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Abstract 
 
This paper examines computational merits provided by assumptions made in scientific modeling, especially 
regression, by trying to exhibit abstractly a model deprived of those assumptions. It shows that the principle 
of Occam’s Razor has been mistakenly used as model developers’ justification to keep scientific models “as 
simple as possible”, and that the cost of inflating computability is truncation of model robustness. 
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1. Introduction 
 

It is impossible to prove right of things without assuming 
some others true. But more assumptions mean necessa- 
rily more chinks in a certain theory for it might collapse 
as long as any one of the assumptions is demonstrated 
invalid. In this paper I attempt to examine computational 
merits provided by assumptions made in scientific mode- 
ling, especially regression, by trying to exhibit abstractly 
a model deprived of those assumptions. It is shown that 
the principle of Occam’s Razor has been mistakenly used 
as model developers’ justification to keep scientific 
models “as simple as possible”, and that the cost of in- 
flating computability is truncation of model robustness. 

The rest of the paper is organized as follows: Part I 
discussed basically the validity and applicability of sci- 
entific modeling and particularly, the method of regres- 
sion. Part II poses criticism of simple regression theory 
insofar as its understanding of randomness. Part III 
shows naïve inductive generalization in regression model 
and proposes a de-generalized model to manifest power 
of assumptions. The last section of Part III is a brief con-
clusion. 
 
2. Validity and Applicability of Scientific 

Modeling 
 
2.1. From Observations to Theories 
 
Popper [1], [2] wrote in his criticism of “anti-naturalis- 
tic” doctrines of historicists that theories manifest prio- 
rity to observations and experiments for it is theories that 
make empirical or experimental evidences relevant. He 

criticized the method of generalization in its presuming 
science to be developed through deriving theories from 
observations. However, Popper does not deny the coexi- 
stence of theorization and observation; in other words, 
the criticism is an argument for philosophical order, that 
theorization calls for observing rather than the reverse, 
and it does not suggest exclusiveness between the former 
and the latter. As a matter of fact, it is unobjectionable 
that a theory is not validated before tested by observation 
and experiment, and observations and results of experi- 
ments would be of greater value when serving as evi- 
dences of a certain theory. 

It seems, however, difficult to discern philosophical 
order of observation and theories in scientific modeling. 
It can be that the practice of modeling, a sole part of 
theorization, is inspired by an unintended observation 
from nature or laboratory. History is rich in examples of 
serendipitous findings resulting in scientific break-th- 
rough. But also common are the cases where data are 
collected with respect to what is required in testing a 
priori, or a supposed model usually with parameters to 
be estimated. And one should also realize that, more of- 
ten than not, theorization and observation are prompted 
reflexively. We might get intrigued by a certain pheno- 
menon, which evolved into our raw interests in modeling, 
thus explaining, it, but the very impetus wouldn’t have 
been there if it was not for data we randomly observed in 
the first place. On top of that is the polemic of validity of 
mathematical modeling, which in language of mathe- 
matics attempts to explain and predict behaviors of natu- 
ral or human systems of various, if not all, kinds. Albeit 
a crowning field that compels academic contributions, 
mathematical modeling and its derivative braches, nota- 
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bly financial modeling, have received wide suspicions 
for its vulnerability towards the tests of reality, especially 
through crises. And it is even pointed out by Taleb [3] a 
hubristic side effects, or a Procrustes problem, of mod- 
ern civilization that reality is ludicrously blamed for not 
fitting scientific models. 

When a method errs, it is either because it was born 
logically erroneous, i.e. in our case the mistaken philo- 
sophical order concerning theories and observations, or 
it is, in the sense of methodology, designed inappropri- 
ately. We have shown so far that it would be more or less 
futile to rigidly make clear the order of theories and ob- 
servation, and this essay centers therefore its considera- 
tions solely on the methodology. I shall speak of the re- 
gression model, which is to be the subject of this essay. 
But before that I am obliged to give a word on a fre- 
quently referred principle in scientific modeling termed 
Occam’s razor. 

 
2.2. Occam’s Razor 
 
The principle of William of Ockham suggests that enti- 
ties must not be multiplied beyond necessities. And it 
calls for competing theories and hypotheses that pre- 
sumed the least. The metaphor “razor” stems from its 
core argument of shaving away redundant assumptions. 
This doctrine of simplifying things as densely as possible 
seems to touch well upon the idea of scientific modeling 
of any kind, but willy-nilly interpreted as we should keep 
models as simple as possible. As a matter of fact, it has 
even been misleadingly used as justification for many 
otherwise obviously invalid assumptions made only for 
computational or analytical merits. For example, econo- 
metricians believe their theories to have been endorsed 
by the Razor in keeping regression models as simple as 
they could be, so their weapons of calculus and statistical 
inference could enter the picture. Gujarati and Porter [4] 
suggested further that it is in the light of Occam’s Razor 
that combined impact on explained variable of factors 
other than the assumed explanatory variable(s) can be 
viewed non-systemic. And it is under this critical assum- 
ption that the error term   is introduced as normally 
distributed so that we gain the power to deal with the 
unobservable. I will explore the chinks in basic idea of 
oversimplified regression model although it should be 
recognized that my analysis does not indicate embrace of 
model complexity. Rather, it aims at showing what has 
been provided by assumptions in regressive modeling, 
and the method employed in generalization and induc- 
tion.  

 
2.3. Regression Analysis of Nature and Society 
 
It seemed once reasonable, and it still is, believed some- 

one, to nurse the belief that there should be a fine line 
between applicability of mathematical and physical theo- 
ries in natural and human phenomena. It was argued that 
what functioned well in natural science are buttressed in 
their validity by the relatively stable properties of natural 
objects in their reaction to the changes, say, of circum- 
stances, while human beings, both from collective and 
individual perspective, manifest nature of volatility and 
autocorrelation, in the sense of, for instance, herd be- 
havior, toward daily encountering.  

Plausible as it may sound, drawing a line between 
natural and human phenomena seems all the more a Uto- 
pian proposal, perhaps thanks to social dynamic, for 
there emerged institutions who play irregularly in do- 
mains not able to be identified clearly “natural” or “hu- 
man”. For example, a market player who invested his 
funds in SPDR Gold Trust would find himself involved 
in social events, e.g. fluctuation of dollar, change in in- 
terest rate, other market players’ psychology, potential 
demand for the bullion from developing economies, as 
well as influenced by natural factors, e.g. change of sup- 
plies of gold and other precious metal, momentary col- 
lapse of confidence incurred by certain natural catastro- 
phes. It seems therefore impossible to distinguish appli- 
cability of theories in nature and in society where, espe- 
cially in financial markets, natural and human forces that 
lead to occurrences of certain events are themselves in- 
separable. One of the major characteristics of the method 
of regression, and also one of the reasons it is chosen as 
representative of scientific modeling, is that it attempts to 
reveal impact that factors cast upon other factors. In a 
simple model of regression, an explanatory variable iX  
is said to be responsible for behavior of explained vari- 
able. But it is usually overlooked, especially in a system 
of complexity, that iX  would itself be correlated with 
other factors so that they would cast a combined influ- 
ence on the explained variable. That is, alternatively, the 
explanatory variable is a variable conditional on other 
correlated ones expressed probably as i jX jX x .  

It should be noted that epistemological problem of 
method of regression does not confine to its applicability. 
For example, Robinson [5], Goodman [6], and Lichtman 
[7] examined the collective-to-individual “cross-level” 
inference of regression in sociological theories. Kydland 
and Prescott [8], Smets and Wouters [9], Sims [10] con- 
tributed to richer interpretations of non-experimental in- 
ferences of method of econometrics. 

 
3. Error Term the Pseudo-Randomness 

 
3.1. Criticism of Error Term of Simple 

Regression Model 
 
According to the simple regression model, the explained 
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variable  is expressed as a linear function of ex-
planatory 

Y
X  by 

0 1Y b b X                      (1) 

where 0  is the intercept parameter and 1  the slope 
parameter measuring sensitiveness of behavior of Y  
with accordance to that of 

b b

X .   is the error term re-
sponsible for any factors other than X  that affects Y  
under the assumption that   is normally distributed 
with mean zero or 

  0E                          (2) 

In practice the only work for the model assumer is to 
have the two parameters well estimated, under observa-
tions of , with mathematical technique termed 
Least Squares (LS), given by the equations 
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Subtract the error  , which is a stochastic term, from 
equation (1) we get the regression function geometrically 
sketched as a line shaped with intercept 0  and slope 

1 . From equation (3) and (4) of Least Squares estimator 
technique it is shown that value of  and 1b  are de-
termined exclusively by observations i . In other 
words, shape of the regression function is determined by 
data . But one should be 
aware of the fact that estimates of intercept and slope 
parameters are tenable only for a given set of data. That 
is, so long as another arbitrary observation is added to 
the initial data, computational values of 0b  and 1  
should be revised to what is derived by equation (3) and 
(4) with  substituted by 

b

 ,iY X

b

0b

, iX



  1 1 1 1, , , ,i iY X Y X Y X

   1 1 1 1, , , , ,Y X Y X Y
     

 , ,

b

 i 
 1 1 1 1 1 1i , and they are, 

except for some rare cases, very unlikely to assume the 
values they used to do.  

, , , , , ,i i iY X X Y , Y , XY X

I suggest what this means to the method of regression 
is ironical because a regression model is supposed to 
reflect the relationship between behaviors of explanatory 
and explained variables by means of determining 0b  
and 1 . However, analysis above has just shown that the 
shape of the regression function is determined not by the 
true bond between  and 

b

Y X , but by the availability of 
data. In real studies, however, we are not always confi- 
dent about neither reliability nor completeness of the 

data we obtain. 
We may also look at what is said about the error term 

 . It is also called “disturbance” of regression for it at-
tempts to explain the non-systemic deviation of data 
from the regression line. But this terminology seems to 
contradict the definition, and I would attribute this error 
to the confounded understanding of concepts of func-
tional-relationship model and regression model. A func-
tional-relationship model is buttressed usually by axioms 
and ironclad theorems, whereas a regression model is 
backed by a theory far from being indubitably proved. 
Consider modeling the area of a given circle by 

 2
πS R                (5) 

where  denotes the area of the circle,  is the ob- 
served radius and 

S R
  the non-systemic error incurred by 

minor impacts of other factors like temperature and 
gauging error. In a functional-relationship model as this, 
the error term is justified to be termed “disturbance” for 
factors other than observed radius is proved negligibly 
weak in affecting the area. Yet when we think of a re- 
gression model that regresses height against weight of an 
individual, it is insecure to assert variables other than 
weight are of minor significance for unlike equation (5), 
functional-relationship between height and weight of 
human beings is far from a rigorously proved theorem.  

Another tricky argument for normality of the error 
term is given by statistical advantage of the central limit 
theorem. Because there are too many factors affecting 
the explained variable, their mean impact is then accord- 
ing to central limit theorem asymptocally normally dis- 
tributed. This is a misleading conclusion for first, the 
theorem can be proved tenable by using moment gene- 
rating technique only for large number, but one in de- 
veloping a regression model is not bestowed with the 
priori of exactly how much factors other than the arbi- 
trarily assumed independent variable are affecting the 
dependent variable (otherwise those influences would be 
incorporated into the model if one attempts to keep the 
model reasonable and efficient), thus it is unjustifiable to 
assert other factors to be “too many”. Second, central 
limit theorem is developed upon a sheer probabilistic and 
numerical premise. Random variables, whatever distri- 
bution they have, are of no superior significance to each 
other. In a large size sample composed of random vari- 
ables of various distributions, one with normal distribu- 
tion is of no greater impact than one with gamma. Cen-
tral limit theorem in this sense is not significance- 
weighted. This is remarkably untrue for regression model 
in that real life factors are always in different superiority 
in explaining a certain end. For example, the depressive 
impact on stock prices of a natural disaster in the short 
run, we learned from history, is usually more eminent 
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than that of a raised interest rate. In fact, the assumption 
of the error term given by equation (2), I believe, seems 
more like representative of a common belief in mean 
reversal, or embrace of Aristotelian natural places, that 
data, for the lone run, though deviate from the regression 
line, always show the “natural tendency” to return to 
normal.  

Besides, from a behavioral aspect, people’s under- 
standing of error term, I believe, has been more or less 
manipulated by its denotation. Error term and regression 
residual, estimator of error term, are denoted either i , 

i , or i , letters of minutest size that could ever be 
found, and small in size is inclined to be heuristically 
interpreted as minor in significance, at least inferior to 
variables expressed in capital letters  and 

e u

Y X . I doubt 
that an equation of  

0 1Y b b X U    

merely with  substituted by a capital U  would en- 
courage more serious considerations on the error term, 
ludicrous as it might sound. 

u

 
3.2. Err Function 

 
It must be admitted that if we deny the normality of the 
error term, given the hitherto analysis, we lose the com- 
putational merits brought about by such approach. This 
section is to show abstractly the difficulty in revising the 
regression model entailed by “shaving off” the invalid 
assumptions about   and thus at the same time to re- 
veal the power of these assumptions. 

I have shown in the previous section that error of re- 
gression model comes from first, the inaccuracy and in- 
completeness of data, and second, other but not assumed 
as explanatory factor(s) that influence the dependent 
variable, both of which systemic. Error of first kind 
could be measured by a degree of unavailability of data 
on presumed dependent and independent variables, de- 
noted  , as measuring systemic error, e.g. data manipu- 
lation and intransparency, in data fetching. While the se- 
cond kind of error is expressed as a function of non-ex- 
planatory factor(s). Define an Err element and plug it 
into a simple regression model substituting error term    

 0 1 1 , 1; j jY b b X Err X         (6) 

in which   is called the unavailability strength of data 
set ,  1i,iY X jX  are responsible factors that are not 
presumed by model developer as explanatory variables, 
and  Err   is a function of jX  with parameter  .  

Finitude of data, it shall be pointed out, must be ex- 
amined before model (6) can be generalized into a mul- 
tivariate version. However, regression model since in- 
vented has been built upon a stationary premise that 
technically it focuses on explaining relationship of ex- 
plained and explanatory factors on the time point when 

the data is fetched. From a stationary point of view, data 
is hardly infinite. Hence intuitively value of   would 
not be infinity and so is the case for numbers of factors 

jX  that constitute second kind of error of the model. 
But this is would be a blunder if we assume a dynamic 
perspective, for not only there appear new data that was 
not available and factors that did not impact explained 
variable yesterday, but also there factors used to have a 
voice in determining Y  might today lose their forces 
and should be eradicated from the model.  

Based on the stationary premise of regression model, 
we write model (6) into a multivariate version 

 0
1

;
n

C
i i i

i

Y b b X Err X


           (7) 

where  C
iX  is the complement of  iX  under the 

assumption of finite factors responsible for Y . Now 
other than estimating parameters 0 1 , one needs 
an estimator of 

, , , nbb b
 , the unavailability strength. It has 

been shown that  , measure of the unavailability, is 
entailed systematically by imperfect data, thus it would 
be fallacious to simply resort it to randomness, although 
it seems at the first glance reasonable to do so. But to 
reject sacrificing model robustness for solvability raise, 
as is done by the common wisdom to stamp a normal 
distribution on disturbance, would be costing because 
paradoxically to estimate   is to estimate how much 
you don’t know, which seems to be epistemologically 
impossible.  

Alternatively, we may decompose the unavailability 
strength into what it aims to express, namely the imper- 
fect nature of data. Model (7) is then transformed into 

    0
1

, ;C C

n
C

i i ii i
i

Y b b X Err y x X


      (8) 

In model (8), strength of data unavailability   is sub-
stituted by set  ,C Ci

y x
i

 which stands for complement 
of data sets  ,i iY X , still assuming finite data source. 
This is the basic idea of developing robust regression 
model which values significance of model error as much 
as of presumed dependent and independent variables. 
The model separates itself into the observable and the 
unobserved, or the Err part. However, it will be further 
shown in the subsequent sections that even equation (8) 
is a somewhat fragile regression model due to mistakable 
generalization and induction. 

 
4. Naïve Inductive Generalization & A 

De-Generalized Form of Regression 
Model 
 

4.1. The Assumption of Addition 
 
Return to Occam’s Razor discussed earlier; recall that it 
calls for assumption austerity but, I claimed, only to be 
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falsely interpreted as “keep things as simple as possible”. 
This can be seen in, for example, the very common prac-
tice that equates “and” to “add”. In regressive modeling, 
if behavior of 1X  and 2X  are believed to be responsi-
ble for change in , then it is speculated that   Y

   1 1 2 2Y f X f X           (9) 

Computational benefits allowed by addition are re- 
lentless. For example, one is free of the concern of com- 
mutativity that may otherwise engrained in exponentia- 
tion of model (9) for        1 1 2 2 2 2 1 1f X f X f X f X    

while  does not necessarily equate    2 2

1 1

f X
f X

   1 1

2 2

f X
f X . To put it differently, one does not, thanks 

to commuativity of addition, need to worry about the 
order in which one arranges variables in his model. This 
assumption of addition, as is illustrated, is taken as the 
core intuitive knowledge of regression as well as a great 
many other scientific models. It is consistent with the 
misunderstood principle of the razor insofar as it man-
ages to “keep regression as simple as possible” in the 
sense of mathematical easiness, although admittedly it 
does circumvent unnecessary errors, in our case of (9), 
that might be given rise by other mathematical opera-
tions, for example, multiplication. If model (9) is alterna-
tively speculated as  

   1 1 2 2Y f X f X           (10) 

then in a case where negative impact by both indepen- 
dent variables 1X  and 2X  jointing into a magnified 
positive impact upon , then it would be a major mis- 
take. 

Y

There are notwithstanding other operations that may 
under specific problems superior than addition. The pre- 
vious mentioned example of  could have 
been model of better realistic merit in modeling problem 
of influence of interest rate and catastrophe events upon 
stock market indices for taking chronological fact into 
account. One should also be aware that operations that 
might fit into a situation should not confine to those al-
ready in existence. Or, it could be not only unary, binary, 
and functional operations, but also algebraic method that 
is not yet invented but might come into exist, let’s ab-
stractly denote it “ ”, in the future.  

   2 2

1 1

f X
f X

21 ?input input
 

4.2. De-Generalized Regression Model 
 
It is readily seen that the generalization of simple regres-
sion model 0 1 1Y b b X     to its multivariate version 

0 1 1 2 2 n nY b b X b X b X          (11) 

is a progress of naïve induction under the unjustified 
assumption of addition. Problems with this inductive 
generalization, as is illustrated throughout this paper, are 
first, a mistakable approach of cowardly resorting lack of 

knowledge to randomness; second, an overlook of a pre-
sumed major assumption of taking a mathematical op-
eration for granted. To show ultimately the power of 
these assumptions, I shall try to propose a rough idea of 
what a robust model immune to naïve inductive gener-
alization looks like. 

For our analysis does not confine to regression model 
linear in parameter, it is preferable to present parameters 
as functions  i if b . But due to clarification of denota-
tion, we shall distinguish function of parameter and 
function of variable so that iX  in the model appears to 
be  i iF X , hence we write 
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where  = explained variable, Y

1, , nX X  = assumed explanatory variables, 
the question mark    = the mathematical op-

eration, invented or uninvented, before parameter 
?i p

thi

 i v  = the mathematical operation, invented or 
uninvented, before variable 

? thi

0  at the beginning of the expression is installed to 
avoid the paradox that the equation itself is begin with a 
“

?

0  ” 
 ,C Cy x

i i
 = complementary of obtained data, stand-

ing for incompleteness, given finitude of data 
 C

iX  = complementary of  1, , nX X , other 
variables that have explanatory force but not presumed 
as explanatory variables in the regression model, given 
finitude of variables 

At the cost of suffering from grand vagueness and 
major decrease in computational convenience, Model (12) 
eradicates a) naïvete of assuming addition, b) two kinds 
of error mentioned in Part II on the error term. However, 
careful inspection would make you find that model (12) 
simply replace “  ” with “  i p ” and “ ” with “  i v ” in 
expression (11), thus although it no longer assumes sim-
ple operation of addition and multiplication of elements, 
it is still not free from the assumption of addition unless 
it takes into account impact of a) autocorrelation of vari-
ables, and b) chronological order of variables, or in its 
essence, significance weight of variables. 

? ?

Improvement a) could be achieved by condition a vari-
able upon precedent one(s), rewrite equation (12) into 

           
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(13) 

Copyright © 2011 SciRes.                                                                                  ME 



Y. C. ZOU 519 
 

However, to assume model (13) it is necessary to as-
sume a priori of i  (unlike distribution of b  i iF X , 
which there is possibility to be obtained by, for example, 
autoregressive technique). This can be avoided by in-
corporate i  into operation that is able to take into ac-
count parametrical information of  so that equation 
(13) is transformed into 

b

1ib 

   


    

0 1 2 31 1 2 2 1 1

1 1 1 1

? ? ? ?

? , ,

, ;

n

C C

b b b b

b n n n n n

C
ii i

Y F X F X X x

F X X x X x

Err y x X

 



 



  ?


   (14) 

Here the original operation 0  is dropped for the equ- 
ation now starts alternatively with a operation that 
concerns the first parameter.  

?

0
?b

Some may argue that improvement b) is unnecessary 
for significance of impact of different explanatory vari-
ables would be well weighted by parameters they corre-
spond to; for example, in a simple regression model of 

1 215 0.3 27Y X X     , 2X  is weighted magnifi-
cently more than 1X  in the sense that slope parameter 
of 2X  is of excessively greater value than that of 1X . 
This line of reasoning ignores the fact that it is the es-
sence of the operation of addition, not the magnitude of 
parameters, that weights uniformly every one of its in-
puts. In the arbitrary simple regression model shown 
above, thanks to the method of addition, elements 10.3X , 

227X , and the disturbance   are weighted averagely. 
Therefore, we shall expect elimination of uniformity of 
weights to be ability of operation rather than parameters. 
Note that any effort to attempt to incorporate equivalent 
of Equation (8)  

     0
1

, ;C C

n
C

ii i
i

Err y x X Y b b X


   i i



   (8)’ 

into Equation (14) as a rough method of decomposing 
would be futile unless, when it comes to estimate pa-
rameter vector  0 1 , one employs technique 
other than least squares which is based on a bunch of 
assumptions of error term 

, , , nb b b

 . 
 

4.3. Discussion  
 

Models (13) and (14) that of murderous vagueness and 
complex, partly due to uncertain mathematical operations, 
reveal in comparison to Equation (11) how much has 
been assumed by simple regression theory. First, regres- 
sion model cowardly resorts lack of knowledge to nor- 
mality for computational merits. This pseudo-random- 
ness embraces, I believe, Aristotelian doctrine of natural 
places, or mean reversal, and could scarcely be backed 
by central limit theorem. I have shown that the assump- 
tion of normality of the disturbance may also stem from 

confusing functional-relationship model with regression 
model, the former backed by indubitable theorems and 
the letter by nothing but arbitrary speculation. Second, 
the idea of inductive generalization has been core of re- 
gression modeling. It assumes the mathematical opera- 
tion of adding elements up without testing validity of 
dumping other methods, and most critically, it overlooks 
the possibility of invention of superior operations in the 
future. Complexity of Equation (13) and (14) is evidence 
for convenience provided by another assumption of re- 
gression model that explanatory variables are uncorre- 
lated and chronologically independent.  

 
5. Conclusions 

 
It is now to realize that basic idea of modeling has actu- 
ally run counter to what is suggested by Occam’s Razor 
because in “keeping models as simple as possible” one 
needs to assume the most. It is only by truncating ro- 
bustness of theories that they earn higher computability, 
and it is for their possibility of materialization that theo- 
ries get publication. The question is, shall we criticize a 
method for its fragility if there is so far no better one 
available? One way of saving the dispute is to refuse to 
make use of any naïve approach in the first place, though 
naïvete usually is not detected until hindsight. 
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