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Abstract 
This work seeks to describe intra-solution particle movement system. It makes use of 
data obtained from simulations of patients on efavirenz. A system of ordinary diffe-
rential equations is used to model movement state at some particular concentration. 
The movement states’ description is found for the primary and secondary level. The 
primary system is found to be predominantly an unstable system while the secondary 
system is stable. This is derived from the state of dynamic eigenvalues associated with 
the system. The saturated solution-particle is projected to be stable both for the pri-
mary potential and secondary state. A volume conserving linear system has been 
suggested to describe the dynamical state of movement of a solution particle. 
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1. Introduction 

The intra-solution-particle movement system is described in this work. A system which 
consists of the primary and secondary movement states that is proposed in Nemaura 
(2015) is investigated. Differential Equations are used to describe dynamical systems. 
Most systems are described relative to time [1] [2] [3]. In this work, they are used to 
describe a dynamical system of the state of a solution particle relative to concentration. 

Multiple compartmental modelling finds its use in fields such as Physiologically Based 
Pharmacokinetics, Engineering and Mathematical Biology [1] [3] [4]. Other researchers 
work with constant parameters that are obtained for autonomous linear systems. In this 
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work, a simple system (nonautonomous linear system) whose parameters vary accord-
ing to concentration is considered [5] [6]. The mixing problems have been widely stu-
died by the use of ordinary differential equations [4] [7] [8]. Additionally, some re-
searchers consider probable systems that arise from these mixing problems [7] [8]. This 
work proposes a system of linear ordinary differential equations that potentially govern 
the state of solution particle and shares a relation to the mixing problems. In addition, 
there is consideration of a volume conserving state of a solution particle. The dynamic 
eigenvalues from the corresponding matrix and stability of the concentration varying 
linear systems are proposed. The dynamic eigenvalues have found applications for li-
near time-varying systems [2]. 

This work highlights possible intra-particle movement potential/states inferred to be 
present in the solution particle, at primary and secondary level and attempts to give 
mathematical form as in Nemaura (2015) [9]. It proposes multiple-compartmental 
models, one for the primary level and the other for the secondary level. The resultant 
form gives a general representation of movement within a solution particle. 

2. Methods  

The primary and secondary movement system of projected simulated data from patients 
who had been on efavirenz is used [9]. The software used, were R and Mathematica.  

2.1. The Primary System 

The primary system is a sub-system of the secondary and describes potential. It is pro-
jected to consist of four main movement entities that is convection, saturation, passive 
and advection. The form entity being the advective component [9]. 

2.2. The Primary System of Solution Particle 

A solution particle with concentration (x) is made up of four movement components 
(variables) at primary level C-convective, A-advective, P-Passive, and S-Saturation at 
primary level satisfying  

( ) ( ) ( ) ( ) ,C x S x A x P x= + −                       (1) 

( ) ( ) ( ) ,S x A x P x= + +                       (2) 

where .P P= −   
We analyse the following system of differential equations in order to infer on the over-

all process occuring in describing state of movement in a solution particle (See Figure 1).  

( ) ( ) ( ) ( )3 2 2
d , , ,
d

Å A A
SA AS

S x x S x A h S A P
x

σ µ µ= − + =               (3) 

 

( ) ( ) ( ) ( )( ) ( ) ( )1 12 2
d      , , ,
d

A AA A
SA AS AP PA

A x S x x x A x P q S A P
x

µ µ τ τ= − + + + =3Åσ     (4) 

( ) ( ) ( )1 1
d , , ,
d

A A
AP PA

P x A x P w S A P
x

τ τ= − =                    (5) 

Subject to, 
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Figure 1. A compartmental representation of the model for solution particle movement state 
dynamics at primary level driven by the advective component. It is noted that this representation 
is not necessarily unique for all forms of advective component. 

 

( ) ( ) ( )3 2 2 0,Å A A
SA ASx x xσ µ µ+ + =  

And 

( ) ( )1 1 0,A A
AP PAx xτ τ+ =  

With 1 1 2, , , A A A
SAAP PAτ τ µ 32 , ÅA

ASµ σ ∈  and are the variable parameters. These two condi-
tions allows no net change in the volumetric consituencies of the four movement com-
ponents, where 
σ —single phase third generation solution sub-particle at primary level, form in-

ducing movement interaction with four main movement entities, 
µ —single phase second generation solution sub-particle at primary level with four 

main movement entities, and 
τ —altering phase(s) first generation solution sub-particle at primary level with 

three main movement entities. 
Solving the primary system above (1 - 5) in terms of advective components,  

( )3

d
d ,

1
Å

C
xx
A

σ =
−

 

( )
( ) ( )3 3

2

d
d ,

Å Å

A
SA

Sx x A
xx

S A

σ σ
µ

− −
=

+
 

( )
( ) ( )3 3

2

d
d ,

Å Å

A
AS

S x x S
xx

S A

σ σ
µ

− −
=

+
 

( ) ( )1 1

d
dand .A A

AP PA

P
xx x

A P
τ τ= = −

+
 

2.3. Stability Analysis of the Primary System  

The equlibrium, steady state points are constant solutions, ( ) ( ), S x A x , and ( )P x   
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which satisfy the nonlinear system of equations d d0, 0
d d
S A
x x
= =  and 

d 0.
d
P
x
=  These  

points govern the behaviour of physical models. Thus we obtain ( )* 1A x =  (form po-
tential), ( )* 1S x = −  (space accesory potential), and ( )* 1P x = −  (negative bind-
ing-orientation potential). It is important to note that the convective potential at equi-
librium (primary level) is negative (nullifying/compensating accesory potential). Fur-
thermore, it has the value of −1.   

Local Analysis near Steady-State Points ( )S A P∗ ∗ ∗, ,  

Local analysis is studied near each steady state point ( )* * *, ,S A P . We begin by the fol-
lowing,  

( ) ( ) ( )* ,S x S x xν= +                           (6) 

( ) ( )* ( ) ,A x A x xζ= +                           (7) 

( ) ( ) ( )* ,P x P x xψ= +                          (8) 

where ( )xν , ( )xζ  and ( )xψ  are small.  

( ) ( ) ( ) ( ) ( ) ( )( )* * *d , , ,h h hh S x x A x x P x x
dx S A P
ν ν ζ ψ ν ζ ψ∂ ∂ ∂
= + + + ≈ + +

∂ ∂ ∂
     (9) 

( ) ( ) ( ) ( ) ( ) ( )( )* * *d , , ,
d

q q qq S x x A x x P x x
x S A P
ζ ν ζ ψ ν ζ ψ∂ ∂ ∂
= + + + ≈ + +

∂ ∂ ∂
    (10) 

( ) ( ) ( ) ( ) ( ) ( )( )* * *d , , .
d

w w ww S x x A x x P x x
x S A P
ϕ ν ζ ψ ν ζ ψ∂ ∂ ∂
= + + + ≈ + +

∂ ∂ ∂
    (11) 

The partial derivatives are evaluated at the equilibrium point ( )* * *, ,S A P . The sta-
bility of the steady state point ( )* * *, ,S A P  is investigated by studying the eigenvalues 
of the Jacobian matrix (A matrix of the partial derivatives). The Jacobian matrix for the 
primary system is given by,  

 

3Åσ( )

( )

( )
2 2

1 12 2

1 1

* * *

* * *

, ,

0

, ,      

0

A A
SA AS

A AA A
SA AS AP PA

A A
AP PA

S A P

h h h
S A P
q q qJ S A P
S A P
w w w
S A P

µ µ

µ µ τ τ

τ τ

∂ ∂ ∂ 
   ∂ ∂ ∂ −   ∂ ∂ ∂   = = − + + ∂ ∂ ∂     −∂ ∂ ∂   
 ∂ ∂ ∂ 

 

 (12)

 
 (I)Undisturbed potential ( )0x = , ( )1 12 2 0,  A AA A

SA AS AP PAµ µ τ τ− = = = −  where 
1A

APτ = ∞ . The characteristic equation of J is given by,  

123 0,AA
SA APλ µ τ λ+ =  

Eigenvalues of this system are given by, ( )1 12 20, ,A AA A
SA SAAP APi iµ τ µ τ− . The equilibrium 

point has neutral stability. Thus the primary unique space interacting potential has a 
neutral equilibrium before “disturbances”.  

 (II) Disturbed (dissolving) potential ( )0x > , ( )3 1 12 2, , ,Å A AA A
SA AS AP PAσ µ µ τ τ∈ = −

 
The dynamic eigenvalues follows from the characteristic equation of J given by,  
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( ) ( )1 12 2 2 2 2 23 0,A AA A A A A A
SA SA AS SA SA ASAP APλ µ τ µ µ λ µ τ µ µ+ − − + + =  

which is similar,  

( )12 23 AA A
SA SAAPλ µ τ µ+ + ( )3 3 12 0.Å Å AA

SA APσ λ σ µ τ− =  

Thus the eigenvalues for this system are,  

1 ,
3

M N
N

λ = − +  

*

2 ,
2 6
zM z N

N
λ = −  

And  
*

3 ,
2 6
z M zN

N
λ = −  

where ( )3 12*1 3, 1 3, Å AA
SA APz i z i M µ σ τ= + = − = + , and 

 

( )3 1 1 12 2 2

1
332 327 729     108     

2

Å A A AA A A
SA SA SAAP AP AP

N
σ µ τ µ τ µ τ + + + 

=  
 
 

3Åσ 3Åσ

 

 (III) Saturated potential (  0sx∃ ≠ : ( )3 0Å
sxσ = , ( ) ( )2 2 0A A

SA s AS sx xµ µ− = = ,  
( ) ( )1 1 0A A

s sAP PAx xτ τ= − = ). The characteristic equation is given by,  

3 0.λ =  

2.4. The Secondary System of Solution Particle  

The product of advective primary interaction potential with its unique space (the relative 
uptake) results in a secondary advective movement system [9]. A solution particle with 
concentration (x) is made up of three movement components (variables) at secondary level 

ruC —convective, ruA —advective, and ruS —Saturation at secondary level satisfying  

( ) ( ) ( ).ru ru ruC x S x A x= +                      (13) 

This is represented by the following constituent system (See Figure 2),  

( ) ( ) ( ) ( ) ( ) ( ) ( )3 2 2
d

, ,
d

ruru ru

ru ru ru ru

AÅ Aru
ru ru ru ruS A A S

S
x x S x A f S A

x
σ µ µ= − + =       (14) 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )2 3 2
d

, ,
d

rururu

ru ru ru ru

AÅAru
ru ru ru ruS A A S

A
x S x x A g S A

x
µ σ µ= − + =      (15) 

Subject to,  

( ) ( ) ( ) ( ) ( )3 2 2( ) 0,ruru ru

ru ru ru ru

AÅ A
S A A Sx x xσ µ µ+ + =  

With ( ) ( ) ( )3 2 2, , ruru ru

ru ru ru ru

AÅ A
S A A Sσ µ µ ∈  (variable parameters). The condition allows no net 

change in the volumetric consituents of the movement components. Where, 

ruσ —single phase third generation solution sub-particle at secondary level, form 
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Figure 2. A compartmental representation of the model for solution particle movement state 
dynamics at secondary level driven by the advective component. 

 
inducing movement interaction with four main movement entities, 

ruµ —single phase second generation solution sub-particle at secondary level with 
four main movement entities. 

Solving the secondary system above (13) - (15),  

( ) ( )3

d
d ,

1
ru

ru
Å

ru

C
xx
A

σ =
−

 

( ) ( )
( ) ( ) ( )3 3

2

d( )
d ,

ru ru

ru

ru ru

Å Å ru
ruA

S A
ru ru

Sx x A
xx

S A

σ σ
µ

− −
=

+
 

( ) ( )
( ) ( ) ( ) ( )3 3

2

d
dand .

ru ru

ru

ru ru

Å Åru
ruA

A S
ru ru

S x x S
xx

S A

σ σ
µ

− −
=

+
 

2.5. Stability Analysis of the Secondary System  

The equlibrium, steady state points are constant solutions, ( )ruS x  and ( )ruA x , which  

satisfy the nonlinear system of equations d
0

d
ruS
x

=  and d
0

d
ruA
x

= . It is shown that this  

system is orbitally stable, which signifies that the solutions remain near the equilibrium 
point.  

Local Analysis near Steady-State Points ( ),ru ruS A∗ ∗  

Considering,  

d
0,

d
ruS
x

=  

d
0.

d
ruA
x

=  

Thus we obtain, ( )* 1ruA x =  (form state), and ( )
( ) ( ) ( ) ( )

( ) ( )

3 2

2

* 1
ruru

ru ru

ru

ru ru

AÅ
A S

ru A
S A

x x
S x

x

σ µ

µ

+
= = −   
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(space accessory state). It is important to note that the convective movement at sec-
ondary level is a stable state which is 0 (nullifying/stabilising accessory state). We study 
local analysis near each steady state point ( )* *,ru ruS A  for Equations (14) & (15). We be-
gin by the following,  

( ) ( ) ( )* ,ru ruS x S x x= +                         (16) 

( ) ( ) ( )* ,ru ruA x A x xη= +                        (17) 

where ( )x  and ( )xη  are small. Next we substitute Equations (16) & (17) into (18) & 
(19).  

( ) ( ) ( ) ( )( )* *d , ,
d ru ru

ru ru

f ff S x x A x x
x S A

η η∂ ∂
= + + ≈ +

∂ ∂


             (18) 

( ) ( ) ( ) ( )( )* *d , .
d ru ru

ru ru

g gg S x x A x x
x S A
η η η∂ ∂
= + + ≈ +

∂ ∂
             (19) 

The Jacobian matrix for the secondary system is given by,  

( )

( )

( ) ( )

( ) ( ) ( )( )
2 2

2 3 2

* *

* *

,

, .
ruru

ru ru ru ru

rururu

ru ru ru ru

ru ru

AA
S A A Sru ru

ru ru AÅA
S A A S

ru ru S A

f f
S A

J S A
g g

S A

µ µ

µ σ µ

∂ ∂     −∂ ∂   = =   ∂ ∂ − +    ∂ ∂ 

      (20) 

The eigenvalues 1λ  and 2λ  for this system are given by ( ) ( )3 2ru ru

ru ru

Å A
S Ai σ µ−  and 

( ) ( )3 2ru ru

ru ru

Å A
S Ai σ µ  respectively. The secondary system gives a form of neutral stability.  

3. Results 
3.1. Numerical Projections of Sub-Particle and Particle of Solution for  

the Primary System 

The graphical representation of the advective components , ,τ µ σ  (sub-systems) are 
shown (see Figure 3). The solution is developed from the primary system equation in 
Nemaura (2015) and the system (1 - 5).  

The primary system and sub-system equations and estimated parameters are given 
(See Equations (21) - (27) and Table 1). 

Primary system equation,  

( )
( )

( )

( )

( )

632
1 5

4

1 e .

S x
A x

xA

C x
P x

x
x x

x x
θθθ

θ θ
θ

Σ

−

ΣΣ
−Σ Σ

Σ

 
Σ = + + + 

+ 









                (21) 

Primary σ —sub-particle equation given by,  

( ) ( )3 62 3
1 5

4

e 1 e .Å xx x
x x

x
σσ

σ
θθσ σ

σ

θ
σ θ θ

θ
−−= − + +

+
               (22) 

Primary ASµ —sub-particle equation given by,  

( ) ( ) 62 2 3
1 5

4

e 1 e .
AS ASAS

AS AS
AS

xxA
AS

x
x x

x

µµ µ
θθµ µ

µ

θ
µ θ θ

θ
−−= − + +

+
           (23) 
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Figure 3. (a) The intra-advective movement potential of the primary sub-system from A to 
P  against concentration. Note the intra-advective movement potential of the primary sub- 

system from P  to A against concentration is equivalent to 2A
APτ− . (b) The intra-advective 

movement potential of the primary sub-system from A to S against concentration. (c) The 
intra-advective movement potential of the primary sub-system from S to A against concen-
tration. (d) The intra-advective movement potential of the primary sub-system against con-
centration. 

 
Table 1. Parameter estimates in modelling movement rates associated with the primary system. 

Advective Parameters Estimate Std Error t value ( )Pr t>   

AΣ  

1θ
Σ   

2θ
Σ   

3θ
Σ   

4θ
Σ   

5θ
Σ   

6θ
Σ  

0.0034 
0.8808 

−0.0561 
7.4315 
0.0089 
0.0598 

0.0002  

0.0874  

0.0057  

0.6922  

0.0003  

0.0015 

14.010 

10.076  

−9.764  

10.737  

32.289  

39.930  

132.43 10−×   
102.75 10−×   
105.18 10−×   
117.49 10−×   

162 10−< ×   
162 10−< ×  

3Åσ  

1
σθ   

2
σθ   

3
σθ   

4
σθ   

5
σθ   

6
σθ  

0.0457  

1.4843  

0.0452  

0.2333(Fix)  

0.0083  

0.3241  

 0.0145  

0.2279  

0.0147  

−  
0.0020  

0.0360  

3.146  

6.512  

3.073  

−  
4.092  

9.011  

0.0032  
71.01 10−×   

0.0039  

−  
0.0002  

114.48 10−×   

2A
ASµ  

1
ASµθ   

2
ASµθ   

3
ASµθ   

4
ASµθ   

5
ASµθ   

6
ASµθ   

−0.1852  

0.3691  

−0.2551  

0.2333  

0.0072  

0.0254  

0.0047  

0.0131  

0.0064  

0.0133  

0.0004  

0.0007  

−39.74  

28.19  

−39.84  

17.49  

17.74  

37.56  

162 10−< ×   
162 10−< ×   
162 10−< ×   
162 10−< ×   
162 10−< ×   
162 10−< ×   
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Continued 

2A
SAµ  

1
SAµθ   

2
SAµθ   

3
SAµθ   

4
SAµθ   

5
SAµθ   

6
SAµθ   

0.1803  

0.3549  

0.2393  

0.2333(Fix)  

−0.0061  

0.0242  

0.0047  

0.0170  

0.0028  

−  
0.0006  

0.0014  

38.489  

20.869  

84.021  

−  
−9.459  

17.326  

162 10−< ×   
162 10−< ×   
162 10−< ×   

−  
111.21 10−×   

162 10−< ×   

1

,
A

APα
τ  

( )

1
AP
ατθ   
( )

2
AP
ατθ   
( )

3
AP
ατθ   

1.6961 

3.1504 

3.8206  

0.0036  

0.002  

0.0954  

471.62  

1599.33  

40.04  

162 10−< ×   
162 10−< ×   
162 10−< ×   

1

,
A

APβ
τ  

( )

1
AP
βτθ   
( )

2
AP
βτθ   

32.32 10−×   
29.477 10−×  

111.313 10−×   
44.514 10−×   

81.7664 10×   
210  

162 10−< ×   
162 10−< ×   

1

,
A

APγ
τ  

( )

1
AP
γτθ   
( )

2
AP
γτθ   

32.33 10−− ×   
28.529 10−×  

74.067 10−×   
48.458 10−×   

−572.9  

100.8  
151.91 10−×   
116.41 10−×   

 
Primary APτ —sub-particle equation given by,  

( ) ( ) 62 2 3
1 5

4

e 1 e .
SA SASA

SA SA
SA

xxA
SA

x
x x

x

µµ µ
θθµ µ

µ

θ
µ θ θ

θ
−−= − + +

+
           (24) 

Primary APτ —sub-particle ( )α  equation given by,  

( )
( )

( )

( ) ( )

1 3

2

1
1, e ,      0 ,

AP AP
AP

AP

xA
nAP x x x

x

α ατα

ατ

τ
τ θ

α
θ

θ
τ θ −= + < ≤               (25) 

where 
d: 0.
d

n

n
x x

x
x
τ

=

=  

Primary APτ —sub-particle ( )β  equation given by,  

( )
( )

( ) ( )

1 21
1, e ,    .

AP AP
AP xA

n mAP
m

x x x x
x x

β βτβτ
τ θ

β

θ
τ θ −= + ≤ <

−
             (26) 

Primary APτ —sub-particle ( )γ  equation given by,  

( )
( ) ( )

( )
1 21

1, e ,    .
AP AP

AP xA
mAP

m

x x x
x x

γ γτγ
τ

τ θ
γ

θ
τ θ −= − >

−
               (27) 

where 29.6184242885mx =  is the point when the system is projected to show consi-
derable loss of homogeneity-potential. 

Furthermore, .PA APτ τ= −  

3.2. Numerical Projections of Sub-Particle and Particle of Solution  
Movement for the Secondary System  

The graphical representation of the advective components ,µ σ  (sub-systems) are 
shown (see Figure 4). The solution is developed from the secondary system equation in 
Nemaura (2015) and the system (13 - 15). 
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Figure 4. (a) The advective intra-secondary sub-system modelling the movement from ruA  to 

ruS  against concentration. (b) The advective intra-secondary sub-system modelling the move-

ment from ruS  to ruA  against concentration. (c) The advective intra-secondary sub-system 
which initiates the process against concentration. 

 
The secondary system and sub-system equations and estimated parameters are given 

(See Equations (28) - (31) and Table 2). Secondary system equation is given by,  

( )
( )

( )

( )

41
3

2

e .

ruru

ru

ru

C xA x

A x

S x

xx x
x

ϕϕ
ϕ

ϕ
Σ

Σ
−Σ

Σ

−

Σ = +
+







                     (28) 

Secondary σ —sub-particle equation given by,  

( ) ( ) ( )3 3 74
1 2 6

5

e 1 e .ruÅ x xxx x
x

σ σ
σ

ϕ ϕσ σ σ
σ

ϕ
σ ϕ ϕ ϕ

ϕ
− −= − + +

+
           (29) 

Secondary 
ru ruA Sµ —sub-particle equation given by,  

( ) ( )2 632
1 5

4

1 e .
A SA S ru ruru ru A Sru ruru A S A Sru ru ru ru

ru ru A Sru ru

A x
A S

x
x x

x x

µµµ
µ µ ϕ

µ

ϕϕ
µ ϕ ϕ

ϕ
− 

= + + +   + 
     (30) 

Secondary 
ru ruS Aµ —sub-particle equation given by,  

( ) ( )2 632
1 5

4

1 e .
S AS A ru ruru ru S Aru ruS A S Aru ru ru ru ru

ru ru S Aru ru

A x
S A

x
x x

x x

µµµ
µ µ ϕ

µ

ϕϕ
µ ϕ ϕ

ϕ
− 

= + + +   + 
     (31) 

3.3. Stability Numerical Analysis for Secondary System  

Let 
( ) ( )3 2ˆ ˆru ru

ru ru

Å A
S Aπ σ µ=  and the plot of π  against x is given (See Figure 5). The results 

show that 0π ≥  for almost all values of concentration (x). The following is proposed 
( ) ( ) ( ) ( ) ( ) ( )3 2 ,ru ruÅ Ax x x xσ µ π φ= +  where ( )xφ  is the error term in estimating  
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Table 2. Parameter estimates in modelling movement rates associated with the secondary system. 

Advective Parameters Estimate Std Error t value ( )Pr t>   

ruAΣ  

1ϕ
Σ   

2ϕ
Σ   

3ϕ
Σ   

4ϕ
Σ   

−0.8281 

6.9213  

0.1345  

0.0566  

0.0059  

0.1615  

0.0007  

0.0002  

−141.37  

42.87  

186.53  

233.96  

162 10−< ×   
162 10−< ×   
162 10−< ×   
162 10−< ×   

( )3ruÅσ  

1
σϕ   

2
σϕ   

3
σϕ   

4
σϕ   

5
σϕ   

6
σϕ   

7
σϕ   

−0.2354  

0.4450  

0.2771  

0.2354  

9.199(Fix)  

−0.0100  

0.0470 

0.0108  

0.0235  

0.0221  

0.0108  

−  
0.0005  

0.0005  

−21.89  

18.94  

12.57  

21.89  

−  
−19.57  

86.54  

162 10−< ×   
162 10−< ×   
162 10−< ×   
162 10−< ×   

−  
162 10−< ×   
162 10−< ×   

( )2ru

ru ru

A

A Sµ  

1
A Sru ruµϕ   

2
A Sru ruµϕ   

3
A Sru ruµϕ   

4
A Sru ruµϕ   

5
A Sru ruµϕ   

6
A Sru ruµϕ   

−0.2665  

0.4271  

0.2665  

9.1990  

0.0110  

0.0351  

 0.0033  

0.0084  

0.0033  

0.4912  

0.0003  

0.0004  

−81.76  

51  

81.76  

18.73  

33.19  

87.31  

162 10−< ×  
162 10−< ×  
162 10−< ×  
162 10−< ×  
162 10−< ×  
162 10−< ×  

( )2ru

ru ru

A
S Aµ  

1
S Aru ruµϕ   

2
S Aru ruµϕ   

3
S Aru ruµϕ   

4
S Aru ruµϕ   

5
S Aru ruµϕ   

6
S Aru ruµϕ  

0.1013  

1.1959  

−0.1013  

9.199(Fix)  

−0.0052  

0.0304  

0.0026  

0.0400  

0.0026  

−  
0.0002  

0.0009  

38.40  

29.90  

−38.4  

−  
−23.9  

32.26  

162 10−< ×   
162 10−< ×  
162 10−< ×   

−  
162 10−< ×   
162 10−< ×  

 

 
Figure 5. The value π of the characteristic equation against concentration x. 
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( ) ( ) ( ) ( )3 2ru ruÅ Ax xσ µ . The system is inferred to be stable. 

4. Discussion  

A nonautonomous linear system is developed that enables characterisation of the pro-
jected movement in a solution-particle [5] [6]. There are four main movement potential 
components at primary level with respect to advection. They are held together by the 
sub-system also a potential which is inferred to have five distinct systems (that is the 
two sµ′ , σ and two sτ ′ ). While, the secondary system consists of two sµ′  and σ. 
The variable parameters in the system of ordinary differential equations are inferred to 
describe (advective) form components of movement. The movement description gives 
the state of solution particle and there is suggestion of the constituent entities. 

The primary system is generally projected to be an unstable system relative to con-
centration. The saturated system is inferred to have stable potential. The reaction al-
lowing state (non-saturated concentration) has unstable equilibrium potential at pri-
mary level. However, the secondary system is stable.  

This work has managed to describe the possible state of kinetics of a solution-particle 
of efavirenz. It has shown that a saturated state can be equated to a stable state both at 
primary and secondary level. The constructed matrix in this case is traceless that is it 
has zero trace. The volume conserving systems have been considered in modelling of 
the physical systems and the theoretical framework is also developed in Lie Theory [10] 
[11]. 
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