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Abstract 
The collapse of adobe bricks under compressive forces and exposure to water has a 
duration of several minutes, with only minor displacements before and after the col-
lapse, whence a conceptual question arises: When does the collapse start and when 
does it end? The paper compares several mathematical models for the description of 
the fracture process from displacement data. It recommends the use of linear splines 
to identify the beginning and end of the collapse phase of adobe bricks. 
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1. Introduction 

Traditional adobe architecture, using unburnt clay bricks, is still common in many 
parts of the world [1] [2], and loam (a mixture of sand, silt and clay; other composi-
tions of materials have been used, too), has been used as construction material since 
ancient times [3].  

Using adobe bricks for construction is ecologically and economically sustainable [4]. 
Amongst the main benefits are the high availability of loam and therefore low efforts to 
transport it. The energy demand for processing of building material is low [5]: Unfired 
bricks take 5 to 10 kWh/m3, while fired bricks require about 1300 kWh/m3. Unfired 
bricks can be recycled very easily and there is no need for landfill sites. The energy de-
mand for recycling is low, because it is only necessary to mix with water and form new 
bricks. Further, adobe bricks are a physically sound construction material with desira-
ble thermal properties [6]. If constructed properly, adobe houses may withstand major 
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earthquakes [7]. 
As to disadvantages, adobe walls must be protected from direct contact with water 

(Figure 1), as otherwise a loss of stability of the construction may occur [8]. Unex-
pected incidents, such as floods, heavy rainfall, high level of underground water, burst-
ing of pipes or other technical reasons may expose adobe walls to water for a longer pe-
riod. In order to develop material compositions that are more resistant to humidity, 
standardized testing is needed. The purpose of this paper is the investigation of the 
combined resistance of adobe bricks against water and pressure by measurements of 
adobe bricks placed on a humid base. The paper, thereby, defines a standardized me-
thod to determine, when the break of such bricks starts and ends (collapse phase). The 
later the break starts, the more resistant to water is the material, and the slower it 
breaks (duration of the collapse phase), the higher are the chances to leave a crumbling 
building.  

2. Problem 

There is a rich literature on testing the compressive strength of dry adobe bricks. In 
most cases the purpose is the optimization of the material mix, e.g. [9] [10]. There are 
various technical standards for such tests, e.g. a regional standard for Africa [11] or a 
national standard [12] in Spain, used also in Latin America. Thereby, an adobe brick is 
placed into a compression load testing machine and subjected to successively increasing 
load; the machine stops automatically, when the brick breaks. In the context of earth-
quake security, shaking tests of adobe brick walls were developed [13]. Compression 
load testing machines were also applied to test the strength of wet adobe bricks that 
prior to the measurement had absorbed moisture for several days [14]. As wet adobe 
bricks were breaking so slowly, the break point load could not be detected automatical-
ly; it was determined from an optical inspection [15].  

Such experiments could provide only indirect information about how long an adobe 
wall might withstand the contact with water. In order to approach this question direct-
ly, an experimental setup was designed, that enables the measurement for a period of 
up to several days of the deformation of an adobe brick under constant pressure, while 
at the same time the water content was increasing. This simulated an adobe brick in a 
wall exposed to moisture from a wet underground.  

Multiple experiments [5] verified that the typical pattern of the fracture of such  
 

 
Figure 1. Wet adobe brick after fracture. 
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treated adobe bricks was in three phases. Initial resistance phase with minor displace-
ments for a day or more, collapse within several minutes and final phase with only mi-
nor displacements for the crushed brick. Thus, the fracture process may be characte-
rized by the points of time, t0 and t1, when the collapse begins and ends. The goal of the 
paper is the proposal of a computational method to automatically identify t0 and t1 from 
the displacement data. To this end, the paper compares several mathematical models 
for describing the fracture process. (Appendix II summarizes the Mathematica codes 
for these models.) Basically, the problem of this paper is a conceptual one of defining 
the collapse phase by a standardized method.  

3. Materials and Methods 

The experimental setting of this paper (Figure 2) differs fundamentally from the above 
mentioned standardized procedures, as the aim was to test, for how long an adobe wall 
could withstand contact with water. Therefore, the compressive load was kept constant, 
while the brick was exposed to water, and the break point time was sought for, not a 
break point load. 

An adobe brick was placed on a saturated filter layer of fine, clean sand (height 1.5 
cm). The increasing saturation of the brick resulted from the capillary rise through the 
bedding. Thus, the water level did not reach the brick directly, but by contact to the 
bottom of the brick. The experiment used adobe bricks of size 24.5 × 12 × 6 cm, with a 
dry density of 2100 kg/m³, produced by an extrusion process at the brickyard Nicoloso 
(Pottenbrunn/Austria). Appendix I provides more information about the material 
characteristics. A load of F = 1.8 kN, comparable to the compressive force to the lowest 
brick of an adobe wall of 3 m height, was applied vertically to the surface of the adobe 
brick by a lever arm that was flexibly jointed to an aluminum plate (25 × 13 × 2.5 cm) 
on top of the brick to get a uniform load distribution of initially 6.1 N/cm2 for the brick 
and 5.5 N/cm2, when the plate dipped into the crumbled material (Figure 1). The frac-
ture process of the brick was measured by a displacement transducer with a precision of 
0.05 mm. To protect the transducer, the maximal displacement was limited to 25 mm. 
The measurement interval was 10 seconds, but experience showed that increasing this 
interval to 30 seconds still resulted in a satisfactory resolution of the data. The time  

 

 
Figure 2. Schematic illustration of the experimental assembly. 
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Figure 3. Data of this paper (displacement over time of an adobe brick). 

 
span for these displacement measurements was up to two days. Displacement data were 
recorded in a spreadsheet (Microsoft EXCEL 2016). As a first reduction of complexity, 
for each brick only the average displacements per minute (obtained from a pivot table) 
were further analyzed. Thus, for time t this paper denotes by d(t) the measured average 
displacement of the considered brick. The experiment started at time t = 0 and the data 
for Figure 3 recorded the vertical displacements over 2350 minutes (duration tmax = 
1.631 days = 39¼ hours, maximal displacement dmax = 22.382 mm). 

The authors tested only one type of adobe, characterized in Appendix I, as the pur-
pose of the paper is the proof of principle for one type of materials. The paper does not 
aim at the optimization of materials. Rather, given displacement data as in Figure 3, the 
paper asks, when did the collapse of the brick occur? It could be roughly identified from 
an optical inspection of Figure 3, indicating a steep slope at ca. t = 1.3 days. More dif-
ficult is the determination of the time t0, when the collapse began, and of t1, when the 
collapse ended. The paper compares four models for describing the fracture process 
and defining t0 and t1. These models do not aim at an explanation of the physical 
process of fracture, but at a description of the displacement data that allows for the 
identification of collapse phase. Intuitively, at time t0 the brick was irreversibly dam-
aged (break point time) and at time t1 it was crumbling. However, this paper does not 
aim at verifying this intuition. The methodology underlying these models is explained 
briefly together with the results. 

4. Results of the Models 
4.1. Pattern Recognition 

A first attempt towards the description of the data used methods of pattern recognition, 
as illustrated by the coloring in Figure 3: Black dots identify data points corresponding 
to the collapse phase, green dots indicate the first and the last phase. This resulted in 
the estimate t0 = 1.225 days (with 1.29 mm displacement) and t1 = 1.294 days (with 9.88 
mm displacement). However, the black cluster corresponding to collapse missed the 
second half of this phase. 

As to the method of pattern recognition, the paper used cluster analysis to identify 
three groups of data points (corresponding to the three phases) with a small distance 
amongst them. In order to improve the clustering, a modification of two-dimensional 
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Euclidean distance was used, defining as nil the distance between data points, whose 
displacements differed by less than a threshold of 1.0 mm. The local optimization algo-
rithm of [16] then automatically detected the plotted clustering, using Mathematica 
software.  

This method was not fully automatic, as pattern recognition generally is rather a 
learning technique. Thus, the distance function had to be modified, using a threshold 
that was adapted to the data by trial-and-error. The output was also dependent on the 
selected algorithm; e.g. hierarchical agglomerative clustering did produce inferior re-
sults.  

4.2. Data Smoothing 

As indicated by Figure 3, collapse is characterized by a rapid increase of the measured 
displacements. This suggests that the analysis of the speed of fracture (differences of 
successive displacements) might inform about the collapse. A direct visual inspection of 
the differences (green dots) in Figure 4 indicates random fluctuations that may hide, 
when the collapse actually begins or ends. However, a smoothing of the data (black 
curve) identified an initial phase of stability followed by high differences in the filtered 
data in the neighborhood of ca. 1865 minutes (maximum measured speed of collapse: 
3.36 mm/min) and another final phase of stability. More specifically, the 5% largest dif-
ference of filtered data occurred between minutes 1807 and 1923, resulting in the esti-
mates t0 = 1.255 days and t1 = 1.335 days.  

As to the method of data smoothing, the paper used a low-pass filter to eliminate 
high-frequency fluctuations. It passes signals with a frequency lower than a chosen cu-
toff frequency. The computation was done in Mathematica. 

This method was not fully automatic, as both the cutoff frequency (here: 0.01) and 
the threshold for the quantile (here 95%) was manually adjusted by trial-and-error. 
Further, the threshold for the quantile could not be defined without knowledge of the 
yet unknown duration of the collapse. For example, defining the collapse from the 95% 
quantile assumes that 5% of the data points describe this phase. For the present data 
this in turn corresponded to a time span of 117 minutes, which overestimated the dura-
tion of collapse.  

 

 
Figure 4. Speed of fracture over time: unfiltered (green dots) and filtered (black line). 



M. Rauchecker et al. 
 

6 

Also the cutoff frequency should neither be too small nor too large. It should not be 
too small, as the overall shape of the original data should be retained (a smaller cutoff 
frequency estimates lower t0 and higher t1). It should not be too high, either, as then al-
so in other regions the differences might exceed the given quantile. (Example: For a 
cutoff frequency of 0.1 the differences exceed the 95% quantile between minutes 112 to 
150, 270 to 283 and 1840 to 1905, whereby only the latter interval corresponded to the 
collapse.) This reasoning applies in particular to the unfiltered data (a cutoff frequency 
of 2π defines an all-pass filter). 

4.3. Jump Model Approximation 

An elementary approach identified the three phases of fracture from an approximation 
by a linearized jump function (Figure 5, dashed red curve). The phases divide the time-
line into three intervals i = 1, 2, 3 between t = 0 and t0, between t0 and t1 and between t1 
and infinity. For the present data this resulted in the estimates t0 = 1.29 days and t1 = 
1.299 days. 

As to the method, the following model was used to approximate the fracture process: 
No displacement till t0, maximal displacement after t1 and linear in between. The para-
meters t0 and t1 of this model were determined by using the method of least squares to 
find a best fit of the jump model to the data. 

However, this approach turned out to be insofar not satisfactory, as the fit to the data 
of the initial resistance phase was poor. 

4.4. Linear Spline Model Approximation 

This approach improves the simple jump model insofar, as it describes the displace-
ment by a linear spline function (Figure 5, black curve). For the present data this re-
sulted in the estimates t0 = 1.292 days (actual displacement 3.50 mm, model 1.84 mm) 
and t1 = 1.298 days (actual displacement 20.39 mm, model 21.82 mm). These estimates 
were insofar satisfactory, as the actual deformations were within 4 mm of the minimal 
respectively maximal level, whence in the time span between t0 and t1 most of the de-
formation (16.89 mm = 75% of the measured maximal displacement) occurred.  

As to the method, the following model of the fracture process was used: Again, three 
intervals i = 1, 2, 3 between t = 0 and t0, between t0 and t1 and between t1 and infinity 
were considered and on each interval the fracture was approximated by a linear function 

 

 
Figure 5. Displacement data (green), jump model (dashed red), and spline model (black). 
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di(t) of time, formula (1). These linear functions are not the regression lines, but linear 
splines, because the model assumes in addition that the displacement should be conti-
nuous, formula (2), which says d1(t0) = d2(t0) and d2(t1) = d3(t1). A further reduction of 
the number of parameters could be achieved by formula (3), stipulating that the linear 
spline originates from 0 and ends with the maximal measured displacement dmax; sum-
marizing:  

( ) , 1, 2,3i i id t k t m i+ =⋅=                        (1) 

3 22 1
0 1

1 2 2 3

,
m mm mt t

k k k k
−−

= =
− −

                       (2) 

( )1 3 max max0,m d t d= =                          (3) 

The goal was to find the best fit of this model to the measured displacement data d(t), 
using the method of least squares. The parameters of the model were ki and mi, from 
which ti were computed by formula (2).  

In comparison to the jump model, the better fit of this model to the observed dis-
placements made it superior. For the present data this could also be verified in terms of 
the Akaike information criterion for model selection [17]. As to possible limitations of 
this method, the approximation to the actual displacements was worst close to t0 and t1 
(Figure 5). Thus, different methods need to be developed, if one aims at measuring the 
maximal reversible displacement (elasticity) prior to the begin of collapse. 

5. Discussion and Conclusion 

As is well-known (references cited above) the material characteristics, e.g. grain size 
distribution or use of additives, strongly influences the stability of adobe bricks. A new 
experimental setting was designed to test, for how long an adobe wall could withstand 
contact with water, asking for the break point time under constant pressure of an adobe 
brick, which absorbs water by capillarity. In order to optimize the material mix under 
the aspect of a combined resistance to pressure and water, large test series are needed, 
whence the identification of the collapse phase needs to be automatized. Thus, in order 
to compare and optimize different materials, the break point time needs to be deter-
mined by a standardized method.  

While it was easy to derive a rough estimate from a visual inspection of plotting dis-
placement data, a more accurate definition of the break point time turned out to be 
conceptually demanding, owing to the slow fracture process. Therefore, instead of cha-
racterizing the fracture process by one break point time, the paper proposes to deter-
mine the beginning and end of the collapse phase. Of the four models considered for 
this purpose, the linear spline approximation based on Equations ((1) to (3)) turned out 
to be the most viable approach, suitable for automatization. 

Further, the authors considered that the experimental setting and the subsequent da-
ta analysis (computational identification of the collapse phase) should be simple and 
inexpensive. For adobe bricks are mainly used in developing countries. There the opti-
mization of materials by using locally available additives needs to be done at the village 
level, where engineers may not have access to sophisticated machines or software. The 
present experimental setting (Figure 2) is a low cost design and therefore viable for 



M. Rauchecker et al. 
 

8 

developing countries. Also the linear spline approximation approach could be automa-
tized in common spreadsheet programs, i.e. it does not require expensive software and 
it is therefore suitable for use in developing countries. For instance, working in Micro-
soft EXCEL, the SOLVER add-in can be used for determining parameters ki, mi from 
formula (1), where the sum of squares of the differences between the measured dis-
placement and the displacements calculated from the linear spline model is minimal. 
The authors have prepared an EXCEL file (explained in Appendix III) and make it 
available online. Summarizing, the authors propose the linear spline approximation to 
describe the fracture process of adobe bricks in contact with water, as it is specifically 
adapted to the needs of users of adobe bricks in developing countries. 
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Appendix I: Material Characteristics 

In order to allow a comparison of the present data with literature data, the grain size 
distribution of the brick was determined with a combined wet sieving of the fraction > 
40 μm and automatic sedimentation analysis with Sedi Graph III (Micromeritics).  

An air-dried sample of 50 g was treated with 200 ml of 10% H2O2 for oxidation of 
organic components and proper dispersion. After ca. 24 h reaction time and removal of 
the remaining H2O2, the sample was treated with ultrasound and sieved with a set of 
2000 μm, 630 μm, 200 μm, 63 μm and 20 μm sieves. The coarse fractions were dried at 
105˚C, weighed, and measured in mass percent. The <20 μm portion was suspended in 
water, a representative portion was taken out, treated with 0.05% sodium polyphos-
phate and ultrasound, and analyzed in a sedigraph by X-ray, according to Stokes’ Law. 
From the cumulative curve of the sedigraph and the sieving data, the grain size distri-
bution of the entire sample was calculated (see Figure 6). 

Appendix II: Mathematica Codes 

As some models used highly sophisticated tools, their code is summarized and anno-
tated below, using Mathematica 11 software of Wolfram Research. It provides these 
tools in the form of a “black box”.  

The following commands relate to certain characteristics of the data. Thereby, 
“full_data” was the original input, comprised of the pairs time (in days) and displace-
ment (in mm), while “disp_data” retained the displacement information (per minute), 
only. Further, “tmax” was the duration tmax = 1.631 days of the measurements and 
“dismax” the maximal displacement (22.38 mm). 

full_data = {{0, 0.025}, {0.000694444, 0.124}, …}; 
disp_data = Last[Transpose[full_data]]; 
{tmax = Max[First[Transpose[full_data]]],  
dismax = Max[Last[Transpose[full_data]]]} 
The following key commands were used for the pattern recognition. The first line  

 

 
Figure 6. Cumulative grain size distribution. 
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defines the modified distance, the second line identifies the clusters, the third line plots 
them and the last line extracts the bounds t0 and t1 from the second cluster. 

modifieddist[u_, v_] = If[Abs[Last[u] −Last[v]] < 1.0, 0, Euclidean Distance [u, v]];  
cluster = Find Clusters [full_data, 3, Distance Function → modifieddist, Method → 

“Optimize”]  
List Plot[cluster, Plot Style → {Green, Black, Green}] 
{Min[First[Transpose[cluster[[2]]]]], Max[First[Transpose[cluster[[2]]]]]} 
The following commands were used for data smoothing. The speed of the displace-

ment, “speeds”, was the difference of successive displacement data. “Lowpass Filter” 
with a filtering frequency of 0.01 defined “filter”, comprised of successive differences of 
the filtered data. Figure 4 plots “speeds” in green and “filter” in black. In “minutes” the 
minutes were recorded, when differences of filtered data exceeded the 95% quantile of 
these differences; t0 and t1 were obtained from the minimum and maximum of minutes. 

speeds = Differences[disp_date]; 
filter = Differences[Lowpass Filter[disp_data, 0.01]]; 
Show[ListPlot[speeds, PlotStyle → Green], ListPlot[filter, Plot Style → Black]] 
Minutes =Flatten[Table[If[filter[[n]] > Quantile[filter, 0.95], {n}, {}],  
{n, 1, Length[filter]}]] 
The following code was used to fit the jump model to the data. It was defined from 

an interpolation object, that was used like a function: “Interpolation” with the interpo-
lation order 1 defined a piecewise linear function (linear spline) with prescribed values; 
namely value 0 att = 0 and at t = t0 and value dismax at t = t1 and at t = tmax. “Nonlinear 
Model Fit” fitted the parameters t0 and t1 to the data using the method of least squares. 
Thereby, “?NumberQ” was a reminder to the program that these parameters should be 
used as numbers and not as symbols. Figure 5 plots the original data as green dots and 
the interpolating object as black curve. Finally, “Best Fit Parameters” retrieved t0, t1, and 
“AIC” retrieved the Akaike information measure for model selection. 

Clear[model]; 
model[t0_?NumberQ, t1_?NumberQ] = (model[t0, t1] =  
Interpolation[{{0, 0}, {t0, 0}, {t1, dismax}, {tmax, dismax}},  
InterpolationOrder → 1]); 
splinemod = NonlinearModelFit[full_data, model[t0, t1][t], {t0, t1}, t]; 
Show[Plot[splinemod[t], {t, 0, tmax}, PlotStyle→Black],  
ListPlot[full_data, PlotStyle→Green]] 
{splinemod[“BestFitParameters”], splinemod[“AIC”]} 
This code was modified as follows for the fit of the linear splines. Here, v0 and v1 

were additional parameters that were fit to the data. 
model[t0_?NumberQ, t1_?NumberQ, v0_?NumberQ, v1_?NumberQ] =  
(model[t0, t1, v0, v1] =  
Interpolation[{{0, 0}, {t0, v0}, {t1, v1}, {tmax, dismax}}, InterpolationOrder→1]); 
splinemod = NonlinearModelFit[full_data, model[t0, t1, v0, v1][t], {t0, t1, v0, v1}, t]; 

Appendix III: Data Fitting for the Spline Model in Excel 

The raw data have been collected in an Excel file. Its sheet “adobebrick” presents them  
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Table 1. Excel Sheet for the linear spline approximation. 

 A B C D 

1 time (day) av. disp. (mm) speed (mm/day) d1 

2 0 0.025  =$M$2*A2 + $M$3 

3 0.0006 0.124 =(B3 − B2)/(A3 − A2) 0.1599 

 E F G H 

1 d2 d3 spline squared residuals 

2 =$O$2*A2 + $O$3 =$Q$2*A2 + $Q$3 
=IF(A2 < $O$6; D2; 

IF(A2 > $O$7; F2; E2)) 
=(B2 − G2)2 

3 −3926.61 19.3965 0.15990 0.001289 

 
in the form time vs. displacement. The sheet “pivot” was automatically generated (pivot 
table in the insert-tab). It computed, for each minute, the average displacements. The 
model calculations are in the sheet “adobebrick calculations” (see Table 1). The para-
meters ki and mi of equation (1) were recorded in cells M2:M3 for line d1, in O2:O3 for 
line d2, and in Q2:Q3 for line d3. From this t0 and t1 were computed in O6:O7 using 
formula (2). To the right, in column P, time in days was expressed as time in minutes 
and below, in row 8, the duration of collapse was computed. 

For the computation of the linear spline function, the sheet “pivot” was copied into 
columns A (time in days) and B (average displacement in mm) of the calculation sheet. 
Column C computes the speed of displacement, the linear functions of formula (1) are 
computed in columns D to F. From these functions the spline function is pieced to-
gether in column G. Column H assesses the fit of this function to the data. Next, in or-
der to apply the method of least squares, in cell I1 the sum of squared residuals is com-
puted as =SUM(H:H). Using the data-tab, the SOLVER add-in is called up and the fol-
lowing optimization model is defined: Minimize cell I1, using as variables cells $M$2; 
$M$3; $O$2; $O$3; $Q$2; $Q$3, the parameters used in formula (1), and use the non-
linear GRG-solver for this task (EXCEL 2010 and later; in earlier versions just the non-
linear solver). The SOLVER now determines parameters in formula (1) that minimize 
the sum of squared residuals. 

This EXCEL model insofar simplified the linear spline model, as the condition of 
formula (3) has not been used, because this condition did not have a significant effect 
on the estimates for t0 and t1. However, the definition of the SOLVER set-up can be eas-
ily modified to consider formula (3), too. 
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