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Abstract 
 
We study the solutions with dead cores and the decay estimates for a parabolic p-Laplacian equation with 
absorption by sub- and supersolution method. Special attention is given to the case where the solution of the 
steady-state problem vanishes in an interior region. 
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1. Introduction 

In this paper, we study the following initial-boundary 
value problem for :   ,u x t 
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with  and . Here , > 1p  0 < < 1q p   x  is 
continuous on  and 0u  can be extended to a func- 
tion on 

  x
 , satisfying the compatibility condition  

   0 = ,u x x x .


 

The domain  is smooth and bounded.  > 1N N 
Our purpose is to describe how the solution  ,u x t

1 < < 2p

 
of (1.1) tends to its steady state and the existence of dead 
cores. A dead core , i.e. a region 
where the solution vanishes identically may appear. Such 
a region is a waste from the engineering point of view. 
We concern its existence. Our method is the weak solu- 
tion which is similar to that in [4] where the porous me- 
dium equation was considered. For the case of  
and  of the problem (1.1), Chen, Qi and Wang [3] 
proved the existence of the singular solution. In [2], they 
also studied the long time behavior of solutions to the 
Cauchy problem of  

  0 := : = 0x u x 

> 1q

   2
= in 0,

p q N
tu div u u u

      

with nonnegative initial value  in   ,0 =u x x  N , 
where  2 1 <N N p < 2  and . For initial data 

of various decay rates, especially the critical decay 

> 1q

 = O x
 

 with  = 1p q p   , they showed that 
the solution converges as  to a self-similar solu- 
tion. 

t 

rong ab

eak abso

We have known the following behavior of the absorp- 
tion near :  = 0u

< 1 st sorption,q  

1 w rption.q   

When   0x   in (1.1), the steady state vanishes 
and  , tu x  tends to zero as . Strong absorption 
yields extinction in finite time, that is, there is a time  
such that 

t 
T

 ,u x t x0  for all  and t . For small 
, the absorption is still relatively large in the case of 

strong absorption and will tend to drive the solution more 
quickly to zero than in the case of weak absorption. If 

T
u

 x  is not identically zero in (1.1), the corresponding 
steady state  x  does not vanish identically, but it is 
still true that  ,u x t  tends to  x  as . t 

The steady-state problem  
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is a special case of the problem  
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in [1], where ND  be an arbitrary domain, 
, :a b D   be two continuous functions,  and 1p 
 f s  is a nondecreasing function with  0 =f 0 . 
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From [1], we know that Problem (1.2) has a unique 
solution, a dead core exists if   is large enough and  

 1 1/

0
,pF s d <s                (1.4) 

where    
0

= d
s

F s f   . 

Proofs of existence and uniqueness for Problem (1.1) 
are based on a suitable notion of weak solution, which 
we include here for the sake of completeness. 

Definition 1.1 Let  = 0,TQ


T

 

 and let  denote 
the outward unit normal to . A function  

n

      1,, p
Tu x t C W L Q T   ; 0,  is called a weak 

solution of Problem (1.1) if it satisfies 
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for all  1
TC Q   with  

         1,
0, , ; 0,p

T x t x t C W L Q T     .  

Equation (1.5) is obtained easily by multiplying (1.1) by 
 , integrating over , and using the divergence theo- 
rem. 

TQ

A weak supsolution of (1.1) is defined by replacing 
the equal sign in (1.5) by  and restricting    to be 
nonnegative. Similarly, we can define a weak subsolu- 
tion. For our purposes, it suffices to consider the usual 
super- and subsolutions defined as follows. 

We say that 0u   is a supersolution of (1.1) if  
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Similarly, 0u   is a subsolution if all the inequa- 
lities in (1.6) are reversed. If u u , then the unique weak 
solution  of (1.1) satisfies u u u u  , almost every- 
where in . T

It follows from the maximum principle that the 
solutions of (1.1) and of (1.2) satisfy  in , 

 in . 

Q

 ,u x t 1 Q
  1x  
To show monotonicity of  ,u x t  in time, we need to 

impose a natural condition on the initial value  0u x :  

    2

0 0 0 < 0, .
p qdiv u x u x u a x


       (1.7) 

This condition holds automatically if  is a posi- 
tive constant. If  satisfies (1.7), it is an upper 
solution to (1.1) so that 

 0u x
 0u x

 ,u x t 


 0u x  for any . 
Now let 

t
 , =v x t  ,u x t  ; then  satisfies   ,v x t
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Since    0,u x u x  ,  is subsolution of (1.1), and 
hence 

v
   t,u x t u  ,x . Hence,  is monotoni- 

cally decreasing. Standard theorems can be used to show 
that 

( , )u t

 ,u x t  tends to the steady-state  x  as t . 

2. Monotonicity and Other Comparison 
Theorems 

Consider problem (1.1) when only one part of the data is 
changed. We then have the following monotonicity pro- 
perties: 

1) Let 1  and 2u  be the solutions corresponding to u

1 , 2 , respectively, with 1 2  ; then  in Q . 2 1

2) If the initial or the boundary value is decreased so is 
the solution. 

u u

3) Let  0 1u x  ,  and consider two 
domains 

  1x 
1 2   . Then  on . 2 1 1

These all are easy to prove using super- and subsolu- 
tion techniques. Here we omit the proofs. 

u u Q

Next we look at the “lumped-parameter” problem and 
the steady-state problem with a view to using them as 
comparison problems for (1.1). The lumped parameter 
problem has no diffusion term. It can be obtained as a 
special case of (1.1) with initial value  0 1u x   and 
boundary condition of vanishing normal derivative. We 
can then seek a solution  independent of ( )z t x :  

 = , > 0; 0 =q
tz z t z 1.



         (2.1) 

The solution is given explicitly by  
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Therefore, extinction occurs in finite time if and only 
if . Then 0 < < 1q = 1 1t  q  and  for   > 0z t

 < 1 1t q  . 
Comparison with (2.1) leads immediately to two re- 

sults for (1.1). 
Theorem 2.1 (a) If   = 0x

u x
, then  is a super- 

solution of (1.1), so that  and, if the 
absorption is strong, there is extinction in finite time for 

 z t
 z t , t 

 ,u x t . 
(b) If  0min =u x > 0 , then the solution  ,z t   

of (2.1) with initial value   is a subsolution of (1.1) so 
that    , ,u x t z t  . If the absorption is weak, then 
 , > 0z t  for all t , and hence  in Q .   , > 0u x t
The following theorem shows that (1.4) is necessary 

and sufficient for the existence of a dead core for 
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sufficiently large  . 
Theorem 2.2 For , , (1.4) is 

satisfied. Then a dead core exists for sufficiently large 
0 < < 1q p  > 1p

 . 
Proof. We shall construct, for   sufficiently large, 

an upper solution  to (1.2) for a ball  v r RB , with 
, 0v  0 < < 2r R . We begin by observing that on the 

positive real line, the function  by  w x
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in the ball  in r R N  (having extend v  to be zero 
for < 2r R ). We then obtain  
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where we use  and 0 v 1
  1 1q p

q
p

 
 . Since  

 2 = 0v R ,  2 = 0v R , the last inequality can be ex- 
tended to . Furthermore,  so that 0, R   = 1v R  v r  
is an upper solution of the elliptic problem (1.2) for 
  . Since  vanishes for v < 2r R , so does  . 
Now consider (1.2) on an arbitrary domain   with 

. Then  contains a ball    1  RB  on whose 
boundary 1  . Therefore, v   and  contains a 
dead core for 


  . 

For any 0 , we can take 0  the distance 
from 0

x  = =R r
x  to the boundary. Theorem 2.2 shows that for 

  large enough, 0x  belongs to the dead core. This 
suggests making the following definition. 

Definition 2.1 Let . Define 0x 
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sists in noting that the function 
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p N p q q

p

P
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     in   and 

  1w   . Thus,  is a supersolution of (1.2) for any  w

, ,

0

N p q

p

P

r
  w. Since  vanishes at 0x , so does  . This  

proves the first part of (2.4) and the second part follows 
at once. 

3. The Corresponding Evolution Problem  

Since (1.4) is satisfied with   large enough, the steady 
state has a dead core. Does the corresponding evolu- tion 
problem have a dead core and, if so, how does it behave 
for large t ? The answer is given by the fol- lowing 
theorem. 

Theorem 3.1 For fixed 0 , choose 0x  >  , where 

0  is defined in (2.3). Then  
(a) if 0 < < 1 1q p   ,  for   u x t0 , = 0

  0
0

1
:= ;

1
t t

q  


 
 

(b) if 1 <q p 1   and  0min > 0u x , then  
 0u x t, > 0  for all t .  
Proof. Part (b) is equivalent to Theorem 2.1(b). To 

prove part (a), it suffices to exhibit a supersolution 
 ,w x t  such that  0 , = 0w x t  for . We try a func- 

tion  
0t t

=w z  , 

where  ,z t   is the solution of the lumped--parameter 
problem with   to be choosen satisfies the differential 
inequality for a supersolution and   is the solution of 
the steady-state problem with 0=  . Note that  vani- 
shes at 0

w
x  for  1 1t q   . Since  and w z w  , 

it is clear that  , 0w x u  x0  and    x,w t  . 
From the definition of , we have  w
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4. Decay Estimates 

We consider (1.1) with , where    0u x x  x  is 
the solution of the corresponding steady-state problem 
(1.2). It then follows, since   is a lower solution, that 

. If we assume in addition that  
, then  is bounded a.e. in . 

  ,u x t x
  0u x L





 u Q

Our estimates hold for almost all . If the data 
are smooth, the solution is continuous and the estimates 
hold pointwise. We seek decay estimates for  

x

    , = ,x t u x t x 

Because we also have v   and v  , we see that  
is a supersolution of (1.1). Then  

v

= =u v .       

1

. Our principal results are con- 
tained in the following theorem. Theorem 4.1 is proved. 

Theorem 4.1 (a) if , then  1 <q p
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