relations , 
, 2n

L
= 1

0F = 0

1F 1=n nF F F 
L

  for  and , , 
  for  . 

2n 
2n 

0L = 2 1L = 1
=n 1 2n n 

The numbers k

L L 
F  make the integer sequence 

 from [2] while the numbers  make 
. For an integer , let us use , 

000045A
000032A

kL

kk π k ,  
and  for , , 

kp

kr 2n kF  2L n k 4F n k  and . 4L n k

The goal of this article is to explore the properties of 
the sequences A , , , , , ,  and . 
Each member of these sequences is an Euler 

B C D    
 4D  - or 

 20D -triple (see [3]) so that many of their properties 
follow from the properties of the general (pencils of) 
Euler triples (see [4,5] ). It is therefore interesting to look 
for those properties in which at least two of the 
sequences appear. This paper presents several results of 
this kind giving many squares from the components, 
various sums and products of the sequences A , , , 

, , ,  and . Most of our theorems have 
also versions for the associated sequences  

B C
D    

 2π5 4,π= 2πA , 2 ,  3, 2π6 4,π= 2πB ,  2 , 22π ,= 2C   

1 ,  2 3 2= 2 ,  , 2πD  and  5 4 22 , , 2   ,  

 6 4 3= 2 , , 2   ,  2 2 1= 10π , 2 ,5π ,  2= 10π ,   

3 25π , 2  that satisfy the relations 
4

A A
20  

 4
, , 

,  and , , ,  . 

B B
20  

4

C C
 

4

D D
 

20  
20  

The overall principle in this paper is that if you can get 
complete squares by adding a fixed number to the prod-
ucts of different components of some triples of natural 
numbers then you will be able to get complete squares by 
adding some other fixed numbers to all kinds of expres-
sions and constructions built from the components of 
these triples. Our task was to find out these numbers and 
to identify those expressions and constructions. 

All results in this paper are identities among Fibonacci 
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and/or Lucas numbers of varied difficulty. We shall write 
down the proofs of only a small portion of them to save 
the space leaving the rest to the dedicated reader. In most 
cases we prove or only outline the proof of the first 
among several parts of the theorem. The other parts have 
similar proofs sometimes with far more complicated de-
tails. 

Following this introduction, in the section 2, we first 
show that the selected products of four components 
among triples from either the sequences A , , , 

, , ,  and  or the sequences 
B C

D    A , , , 
, , ,  and  become squares by adding 

some fixed integers. 

B C
D    

The Section 3 considers the various products of two 
symmetric quadratic sums of components and seeks to 
get squares in the same way (by adding a fixed integer). 

The next Section 4 does a similar task for certain prod-
ucts of four symmetric linear sums of components. 

In the Section 5 the numerous products of two sums of 
squares of components are shown as differences of 
squares. 

The long Section 6 contains similar results for prod-
ucts of two symmetric linear sums of components of the 
three natural products (dot, forward shifted dot and 
backward shifted dot) of two triples of integers. 

Finally, the last section 7 replaces these dot products 
with the two forms of a standard vector product in the 
Euclidean 3-space. 

2. Squares from Products of Components 

The relations 
4

A A
   and  imply that the com-

ponen t s  o f  

20  

A  and   sa t i s f y  
4

2 3 1A A A
   and 

. Our first theorem shows that the product 
20

2 3 1
  

2 3 2 3

1

16
A A   is in a similar relation with respect to 9.  

Of course, the other products 3 1 3 1 , 1 2 1 2  as 
well as 2 3 2 3 , etc. exhibit a similar property. The 
missing cases from the list coincide with the one of the 
previous cases. 

A A A A 
B B  

Theorem 1. The following hold for the products of 
components: 

9 1

2 3 2 3 10 2 3 2 3 12 2 3 2 3 4

1 1 1
, ,

1

16 16 400
A A B B C C  p p      ,p  

64 1 0

3 1 3 1 8 3 1 3 1 4 3 1 3 1 6

1
, ,

16
A A C C D D p p     5 , p  

9 0

1 2 1 2 6 1 2 1 2 2

1
,  and  5

16
B B C C p   p . 

Proof. Let 
1 5

=
2

 
 and 

1 5 1
= =

2





 . Since  

=
j j

jF
 
 



 and = j j
jL   , it follows that 

 2 3 2 3

2

4
=

n n

A
 

 

 


, 

2 7

3 =A
2 7n n 

 

 


 and  2

 2 3 2 3= 4 n n   ,  . 2 7
3 =  2 7n n 

After the substitutions 
1

=


  and = n , the 

sum of the product 2 3 2 3

1

16
A A   and 9 becomes 

 220 8 20

85

  


. However, this is precisely the square of 

. This shows the first relation. 10p

The version of the previous theorem for the sequences 
A , , , , , ,  and  is the following 

result. Notice that in this theorem there are no repetitions 
of cases. 

B C D    

Theorem 2. The products of the components of  
A , ,  satisfy:  

1 1

2 3 2 3 6 2 3 2 3 7 2 3 2 3 3

1 1 1
, ,

4 4 4
A A B B C C          p p     

1

, r  

1 4

2 3 2 3 5 3 1 3 1 7 3 1 3 1 9

1 1 1
, ,

4 16 16
          D D A A B B     r p

4

, p  

1 0

3 1 3 1 3 3 1 3 1 4 1 2 1 2 9

1 1 1
, ,

100 80 4
C C D D A A         p p    

1

, p  

1 4

1 2 1 2 10 1 2 1 2 4 1 2 1 2 5

1 1 1
, ,

4 16 100
B B C C D D          p r   

1

.p  

Proof. Since 2 4 2 4
2 = n n   , 

2 4 2 4

2 =
n n

A
 

 

 


 , 

 2 2n2 2
3 = 2 n    and 

 2 2 2 2

3

2
=A

n n 

 

 


, the 

sum of 2 3 2 3
  

1

4
A A   and 1, after the substitutions 

1
=


  and = n , becomes 

 212 8 12

85

  


. 

However, the square of  has the same value. This 

proves the first relation 

6p
1

2 3 2 3 6
   p 

1

4
A A  . 

The same kind of relations hold also for the products 
of components from four among the sequences A , , 

, , , ,  and . 
B

C D   
Theorem 3. The relations that hold for the products of 

components:  

9 0

2 3 2 3 10 2 3 2 3 6 2 3 2 3 6

1
, 16 ,

0

20
16

A B A C A D  p p p      ,  
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1 1 1

,p2 3 2 3 8 2 3 2 3 8 2 3 2 3 4

1 1 1
, ,

256 400 625
B C B D C D p p     

4 , p

 

64 9 0

3 1 3 1 8 3 1 3 1 10 3 1 3 1 6, ,A B A D C D p p       

9 0

1 2 1 2 6 1 2 1 2 2 1 2 1 2 2

1
, 5 ,

16
A B AC A D p p  

0

4 . p  

Proof. Since 3 3  and 3 3 , the first relation 
is the consequence of the first relation in Theorem 1. 
Similarly, the fifth relation follows from the sixth 
relation in the Theorem 1. 

=B A = 

The other relations in this theorem have proofs similar 
to the proofs of Theorems 1 and 2.  

There is again the version of the previous theorem for 
the products of components from four among the 
sequences A , , , , , ,  and . B C D    

Theorem 4. The products of components of  
A , , satisfy: 

1 16

2 3 2 3 7 2 3 2 3 5 2 3 2 3 6

1 1
, ,

4 4
A B A C A D         p r     

1

, p  

0 9 4

r2 3 2 3 4 3 1 3 1 8 3 1 3 1 4

1 1
4 , , ,

16 16
C D A B A C         p p       

1 1

3 1 3 1 5 3 1 3 1 3 1 2 1 2 9

1 1 1
, ,

16 100 4
B C C D A B         r r    

1

, p  

4 9 1

1 2 1 2 7 1 2 1 2 8 1 2 1 2 9

1 1 1
, ,

16 4 4
           A C A D B D  p r

6

,r  

and 
1

1 2 2 5

1

100
   C D  p . 

Proof. The first, the sixth, the ninth and the tenth 
relations are the easy consequences of the second, the 
last, the seventh and the fourth relations in Theorem 2. 

In order to prove the second relation, note that the 
components 2

A , ,  and  are  3C 2
 3


2 4 2 4 
 

 


n n
,  ,   a n d  2 1 2 1n n   2 4 2 4n n  

 2 1 2 15 n n 

 

 


. It is now clear from the proof of  

Theorem 1 that the sum of 2 3 2 3  and 16 is 
precisely the square of 5 . This requires the identities 

  A C  
r

1 1 2π = p , 4 4 8π = p  and . 2
55 16 = r2 8p p

3. Squares from Symmetric Sums 

Let  be the basic symmetric 
functions defined for 

3
1 2 3, , :    

= , ,x a b c  by  

1 2 3
,, .x a b c x bc     ca ab x abc     Let *

2 ,  

 be defined by * 3
1 :   *

2
=x bc ca


  ab  and  

*
1

=x a b c


  . Note that *
1

x


 is the determinant of the 

1  3  matrix  , ,a b c  (see [6] ). 

For the sums 2  and *
2  of the components the 

following relations are true. 

Theorem 5. The following is true for the sums 2  of 
the components: 

384 384

8 6 8 62 2 2 2

576 576

5 0 8 32 2 2 2

128 80

9 92 2 2 2

336 320

4 52 2 2 2

9 8 , 11 14 ,

7 4 ,          4 7 ,

        4 ,          8 ,

         8 ,          20 .

   

   

   

   

 

 

 

 

  

   

A B

C D

A B

C D

 

 

 

 

p p r p

r p p p

p p

r p

 

Proof. Since  92

4
= 2 3

5
B  r ,  92

= 4 2 3  r , the 

sum 
2 2

80B     is  2

9

16
2 391  r  that we recog-  

5
nize as the square of . This proves the sixth relation  98p

80

92 2
8B 

  p . 

The sums *
2

B

  and *

2
  have constant values 4  

and . On the other hand, , 20
0

* 3
2

2πA

 

0

2
2

* 3 , 

64

* *
2 2  34C

  r  and . 
64

4D r* *
2 2 

  5

Theorem 6. The following is true for the sums *
2  of 

the components: 
128 128

* * 8 6 * * 10 8
2 2 2 2

7 8 , 8 7A B
   

 
  p p p p  ,

.

 

256 576

* * 5 2 * * 6 0
2 2 2 2

8 13 , 4 3C D
   

  p p p p   

Proof. Since  * 1 2 0
2

= π 23π 7C


  and  

 * 1 4 0
2

= 23π 12π


  , the sum  is the  * *
2 2

256C
 



square of 58 13 2p p . This proves the third relation. 

Some similar relations make up the following two 
results. 

Theorem 7. The following is true for the sums *
2  of 

the components:  
80 16

* * * * 6 * * * * 3
2 2 2 2 2 2 2 2

4 , 4 ,
       

       A B B C   p r  

and  
16

* * * * 5
2 2 2 2

4 .B D
   

    r 

Proof. Since ,  2

* 3
2

= 2πA

  2

* 3
2

= 2


 , *
2

= 4B


  

and , it follows that  *
2

= 20
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  2 2

* * * * 3 3 6
2 2 2 2

80 = 4π = 4A B
   

    p  . 

Theorem 8. The following is true for the sums 2  of 
the components:  

144

92 2 2 2
4 .A B      r   

Proof. Since  92

4
= 6

5
A  r ,  92

= 4 6  r , 

 92

4
= 2 3

5
B  r   and  392

= 4 2  r , it follows that  

     
2 2 2 2

22 2
9 9

144

16 16
= 36 4 9 144 = 4

5 5

A B    

   

  

r r

 

9 .r
 

4. Products of Sums as Differences of 
Squares 

The products of the sums 1  and *
1  of the com- 

ponents of the four triples among A , , , , , 
,  and  show the same kind of relations. This is 

also true for the associated triples 

B C D 
  

A , , , , , 
,  and . Notice that in the next four theorems 

the added third number is always a square so that the 
product on the left hand side in each relation is a dif- 
ference of squares. 

B C D 
  

Theorem 9. The following relations hold for the sums 

1 :  
64 400

8 8 0p1 1 1 1 1 1 1 1

1 1
19 , 3 2 ,

16 16
A B A C         p r     

225 1296

9 4 111 1 1 1 1 1 1 1

1 1
4 +11 , +8 ,

16 16
A D B C        p p r p    4  

841 25

11 0 41 1 1 1 1 1 1 1

1 1
3 , 31

16 16
B D C D        p p p    ,  

16 0

10 9 81 1 1 1 1 1 1 1

1 1
3 , 3 ,

25 25
A B A C             p p p     

9 1

9 7 7 61 1 1 1 1 1 1 1

1 1
2 , 9 5

25 9
A D B C              p p p p   

6

,  

49 9

10 9 71 1 1 1 1 1 1 1

1
11 , 2 .

9
B D C D              p p p     

Proof. The sums of the components 
1

A , 
1

 , 
1

B   

and 
1

  are equal ,  5 02 π   5 02 5π  , 9 0π π   

and 9 0  . Hence, the sum of 64 and  

1 1 1 1

1

16
A B      is the square of . This proves the 

above first relation.  

819p

Theorem 10. The following relations hold for the 
sums *

1 :  

0 1

* * * * 8 * * * * 6
1 1 1 1 1 1 1 1

1
4 , ,

64
A B A C
       

 p p     

1 1

* * * * 7 * * * * 5
1 1 1 1 1 1 1 1

1 1
, ,

16 64
A D C D
       

 r r     

16 16

* * * * 8 8 * * * * 8 5
1 1 1 1 1 1 1 1

1 1
2 , 2 ,

9 9
A B A C
       

       p r p p     

25 256

* * * * 7 5 * * * * 10 3
1 1 1 1 1 1 1 1

1
2 , 3 ,

9
A D B C
       

       p p p r     

529 9

* * * * 10 4 * * * * 4
1 1 1 1 1 1 1 1

2 5 , 11B D C D
       

      p p p    .  

Proof. The sums of the components *
1

A


, *
1

 , *
1

B


 

and *
1

  are equal , 42π 42 ,  and 42π 42 .  

Hence, the product * * * *
1 1 1 1

A B
   

   is the square of   84p

since 4 4 8π = p . This proves the above first relation. 

In the next result we combine the sums 1  and *
1  

in each product. 
Theorem 11. The following relations hold for the 

sums 1  and *
1 : 

16 16

* * 10 6 * * 111 1 1 11 1 1 1

1 1
, 2

16 16
A B A B      

  p r p p    7 ,  

25 64

* * 4 0 * * 61 1 1 11 1 1 1

1 1
4 , 2

64 16       5 ,  A C A C   r p r p

81 49

* * 9 2 * * 71 1 1 11 1 1 1

1 1
3 , 3 5 ,2

16 16      
  A D A D   p p p p

49 121

* * 5 0 * * 121 1 1 11 1 1 1

1 1
4 , 3

64 16      
  B C B D   r p p p5 ,

169 25

* * 5 0 * * 8 21 1 1 11 1 1 1

1 1
5 , 2

16 64
C D C D      

  r r p p    .  

Proof. With the above information about the sums of 
the components 

1
A , 

1
 , *

1
B


 and *
1

 , the sum  

* *1 11 1

1
16

16
A B  

   is  

    
 

8 5 0 5 0 8 10 5 0

2

10 6

π 5π 16 = 5 2 16

= .

      



p p p

p r

r p
 

This proves the first relation. 
Theorem 12. The following relations hold for the 

sums 1  and *
1 :  
16 16

* * 8 8 * * 10 91 1 1 11 1 1 1

1 1
2 , 3 ,

25 9
A B A B      

      p r p p     

16 0

* * 6 5 * *1 1 1 11 1 1 1

1
2 3 , 9

25
A C A C      

      p p p    8 ,  

25 9

* * 7 5 * * 91 1 1 11 1 1 1

1 1
2 , 2 725 9

A D A D      
,      p p p p     
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576 16

* * 8 * * 81 1 1 11 1 1 1

1
11 , 3 4 ,

9
B C B C      

      p    7p p

5 ,

 

1089 1

* * 7 7 * * 121 1 1 11 1 1 1
2 5 , 3B D B D      

        p r p r     

25 121

* * 9 5 * * 101 1 1 11 1 1 1

1
, 8

9
C D C D      

       p r p p    6.  

Proof. The sums of the components 
1

A
 , 

1
 , *

1
B

  

and *
1
  are equal , 45π 45 ,  9 0π π 1

2
 and 

 9 0

1

2
  . Hence, the sum of the product 

 
1*1 11

1

25   
  


A B  and 16 is  

  

  

8 9 0 9 0

2

8 18 9 0 8 8

1
π π 16

4
1

= 2 16 = 2
4

   

   

p

p p p p p r  .



 

This proves the above first relation. 

5. Squares from the Sums of Squares 

For a natural number , let the sums  > 1k
* 3, :k k    of powers be defined for  = , ,x a b c   

by = k k k

k
x a b c    and *

k
= k k kx a b  c


We proceed with the version of the Theorem 9 for the 

sums 

. 

2  of the squares of components. 
Theorem 13. The following relations are true for the 

sums 2 :  

224 224

10 5 11 42 2 2 2

1 1
4 3 , 7 2

4 4
A B   

 
  p r p p  ,  

416 416

5 0 32 2 2 2

1 1
7 4 , 7 4

4 4
C D   

 
  r p r p  8 ,

,

8.

 

288 288

10 5 11 42 2 2 2
4 3 , 7 2A B   

 
    p r p p   

672 672

5 0 32 2 2 2
7 4 , 7 4C D   

 
     r p r p   

Proof. Since 
2

A  and 
2

  are  8 0

2
27 2 18

5
 p p   

and , the difference of  8 02 27 2 18 p p 
2 2

A   and 

896 is equal
2 2

85212840

   


, where   and    are 

320767 143451 5  and 438 253  567 5.

10

 But, 

one can easily check that this is the square of 58 6p r . 

This concludes the proof of the first relation.  
The next is the version of the Theorem 13 for the 

alternating sums *
2  of the squares of components. 

Theorem 14. The following relations are true for the 
sums *

2 :  

384 96

* * 6 6 * * 6 8
2 2 2 2

1
11 9 , 2 5 ,

4
A B
   

  p r p r   

24 416

* * 5 1 * * 8 0
2 2 2 2

1 1
2 , 2 ,

64 4
C D
   

  r p r r   

224 224

* * 7 6 * * 9 10
2 2 2 2

7 , 7A B
   

 
     r p r p  ,

.

 

128 160

* * 3 8 * * 6 0
2 2 2 2

8 , 4 3C D
   


     r p p p   

Proof. Notice that the alternating sums of squares of 

components *
2

A


 and *
2

  are  5 0

2
25 2 14

5
 r r  and  

 5 02 25 2 14 r r . Hence, the sum of * *
2 2

A
 
  and 384 

is equal  

  2
8

8

77983 34875 5 142 77983 34875 5
.

50410

   


 

However, one can easily check that this is the square of 

611 9 6p r . This proves the first relation. 

Multiplied by five these products of the sums *
2  of 

components show the same behavior. 
Theorem 15. For the sums *

2 , the following 
relations hold:  

196 196

* * 11 4 * * 11 8
2 2 2 2

5 5
3 4 , 3 14

4 4
A B
   

  p p p p  ,  

4 4

* * 8 2 * * 8 0
2 2 2 2

5 1
6 , 2 ,

64 20
C D
   

  p p p p   

4 4

* * 10 6 * * 12 5
2 2 2 2

5 5 11 , 5 4 5A B
   

    p r r p  ,

3 .

 

1444 1764

* * 9 2 * * 6 0
2 2 2 2

5 2 25 , 5 4C D
   

    r p r r   

Proof. With the above values of *
2

A


 and *
2

 , the 

sum of * *
2 2

5A
 
  and 784 is equal  

  2
8

8

77983 34875 5 142 77983 34875 5
.

10082

   


 But, 

this is the square of 11 46 8p p . This outlines the proof 

the first relation. 

6. Squares from the Products ,  and    

Let us introduce three binary operations ,  and   
on the set  of triples of integers by the rules  

 
3

     , , , , = , , ,a b c u v w au bv cw  
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    , , , , = , , ,a b c u v w av bw cu  and the operations ,  and  are also the source of 
squares from components of the sixteen sequences 

  
A , 

 .      , , , , = , , .a b c u v w aw bu cv  

Theorem 16. The following relations hold for the 
sequences A , :  This section contains four theorems which show that  

       
384 64

8 9
1 1 1 1

34 , 8 9 ,A B A C
   

 
     p p    2p  

       7 4 10
1 1 1 1

1
5 6 , 5

4
A D B C

   
      r p r p   

1 4736

0 ,

3716 1599

 

       7 4
1 1 1 1

14 , 61 ,B D C D
   

     r p   

960 64

 

       8 5
1 1 1 1

13 , 14 ,A B A C
   


     p r     

       11 3 11 2
1 1 1 1

1
5 , 2 3 ,

4
A D B C

   
      r r p p   

439 80 

559 561

 

       13 4 4
1 1 1 1

6 , 37 ,B D C D
   

     r r p     

       8 7
1 1 1 1

1
29 , 3 ,

9
A B A C

   

320 256

3


     p p    r  

       
1561 3136

10 3 8 2
1 1 1 1

2 , 7 2 ,A D B C
   

      r r p p     

       
185 1

9 4 4
1 1 1 1

1 1
2 ,

9 676
B D C D

   
     p r p    .

of    
1 1

A B      and 384 is the square of . 

This proves the first relation. 

834p
Proof. Since    9 0

1

1
= 47 52

5
A B    p p  and  

, it follows that the difference    9 0
1

= 47 52


  p p  Theorem 17. The following relations hold for the 
sequences A , , : 

384 896

* * 8 * * 8
1 1 1 1

( ) ( ) 2 , ( ) ( ) 5 8A B A C
   

     p p    4 ,r  

       * * * *9 5 6 5
1 1 1 1

1
, 2

100
A D B C

   
      p r p p   

9 2496

9 ,  

       
321 1601

* * * *9 4 11 3
1 1 1 1

1
2 , 27

4
B D C D

   
      p r p p    ,  

       
128 48

* * * *8 5 6
1 1 1 1

1
7 4 , 2 3

4
A B A C

   
      p p r p    5 ,  

       
201 240

* * * *8 6 8 6
1 1 1 1

1
3 , 6 ,

4
A D B C

   
      r r r r     

       
1121 561

* * * *11 6 4
1 1 1 1

1
9 , 13 ,

4
B D C D

   
     r r p     
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640 64

* * * *10 5 8
1 1 1 1

1
10 7 , ,

25
A B A C

   
     p p p     

       * * * *9 1 8 2
1 1 1 1

2 , 4A D B C
   

      p p p p   
1177 1024

,  

       * * * *4 4
1 1 1 1

1
5 , 4 .

16
B D C D

   
     p p   

1105 16

 

Proof. Since the sums   *
1

A B


  and   *
1

    

are  8

2
22

5
r  

*

 and , it follows that the sum   82 22r

of    *
1 1

A B
 

    and 384 is  

   2 2 2
8 8

2 4
22 384 4 4 ,

5 5
    r r 2

8p  i. e., the square of 

8

Theorem 18 The following relations hold for the 
sequences 

2p . This concludes the proof of the first relation.  

A , , :  

       
256 16

11 2 11 6
1 11 1

1
2 , 3

16
A B A C

  


          r p p r    ,  

       
127 168

11 4 10 2
1 11

1
2 3 , 2

4
A D B C

 


         p r p p   

1
,


 

       
721 160

13 3 4
1 1 1

1
2 , 15 ,

4
B D C D

  


           p p p   

1
 

       
40 336

11 11 1
1 11 1

1
, 2

4
A B A C

  
       p p    ,p  

       
92 208

9 5 8
1 11

1
7 , 3 2 ,

4
A D B C

 


           p p r p    1

1
 

       
91 100

9 3 8 1
1 1 1 1

1 1
3 , 2

4 4
B D C D

   


,           p r p r     

       
20 9

8 8
1 11 1

1 1
5 , ,

4 16
A B A C

  

         p p     

       
12 120

10 7 5
1 11

1 1
, 4

4 4
A D B C

 
       p p   

1
,


p  

       
5 281

7 9
1 1 1 1

1 1
2 , 5 .

36 4
B D C D

   
        p r    2p  

Proof. Since the sums  
1

A B


   and  
1

     

are  4 3 0

1
π 59π 9π

2
  and 4 3

1
59 9

2
0    , it fol- 

lows that the sum of   
1 1

A B





       and 256 is  

  8 3 0 3 0

1
59π 9π 59 9 256

4
   p , i. e., 

   2
8

8

787407 352139 5 638 787407 352139 5

4070440

   

  

which is the square of 11 22 r p . This is the outline of the 

proof of the first relation.  
Theorem 19 The following relations hold for the 

sequences A , , :  

       
256 1

14 5 7 2* ** *
1 11 1

1
2 , 2 ,

16
A B A C

  
         p r p p     

       10 5 11 3* **
1 11

1
4 , 2 ,

4
A D B C

 
           p r p p   

129 236

*
1

 

       12 5 7 2* * *
1 1 1

1
7 , 2 ,

4
B D C D

  
         p p r r   

945 4

*
1
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44 208

8 8* ** *
1 11 1

1
3 , 3 2 ,

4
A B A C

  
         p p    2r  

       10 2 7 0* **
1 11

1
2 , 9 ,

4
A D B C

 
          p p p p   

72 144

*
1


 

       11 2 9 2* * * *
1 1 1 1

1 1
, 5

4 4
B D C D

   
          p p p p   

59 100

,


 

       5 4* ** *
1 11 1

1 1
, ,

4 16
A B A C

  
       p p   

8 28

  

       9 3 8* **
1 11

1
, ,

4
A D B C

 
          p r p   

224 204

*
1

 

       8 4* * *
1 1 1

1 1
2 , .

4 25
B D C D

  
         p p   

69 1

*
1

Proof. Since the sums   *
1

A B


   and  
1

     

are  4 3 0

1
π 53π 7π

2
  and  074 3

1
53

2
  

* *
1 1




, it 

follows that the sum of  A B


      and 256 is 

  3 07    2568 3 0

1
53π 7π 53

4
p , i.e.,  

   2
8

8

629487 281515 5 638 629487 281515 5

4070440

   


 

which is the square of . This is the outline of the  14 52p

proof of the first relation. 

7. Squares from the Products  and     

This section uses the binary operations  and    
defined by  

     
    

, , , , = , , ,

, , , , = , , .

a b c d e f bf ce cd af ae bd

a b c d e f bf ce cd af ae bd

  

   



 

Note that restricted on the standard Euclidean 3 -space 
 the product  is the familiar vector cross-product. 3 

Theorem 20. The following relations hold for the 
triples A , ,  :  r

       
9 0

6 8
11 11

1 1
, ,

16 64
A A B B

 
      r p     

       2 2
11 1 1

1 1
, .

64 16
C C D D

  
      r r   

4 9

 

 
Proof. Since the sums  

1
A A


   and  

1
     

are 2 44π   and 4 220π  , it follows that the sum of  

  
1 1

1

16 



  A A    and 9 is , i.e., the  4 85 p p 9

6rsquare of . This concludes the proof of the first 
relation.  

Theorem 21. The following relations hold for the 

triples A , , : 

       
71 1

8 6 9** **
11 11

1 1
4 5 ,

16 1024
A A B B

 


        p p p    ,  

     
476 79

9 2 * 8 2* * *
11 1 1

1 1
, ( ) 2 5

4 16   

 

        C C D D   r r p p .  

Proof. Since the sums  
1

A A


   and  
1

    

are  8 6

4
4 5 7

5
  r r  and , it follows 

that the difference of the product  

 8 64 4 5 r r 7
   * *

1 1

1

16
A A

 
     and 71 is  
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 2

8 6

1
4 5 404

5
   r r 

  which simplifies to  

  2
8

8

38541 17236 5 101 38541 17236 5

51005

   

  i.e., to  

 

the square of 8 64 5p p . This proves the first relation.  
Notice that, in our final result, the third added constant 
value is in all cases the complete square. 

Theorem 22. The following relations hold for the 
triples A , , :  

       
2 28 4

8 8
1 1 1 1

1
19 , 13 9 ,

4
A B A C

   
     p p   

0

2p  

       
30 36

8 2 10 2
1 1 1 1

1
7 9 , 4 3

4
A D B C

   
      r p p p   

2 2

,  

       
29 5

10 6 4
1 1 1 1

1 1
18 , 31 ,

4 4
B D C D

   
     r p p   

2 2

 

       
8 4

8 8
1 1 1 1

1
21 , 3 20 ,

4
A B A C

   
     p p   

2 28

5r  

       
6 7

9 3 8 1
1 1 1 1

1
3 , 11 6 ,

25
A D B C

   
      r p r p   

2 22

 

       
27 19

10 6 4
1 1 1 1

1
26 , 63 .

4
B D C D

   
     r p p   

2 2



 

 

Proof. Since the sums 
1

A


  and  
1

B


   are  

 11 42 3 2p r  and , it follows that the sum   14 82 12p p 
of the product    

1 1

1

4  
 A B   and 64 is 

 which simplifies to the 

square of . This proves the first relation. 

  11 4 14 83 2 12 64  p r p p

819p
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