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Abstract 
This paper presents the method of solving the equations of motions by evolutionary 
algorithms. Starting from random trajectory, the solution is obtained by accepting 
the mutation if it leads to a better approximations of Newton’s second law. The gen-
eral method is illustrated by finding trajectory to the Moon. 
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1. Introduction 

In this paper, we examine the application of a simple evolutionary algorithm with mu-
tation only (no recombination) for solving general dynamical problems resulting from 
Newton’s second law and will use it to solve the special astrodynamical problem, namely 
finding the trajectory to the Moon. 

In the last decades, there is a growing interest in the algorithms inspired by nature 
[1] [2]. “Surviving of the fittest” applied so successfully by nature in the real world can 
be also very efficient in computer simulations. 

The usual way of solving problems in astrodynamics is to start from differential equ-
ations resulting from Newton’s second law, discretizate it and apply one of the standard 
numerical procedure like Runge-Kutta scheme. However this approach has some draw- 
backs. First, if we start the procedure from given positions and velocities, we don’t 
know the destination, so if we want to, for example, land on the Moon, we have to try 
many different initial velocities to find the one which actually brings us to the Moon. 
Second, the errors grow in each numerical steps, so the obtained trajectory can be very 
different from the real one, especially for the chaotic systems. 

The evolutionary (genetic) algorithm method is free from this weakness. In this ap-
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proach, we fix the initial and final destination, start from the random initial trajectory 
and modify it as long as it necessary to approximate physical laws with a desired accu-
racy. 

One way to apply evolutionary algorithm is to use the principal of least action as the 
fitness of the solution by choosing the value of the action. In the case of a motion of 
single body in the potential ( ), , ,U x y z t , the action S is:  
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We could start with a random trajectory, modify it and choose it if it leads to the 
smaller value of the above integral. Although this procedure may be efficient in finding 
solution of Hamiltonian systems, its limitation is that it is restricted only to forces which 
possess potential energy. To circumnavigate this limitation, we will apply evolutionary 
algorithm directly to the Newton’s second law. 

2. Description of the Method 

Let’s start with Newton’s second law:  
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where 1, 2,3i =  and instead of the initial conditions ( ) ( )( )0 0,i ix t x t , the boundary 
condition are given ( ) ( )( )0 1,i ix t x t . 

As a starting point we choose randomly the trajectory ( ) ( ) ( ), ,x t y t z t . This trajectory 
of course doesn’t satisfy Equation (2). We compute for this trajectory the left and right- 
hand side of (2) and construct the distance d between them:  
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Generally this give us at the beginning a huge number which express the fact that our 
chosen trajectory is far away from the actual trajectory which has to follow Newton’s 
second law. 

Next we choose random point on the trajectory, except boundary points which stay 
fixed, modify it and as a result obtain a new trajectory. By that we mean, we randomly 
choose time τ  somewhere between initial time 0t  and destination time 1t  and add 
a random, small numbers , ,a b c  to the variables at that time ( ) ( )x x aτ τ→ + ,  
( ) ( )y y bτ τ→ + , ( ) ( )z z cτ τ→ + . If the computed distance d according to (3) for 

the new trajectory is smaller than for the old trajectory we accept the change. In this 
manner after many iteration we can get very close to the real solution. 

This approach, based directly on bringing acceleration and forces to fit each other 
has the advantage over the minimalization of action (1) not only it allows to apply the 
procedure to nonconservative forces but also making sure about approaching the real 
solution because we know that the true solution satisfies the condition 0d =  whereas 
we don’t know a priori the value of the action. 
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3. Trajectory to the Moon 

As an application of the method laid down in section 2 we consider the special astro- 
dynamical problem, namely finding the trajectory to the Moon [3] [4]. In many astro- 
dynamical cases we face a problem of finding trajectory with given initial and final 
position. Imagine, for example, a future space colony on the Moon or any planet which 
should obtain a supply (food, water) from the Earth in a given time to survive. Finding 
the trajectory to the Moon is interesting as all the forces acting on the spaceship in most 
parts of its trajectory are comparable. As a result we can achieve interesting chaotic, 
low-energy trajectories which was demonstrated by Belbruno to rescue Japanese space- 
craft Hiten [5]. 

We choose a rotating coordinate system with angular velocity equal to Sun-Earth 
system. The Earth lay at the beginning of the system. The equations of motion are as 
follow:  
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where x, y, z are the position of the spacecraft, ( )mx t , ( )my t  position of the Moon, 
116.67 10G −= ×  constant of gravity, d Sun-Earth distance, M, m, µ denote respectively 

the mass of the Sun, Earth and Moon, ω angular velocity of the Sun-Earth system, and 
the two last terms in the first two equations describes centrifugal and Coriolis force. 

Applying the scheme presented in section 2, we wrote simple C++ program. In 
every step the algorithm chooses one point on the trajectory, change it and accept the 
mutation if it leads to the smaller value of the distance d (3). In our simulations we 
constrained the numbers of points between initial and final time to 200, restricted the 
maximal mutation value in one step to less than 10−4 Earth-Moon distance, and as a 
starting and final position of the spacecraft choose respectively the point at 6500 km 
from Earth center and 2000 km from Moon center. After 810≈  iterations from the 
random trajectories we obtained the solution which differ from the real one by 610d −≈ . 
Some trajectories obtained in this matter are presented in Figure 1. 
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Figure 1. Trajectory to the moon in 7, 14, 21 days. 

4. Summary 

We presented simple evolutionary algorithm with one trajectory at any given time and 
mutation as a selection mechanism. By changing the trajectory so as to make equal 
accelerations and forces, we were able to find a true trajectory which satisfies the 
Newton’s second law. Trying this scheme for longer times could lead us to find interesting 
trajectories, for example, with small initial velocity (small rocket fuel consumption). 

The general method presented in this article can be used to obtain solution to any 
physical problem described by mathematical equation. In particular, apart of astrody- 
namical problems similar to the one presented here, it can be useful in finding the 
solution of the internal structure of the stars (the values of the observable parameters 
both at the center and at the surface are given), in statistical mechanics problems like 
Ising model to obtain phase transition, in fluid dynamics problems where no-slip 
condition fixes the velocity on the boundaries or heat transfer problems. 
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