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Abstract

We study the eight infinite sequences of triples of natural numbers 4= ( PITILCY DSEY O +7), B=(F,,.,
4an+5aF2n+7) , C _( 2n+1a5F2n+1v4F2n+3) , D= ( 2:1+3’4F2n+1’5F2n+3) and =(Lop>4Ls35Loy7)
B=(Ly1:4Ly,,5:Lyir) s € =(Lyy1s5Lysi154L,43) s D=(Lyyu3.4L5,00550,,,;) - The sequences 4,B,C
and D are built from the Fibonacci numbers F, while the sequences A, B, C and D from the Lu-
cas numbers L, . Each triple in the sequences 4,B,C and D has the property D(—4) (i. e., adding —4
to the product of any two different components of them is a square). Similarly, each triple in the sequences

A, B, C and D has the property D(ZO) . We show some interesting properties of these sequences that

give various methods how to get squares from them.

Keywords: Fibonacci Numbers, Lucas Numbers, Square, Symmetric Sum, Alternating Sum, Product,

Component
1. Introduction

b
For integers a, b and c, let us write a~c provided
a+b=c’. For the triples X=(a,b,c) , Y=(d,e,f)

Y

and X =(d,5,5) the notation X ~X means that

d

e . f
bc~a, ca~b and ab~¢. When Y =(k,k,k), let us

ko Y

write X ~X for X~X. Hence, X is the D(k) tri-

ple (see [1]) if and only if there is a triple X such that
ko

X~X.

We now construct the infinite sequences 4, B, C
and D ofthe D(—4)-triplesand A, B, C and D
of the D(20) -triples. They are A= ( F,,..,4F,, .,
F'2n+7) b B:( 2n+l’4F'2n+5’F2n+7) H C (FVZ'H-I’SF
4F2n+3) H :( 2n+3’4F

2n+1>
2n+1>

5F‘2n+3) and A (L2n+l’
4L2n+3 ’L2n+7) H B ( 2n+l’4L2n+5’ 2n+7) > C:(L2n+l9
5Ly1>4Ls,.5) s D=(Ly,.5.4L,,,,,5L,,,5) , Where the
Fibonacci and Lucas sequences of natural numbers F,
and L, are defined by the recurrence relations F, =0,
F=1, F,=F_+F,, for n>22 and L,
L =L  +L,, for n22 .

The numbers F, make the integer sequence
4000045 from [2] while the numbers L, make
A000032 . For an integer k, let us use m,, p,, P,

and v, for F,,,,, L., Fi.. and L,

4n+ n+k *
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=2, L =1,

The goal of this article is to explore the properties of
the sequences 4, B, C, D, A, B, C and D.
Each member of these sequences is an Euler D(—4)- or
D(20) -triple (see [3]) so that many of their properties
follow from the properties of the general (pencils of)
Euler triples (see [4,5] ). It is therefore interesting to look
for those properties in which at least two of the
sequences appear. This paper presents several results of
this kind giving many squares from the components,
various sums and products of the sequences 4, B, C,
D, A, B, C and D. Most of our theorems have
also versions for the associated sequences
A=(2n,,m,,2m,), B= (27t6,71‘4,2n3) C=(2p,,2m,,

101)’ D:(2p25p3’27t2) and -’4 (2,05,/04,2,02)
B=(2ps.ps2p5), C=(10m,,2p,,5m,), (107t2,
5n3,2p2) that satisfy the relations A A B~B,

4 a4 20
C-C¢. D-D and A~A, B~B, C~C, DD .

The overall principle in this paper is that if you can get
complete squares by adding a fixed number to the prod-
ucts of different components of some triples of natural
numbers then you will be able to get complete squares by
adding some other fixed numbers to all kinds of expres-
sions and constructions built from the components of
these triples. Our task was to find out these numbers and
to identify those expressions and constructions.

All results in this paper are identities among Fibonacci
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and/or Lucas numbers of varied difficulty. We shall write
down the proofs of only a small portion of them to save
the space leaving the rest to the dedicated reader. In most
cases we prove or only outline the proof of the first
among several parts of the theorem. The other parts have
similar proofs sometimes with far more complicated de-
tails.

Following this introduction, in the section 2, we first
show that the selected products of four components
among triples from either the sequences 4, B, C,
D,A, B, C and D or the sequences A, B, C,
D,A, B, C and D become squares by adding
some fixed integers.

The Section 3 considers the various products of two
symmetric quadratic sums of components and seeks to
get squares in the same way (by adding a fixed integer).

The next Section 4 does a similar task for certain prod-
ucts of four symmetric linear sums of components.

In the Section 5 the numerous products of two sums of
squares of components are shown as differences of
squares.

The long Section 6 contains similar results for prod-
ucts of two symmetric linear sums of components of the
three natural products (dot, forward shifted dot and
backward shifted dot) of two triples of integers.

Finally, the last section 7 replaces these dot products
with the two forms of a standard vector product in the
Euclidean 3-space.

2. Squares from Products of Components

-4 20 .
The relations 4~4 and A~.A imply that the com-

-4
ponents of 4 and A satisfy 4,4,~4 and

20
A, A, ~ A . Our first theorem shows that the product

1 . . . .
_6A2A3A2A3 is in a similar relation with respect to 9.

Of course, the other products 4,4 A4, 4A4,AA, as
well as B,B,B,B,, etc. exhibit a similar property. The

missing cases from the list coincide with the one of the
previous cases.

Theorem 1. The following hold for the products of

components:
116AAA2A ~Pus e BBBB pu, oGO0 b,
1
A3A1A3~’41 pra _C3C1C3C1 ~p47 D3D1D3D1 ~5p6’

16

1 9 0
EBleBIZS’2 ~p, and C,C,CC, ~5p,.

1+J§
2

Proof. Let p=

Copyright © 2011 SciRes.

iy, ) )
F = it 4 and L, =¢’'+y’ , it follows that
) -y ’
4 2n+3 ) 2n+3 2047 2n+7
4, =—((p v ) , A= £ "V and A,
-y (/4

_ 4<¢2n+3 +‘//2n+3) , A3 _ ¢2n+7 _H//2n+7 )

o 1
After the substitutions w=—-— and ®=¢", the
2

%A2A3.A2A3 and 9 becomes

sum of the product

e (q)s —y )2
50°
. - This shows the first relation.

. However, this is precisely the square of

The version of the previous theorem for the sequences
A, B, C, D,A, B, C and D is the following
result. Notlce that in this theorem there are no repetitions
of cases.

Theorem 2. The products of the components of

A,-,D satisfy:

1~~~ ~ 1~~~ 1~ ~ 5=
ZAzAsAzAs’“pe» ZBzBsBz s~ P ZC2C3 2&”‘5&
1 ~ ~ ~ ~ 1 1 ~ ~ ~ ~ 4 1 =~ ~ ~ ~ 4
ZD2D3D2 37t E LA AA ~ D, EBaBllgs 1~ P>
1 =~~~ 1] -~~~ 0 1 ~~ ~ ~ 1
ﬁC3C163Q~p3» %Dle L~ Py, ZAI 2“41-’42"139:
] = o ~a 1 1 ~ ~ ~~ 4 |
231326182~p103 EclczcchNtu ﬁDIDZDI )~ Ps
2n+4_ 2n+4
Proof. Since A, =™ +y >, ,:12:—(p i ,
-y
B . 2 @2’1+2+l//2”+2
A3:2<¢2’”2+l//2”*2) and A3:—( ), the
(74
sum of %;12;13.212.213 and 1, after the substitutions
12 ( 48 12)2
PP -y
=—— and ®=¢" , becomes (—8) .
[ 50

However, the square of p, has the same value. This
~ o o~ o~ ]
proves the first relation %A2A3A2A3 ~P-

The same kind of relations hold also for the products
of components from four among the sequences A, B,
C, D,A, B, C and D.

Theorem 3. The relations that hold for the products of
components:

1 9 0 0
_6AzB3~AzBa ~Pios A2C3'Azcs "163363 A2D3"42D3 ’“20136:
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1
LBZCSBZCfpg,%OOBDB Bz GDCD, - '

256

64
A3Bl~’4361~px: A3D1A3D1~p10, C3D1C3D1~4p6,

9 0 0

L6A132A182 ~Ps> A4 CAC, ~5p,, AD,AD,~4p,.

Proof. Since By =4, and B, =A,, the first relation
is the consequence of the first relation in Theorem 1.
Similarly, the fifth relation follows from the sixth
relation in the Theorem 1.

The other relations in this theorem have proofs similar
to the proofs of Theorems 1 and 2.

There is again the version of the previous theorem for
the products of components from four among the
sequences A, B, C, D,A, B, C and D.

Theorem 4. The products of components of

,: Dsansﬁ/

1 o Y . .16 1~ ~ = o1
Z 4,B AZB ,CAC ~ s, ZA2D3A2D3 ~Ps»
.0 1 ~~ ~ 09 1 ~ o = o4
C,D,C,D; ~4p,, E LB A, ~ Py, E ,CAC ~ T,
1 womonal 1 = ~ 21 1]~ o ~ a1
EB3C1 3G~ T, mc;leC;le"tp ZA| A0, ~ Py,
1 =~ ~ 4 1 -~ ~ 9 1 -~ ~ 16
E 1C2~’41 2~ P75 ZAIDZAi 2 "% Z 1 2A1D2~t9’

1 = o ol
and ﬁCIDZCDZNpS'

Proof. The first, the sixth, the ninth and the tenth
relations are the easy consequences of the second, the
last, the seventh and the fourth relations in Theorem 2.

In order to prove the second relation, note that the
components 4,, C,, A, and C, are

2n+4 _ o 2n+4

@ v , (/)2n+1+v/2n+1 ’ ¢2n+4+!//2n+4 and
-y

5 ¢Zn-i-l _l//2n+l

(—). It is now clear from the proof of
-y

Theorem 1 that the sum of A,C,AC and 16 is
precisely the square of t,. This requires the identities

nlpl = pz s 7'54,04 = pg and szpg +16 = t52 .
3. Squares from Symmetric Sums

Let 0,,0,,0,:Z°—>7Z be the basic
functions defined for x=(a,b,c) by

symmetric

.
X, =a+b+c,x, =abc. Let o,,

91

=bc+ca+ab,x,
3

o, :7° -7 bedefinedby x.=bc—ca+ab and
o2
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x . =a—b+c . Note that x ., is the determinant of the

Ul O'l
1 x 3 matrix [a,b,c] (see[6]).

For the sums o, and o, of the components the
following relations are true.

Theorem S. The following is true for the sums o, of

the components:
384 384

Ao'zAa'z ~9p8+8p6’ Bo'zBo'z ~1lt8+14p69
576 576
C,,C,, ~ Tt +4p,, D, D, ~4ps+T7ps,
-~ . 128 - 80
AUZAO'Z ~4p9’ BUZ <p) 8p9’
~ ~ 336 - ~ 320
C,, G, ~ 8, D, D, ~20p;.
Proof. Since B, :f(zrg +3), B, =4(2y,-3), the

sum B, B +80 is 1—[(2@) +391] that we recog-

nize as the square of 8p,. This proves the sixth relation
80

BU2 BJZ ~8p, .

The sums B, and B, have constant values —4

L) )

~ 0
and 20. On the other hand, A 27:3, A.~2p;,
92

C.C. ~4r3 and D.D. ~4‘C5.
o) o

Theorem 6. The following is true for the sums o, of
the components:

~128 -128
A A, ~ 7p8 +8p6, B.B., ~ 8p10+7p3a
oy 0y o3 92
256 576
C.C.~8ps+13p,, D.D. ~4p,+3p,.
oy 0y 92

Proof. Since C , =n,(23m,+7p,) and
o

C.=p(23n,+127,), the sum C.C,+256 is the
)

o2 93
square of 8ps +13p, . This proves the third relation.
Some similar relations make up the following two
results.
Theorem 7. The following is true for the sums o, of
the components:

~4v,,

Proof. Since 4. =(2n,)", A.=(2p,)", B.=—4

2

and B . =20, it follows that
o2
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A.A.+B B, +80=(d4n,p,) = (4p,)".
o2 92 92 92
Theorem 8. The following is true for the sums o, of
the components:
~ ~ ~ . 144

+ l’j’g2 ~ 4x,.

o2 02 o2

Proof.  Since Izlazzé(tg—@, ./2152:4(t9+6),

B, = %(2r9 +3) and B L =4(2% -3), it follows that

4. Products of Sums as Differences of
Squares

The products of the sums o, and o, of the com-
ponents of the four triples among 4, B, C, D, A,
B, C and D show the same kind of relations. This is
also true for the associated triples A , B s C s D ,./Zl 5
B, C and D. Notice that in the next four theorems
the added third number is always a square so that the
product on the left hand side in each relation is a dif-
ference of squares.

Theorem 9. The following relations hold for the sums

0'1:

64
~19p;, <o A(,I C,AC,
225 1296

4p9+11p4, B C B Ca

o1 91 9

ABAB

16 o1 01 91 9

3t8+2p0,

1
EAGIDGIAGID t11+8p4’

1

841 1 25
EBO' DO'IBUIDO'I - 3pll +p0’ _6C0'1D0'160'1D0'1 ~31p4’

1 ~ ~ -~ 16 1 ~ =~ ~ ~ 0
545 By A By =010 +30y, 4, C, A, C, =30y,

o oY To o oy o
25 1 1 1 1 25 1 1

rx e a9 1~ =~ 16
—-A4,D, A, B, ~2p,+p,, —B,C,B,C,

25 o1 01Y Top 9p7+5p6’

O

BDUBUDU 11p10, 160[)0(30
1 1 9 1 1“1

Proof. The sums of the components AU], .AU] R B[rl
and B

and p, —
4, GIA B,
above first relatlon.

Theorem 10. The following relations hold for the
sums o, :

-~ 9
D, ~2py + ;.

are equal 2(p;—m,), 2(5m5—p,), M-,

. Hence, the sum of 64 and

is the square of 19y, . This proves the

Copyright © 2011 SciRes.

oy o o o op o o 9
1 1 1 1
—A.D . A.D,~y, —C.D.C.D,~x,
16 a1 o o o o 9 9 o
1~ ~ ~ ~ 16 1~ ~ =~ 16
—A.B,A.B.~p,+2v, —A.C.A.C.~pg+2p,,
9 9 9 g 9 9 9 o o 9
1~ ~ ~ =~ 25 . . 256
—A4.D A.D,~p,+2p,, B.C.B.C.~3p,+t,
Q9 o o o o o9 o o
5 529 9
B.D.B.D.~2p,+5,, C.D.C.D,~1lp,

Proof. The sums of the components 4., A., B.

91 91 91

and B, areequal 2m,, 2p,, —2m, and 2p,.
9

Hence, the product 4 .B . A .B.

1 9 9 9

is the square of 4p,

since m,p, = p,. This proves the above first relation.

In the next result we combine the sums o, and o,
in each product.

Theorem 11. The following relations hold for the
sums o, and o, :

16 16
116A 1B A B ~Pio+ %, %AU;‘B%AG;*Bpr“’LZp“
64A61C61A C 4t4+p0, 16A .C, .AUC 2t6+p5,
1 81 1 49
EfgﬁDUlwéld1 Dol* ~3p, —p,, EAJI*DQAUI*D% ~3p, +2p;,
1 49 1 121
6_43"1 C«aB Ca % — Py, EBQDG;‘B%D « = Py +3ps,
1 169 1 25
ECﬂDgl*cﬂ Dﬁf ~ 5t 41, acai.thlcai.tDzyl ~pe—2p,.

Proof. With the above information about the sums of
the components A(rl , A , B, and B.,thesum

o1 o o]

LAUB A [)’ +16 is
16 %

Ps (ps —11:0)(571:5 _p0)+16:p8 (Splo -2 +p0)+l6

2
:(p10+t6) :
This proves the first relation.
Theorem 12. The following relations hold for the
sums o, and o, :
1~z

~ 16 l~ ~ ~ 16
55 alBg;‘AqB"pS’L%S’ §Aa;‘ 1“40;‘601~p10+3p9’
1 ~ . 16 ~ o~ -
— A4, C.A C.~2p,+3p;, A.C A. C 9p8,
25 1 o 1 o 4] 1 o‘l
1 ~ ~ ~ =~ 25 1~ ~ ~ =~
55 4, DGI*A(,1 Dal* ~p, +2ps, 3 Aa;* Aal* D, ~ 2p9 +9,,
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- - . 576

~ 1~ ~ ~ =~ 16

B C.B.C.,~1lp, —B.C _B.C_~3p,+4p,,
1 o 1 o 9 o 1 o 1

1089 1

Eclﬁ *Bglﬁ * 2p7+5t75 E *D B~ *2501 ~3p12+t5’
ay o 9] o

25 121

C,D.C,D,~p,—x;, C.D,C.D, ~p,+8p,.
91 91

(I Ry 4

O | -

Proof. The sums of the components 4, A , B.

o ° (I
1 1 o]

5 1
and B. are equal 5m, , 5p,, E(ng—no) and
il

%( Py — P, ) - Hence, the sum of the product
i/](, B.A B and16is
25 "o B

1
Zps (p9 —,00)(719 —n0)+l6

2

1
= pr (P1s =20y + Py ) +16 = (pg +21;)
This proves the above first relation.
5. Squares from the Sums of Squares

For a natural number £ >1, let the sums
v,V :Z' > 7 of powers be defined for x=(a,b,c)
by x, =a"+b ' +c" and x,=da"-b"+c".

We proceed with the versioh of the Theorem 9 for the
sums v, of the squares of components.

Theorem 13. The following relations are true for the
Sums Vv, :

—224

1 -224 1
ZAVZA/Z ~ 4p,, +31, _BVZBVZ ~ Tpyy +2p,,

4

1 -416 1 -416

ZCVZC’V2 ~ T, +4p,, ZDVZDV2 ~ Ty, +4p,,
-~ 288 . . 288

Av2Av2 ~ 4y + 31, szsz ~ Ty +2p,,
- . 672 . . 672
C,C, ~ Tu+4p,, D, D, ~ Te+4pg.

%(27;38 —2p, +18)
and 2(27p,—2p,—18), the difference of 4, A, and
apl+p
52128400° °
320767+143451Y5 and 380° £567F253V5. But,
one can easily check that this is the square of 8p,, +6t;.

Proof. Since A4, and A, are

896 is equal where o and f+ are

This concludes the proof of the first relation.
The next is the version of the Theorem 13 for the

Copyright © 2011 SciRes.

alternating sums v, of the squares of components.
Theorem 14. The following relations are true for the
sums v, :
384

1 96
AA, ~1lp,+9, —B.B.~2p,+5¢%,
vy vy 4 vy v

24 1 416

Le.c

L~ +2p, —D.D, ~2¢ +t,,
64 v v2 ° i 4 v n % T
L. 24 !
A A, ~Te+p,, B.B. ~ Tv,+p,,
2 v v "

. 128 160
C.C, ~ 8t,+p,, D.D, ~4p,+3p,.
V2 2 V2 2
Proof. Notice that the alternating sums of squares of
components 4, and A, are %(251?5 +2t,—14) and
V2 V2
2(25% +2t,+14) . Hence, the sum of 4.4, and 384
is equal 2 "
2
77983+ 3487575 ) (1420° + 77983 - 3487545 )

504100°
However, one can easily check that this is the square of
11p, + 9t . This proves the first relation.

Multiplied by five these products of the sums v, of
components show the same behavior.

Theorem 15. For the sums v, , the following
relations hold:

5 196 5 196
ZAV;AV; ~ 3p11 +4p4s ZB *Bv; ~ 3p11 +14p8’

V2

5 4 1 4
—C.C.~p,+6p,, —D.D,~2p,+9p,,
64 Py + 0P, 20 » » Py + o
_ . 4 o4
54.A.~5p,+11t, 5B.B.~4t,+5ps,
Vs v va vy
. 1444 . 1764
5C.C. ~ 2¢—25p,, 5D.D, ~ 4t +3v,.

2 2 2 "2
Proof. With the above values of 4. and A., the
V2 V2
sumof 54 .A. and 784 is equal

2 2

(77983 + 3487545 )(142c1>8 — 77983+ 348755 )2
. B

10082d°
this is the square of 6p,, +8p,. This outlines the proof

ut,

the first relation.
6. Squares from the Products ©, > and <«
Let us introduce three binary operations ©, > and <

on the set Z’ of triples of integers by the rules
(a,b,c) O(u,v, w) = (au,bv, cw),
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(a,b,c) > (u,v, w) = (av,bw, cu), and
(a,b,c) < (u,v, W) = (aw,bu,cv).
This section contains four theorems which show that

384

(40B), (AOB), ~ 34p;, (40C) (AOC)

9]

%(A OD)UI (AOD)

9]

3716
(BoD), (BOD), ~l4y,, (CoD) (COD)

91

960

(4> B)U1 (A>B) ~13p, (4> C)U1 (A>C)

S

—439

(ADD)U1 (A>D)  ~ v, +5t,

91

=559

(BDD)GI(BDD) ~ 1, —6t,, (CDD)GI(CDD)

|

=320 256
(4<B), (A<B), ~ 299, %(A<C)01(A<C) = 3p, 4,

S

1561

(A<1D)01 (A<D)  ~,+2¢,

1

185

1
§(B < D)o'l (B<D) ~2p,—t,

Sl

1
Proof. Since (4o B)gl - 5(47139 ~Py+52) and

(Ao B) =47p, —p, —52, it follows that the difference

9]

1
~5v,+6p,, (BOC), (BOC)

291

the operations ©, > and < are also the source of
squares from components of the sixteen sequences A4,
D .

Theorem 16. The following relations hold for the
sequences A, D:

-64
- 8139 + 9132,

9] 9]

4736
~ 5, +p,,

9

-1599

~ 6lp,,

1

—64
~ 14,

S

1 -80
Z(B > C)a1 (B >C)a1 ~2p,, +3p,,

561
~37yp,,

1

1

3136

(B<C), (B<C) ~ Tpg+2p,,

9

1 1
—(C<D) (C<D)_ ~p,.
€Y76 ( < )Cﬁ ( < ) p4

1
of (A(DB)(rl (A OB)GI and 384 is the square of 34p;.
This proves the first relation.

Theorem 17. The following relations hold for the
sequences A,---,D:

384 896
(40B) .(AGB) . ~2p,,  (40C) .(AQC) . ~5p,+8,,
9 9] S 9]

1
100 7

321

i(B@D) L(BOD),. ~2p,+,

1

128
(4> B),: (A>B),. = Tn, +4p,

91

20

(A>D) «(A>D) ltg +3t,,

5 ~
1 1

1121

(B[>D) *(BDD)JT ~ t”+9t6,

91

Copyright © 2011 SciRes.

2496

9
—(40D):(AOD) . ~py—%, (BOC).(BOC),. ~ 2ps+9ps,

S

1601

(CoD) - (COD) - ~ p,+27p,,

*
S 1

48
%(A >C) -« (A DC)C{ ~ 2t +3ps,

S

1

1 240
Z(BD C) * (B [>C)o_;k ~ t8+6t6’

561

1
Z(C I>D) * (C > D)O_ir ~ 13p4,

91
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(4<B) . (A<B).~

*
9] 9]

1177

9]

Z. CERIN

1
~10p,, +7p;, E(Aq C)-(A<C)

64
oy o’ik ~p3’

1024

9]

(4<D) *(A<1D)Ul* ~2p,—p,, (B<C) *(B<1C)6]* ~ 4pe+p,,

1105

1 16
(B<D),.(B<D),. ~ 5p,, E(CqD) +(C<D),: ~4p,.

Proof. Since the sums (A0B) - and (AOB)

9]

of (408B)+(AOB). and384is

*
o]
o\ 256

(21@1?)61 (AoB8)

o -127

91

o %(tgz _222)+384 :%(rgz _4) =4p?, i e., the square of
are %(tg -22) and 2(t +22), it follows that the sum

2p, . This concludes the proof of the first relation.

Theorem 18 The following relations hold for the
sequences A ,---, D

-16

01~2t11—p2, %(;IO(?)UI(AOCN) ~p11_3t6’

1

(i0D), (A0B), “ap, -3, 5(50C), (o), “an,r.
(J_T?o[))g1 (BoD) 731pl3 +2p,, %(é@b)a1 (5025)01 71?015134,
%(21 >E’)Gl (fl >l’5’)0 fp“, (4 >C’)Ul (fl Dé)a, 3~3«6p“ +2p,,
%(Elbf))g1 (fl>15)0193p9+7p5, (1§>C’)01 (B>5)Ul _2~083t8—2p1,
%(B >B)Gl (1’5’ > 25) _313;39 +r, i(éb D)a] (é > @)gl 120Zp8 -,
1/~ ~ ~ ~\ 20 1, -~ - ~ . 9
Z(A<1B)Gl <A<1B)Gl ~ 5p, E(A )01 (A<C) ~p,
;(d<D) (A<D) o, %(g <€) (B<c), Zap, 4.,
;—6(]??4[))01 <B<115)Gl i2;37, l(éqf))GI (€<D) ziltg—sz
Proof. Since the sums (40B) and (A0B) (787407 + 35213945 ) (638" + 787407 352139V5 )
are —m, (597, +9m,) and —p,(59p,+9p,), it fol- 40704400"

lows that the sum of (;IOE’) (.Zl@l;) and 256 is
o

9

%p8(59n3 £97,)(590, + 99, )+ 256, i. .,
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which is the square of 2t —p, . This is the outline of the
proof of the first relation.

Theorem 19 The following relations hold for the
sequences A,---,D:

APM



Proof. Since the sums (;IOE) and (fl@l;’)a

*
1 1

are %n4(537t3+77t0) and %p4(53p3+7p0)» it

follows that the sum of (1:1 ©) E) . (.,Zl ©) [;')

*
0'1 O'l

and 256 is
%pg (531, +7m, ) (530, + 7, ) +256 , iie.,

(629487 ¥ 281515\/5)(63&1)8 +629487 — 281515\/5)2
4070440D°

which is the square of p,, —2t,. This is the outline of the

1 - - 9
E(A " A)Ul (A A)m ~t,,

1 - .\ 4
a(ci c)g1 (cd c)al ~t,,

Proof. Since the sums (A { ,21) and (A l j{)
Sl 9

are 4m,p, and 20m,p,, it follows that the sum of
L(A¢,Z1) (AJ,][) and 9 is 5p,p,+9, i.e., the
16 9

9]

1 =71

—(4adA) (AL A) . ~4p,+5p,,

16 gl o

Proof. Since the sums (A\L,ZI) and (.Aifl)

91 1

are —?(41?8 +5t+7) and —4(4t +5t —7), it follows

Copyright © 2011 SciRes.
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proof of the first relation.
7. Squares from the Products J and T

This section uses the binary operations ¥ and T
defined by

(a,b,c) { (d,e,f) = (bf—ce,cd—af,ae—bd),
(a,b,c) T (d,e,f) = (bf+ce,cd+af,ae+bd).
Note that restricted on the standard Euclidean 3 -space
R® the product ¥ is the familiar vector cross-product.

Theorem 20. The following relations hold for the
triples A,---,D :

1 - o\ 0
a(B " B)U1 (BLB) ~p,,

9]

1 - - 9
E(D \J D)G1 (D D)Gl ~,.

square of t,. This concludes the proof of the first
relation.
Theorem 21. The following relations hold for the

triples A . D

L B
1024 o o

1 ~ . -79
@ { D). (D D). ~2p, +5p,.

o
that the difference of the product
L5 ; .
E<A \ A)Uf (-A \ «4)01* and 71 is
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1 2
g[(‘h’s +5t) ~ 404} which simplifies to

(38541+17236\/§)(101®8 —38541+17236\/§)2
510050°

ie.,to

2

%(A TA) (BTB) 8~19;38,

91 1

2

(4T4) (p1D) i 7t, +9p,,

9] 9]

292

%(BTB)G (D1 D) . v, +18p,,

%(A TB) (BTA) lepg,

1 S

2

(41D)_(D14), “x-3p. (1), (CTB)

1

72

1

%(BTD)U (p1B) L, +26p,. (cTp)

Proof. Since the sums (A ) .A) and (B 0 B) are

9 9

2(3p,,—2t,) and 2(p,,+12py), it follows that the sum

1
Z(A 0 A)G1 (BT B)G1

(3py, =2t )(py, +12p; ) +64  which simplifies to the

of the product and 64 is

square of 19p, . This proves the first relation.
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