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Abstract

This work seeks to describe intra-solution particle movement system. It makes use of
data obtained from simulations of patients on efavirenz. A system of ordinary diffe-
rential equations is used to model movement state at some particular concentration.
The movement states’ description is found for the primary and secondary level. The
primary system is found to be predominantly an unstable system while the secondary
system is stable. This is derived from the state of dynamic eigenvalues associated with
the system. The saturated solution-particle is projected to be stable both for the pri-
mary potential and secondary state. A volume conserving linear system has been
suggested to describe the dynamical state of movement of a solution particle.

Keywords
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1. Introduction

The intra-solution-particle movement system is described in this work. A system which
consists of the primary and secondary movement states that is proposed in Nemaura
(2015) is investigated. Differential Equations are used to describe dynamical systems.
Most systems are described relative to time [1] [2] [3]. In this work, they are used to
describe a dynamical system of the state of a solution particle relative to concentration.
Multiple compartmental modelling finds its use in fields such as Physiologically Based
Pharmacokinetics, Engineering and Mathematical Biology [1] [3] [4]. Other researchers

work with constant parameters that are obtained for autonomous linear systems. In this
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work, a simple system (nonautonomous linear system) whose parameters vary accord-
ing to concentration is considered [5] [6]. The mixing problems have been widely stu-
died by the use of ordinary differential equations [4] [7] [8]. Additionally, some re-
searchers consider probable systems that arise from these mixing problems [7] [8]. This
work proposes a system of linear ordinary differential equations that potentially govern
the state of solution particle and shares a relation to the mixing problems. In addition,
there is consideration of a volume conserving state of a solution particle. The dynamic
eigenvalues from the corresponding matrix and stability of the concentration varying
linear systems are proposed. The dynamic eigenvalues have found applications for li-
near time-varying systems [2].

This work highlights possible intra-particle movement potential/states inferred to be
present in the solution particle, at primary and secondary level and attempts to give
mathematical form as in Nemaura (2015) [9]. It proposes multiple-compartmental
models, one for the primary level and the other for the secondary level. The resultant

form gives a general representation of movement within a solution particle.

2. Methods

The primary and secondary movement system of projected simulated data from patients
who had been on efavirenz is used [9]. The software used, were R and Mathematica.

2.1. The Primary System

The primary system is a sub-system of the secondary and describes potential. It is pro-
jected to consist of four main movement entities that is convection, saturation, passive

and advection. The form entity being the advective component [9].

2.2. The Primary System of Solution Particle

A solution particle with concentration (x) is made up of four movement components
(variables) at primary level C-convective, A-advective, P-Passive, and $-Saturation at
primary level satisfying
C(x)=S(x)+A(x)-P(x), (1)
=S(x)+A(x)+P(x), ()
where P =-P.

We analyse the following system of differential equations in order to infer on the over-

all process occuring in describing state of movement in a solution particle (See Figure 1).

ds A 5
a:a%(x)—ys’}(X)S+u:§(x)A=h(S,A,P), 3)
A A (B 5
&:ysg(x)S—(y:g(x)+r:‘1ﬁ(x)+O_As(x))AJrr%(x)P:q(S,A,P), (4)
dﬁ_/—\l 'Kl D _ =Y
d_X_TAﬁ(X)A_TEA(X)P_W(S’A'P)’ (5)

Subject to,
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Figure 1. A compartmental representation of the model for solution particle movement state
dynamics at primary level driven by the advective component. It is noted that this representation
is not necessarily unique for all forms of advective component.

o™ () + g (X)+ 138 (x) =0,

And

5 (X)+ Té\(x) =0,

With T:% , r?}\, yéﬁ LR ,0™ €R and are the variable parameters. These two condi-
tions allows no net change in the volumetric consituencies of the four movement com-
ponents, where

o0 —single phase third generation solution sub-particle at primary level, form in-
ducing movement interaction with four main movement entities,

u —single phase second generation solution sub-particle at primary level with four
main movement entities, and

T —altering phase(s) first generation solution sub-particle at primary level with
three main movement entities.

Solving the primary system above (1 - 5) in terms of advective components,

dc
A () — _dX
o (x) 1-A’
R ()—ah (A ®
B (y) = dx
#63 (x)= S+A '
B ok (x)-o (x)S
Ao (y) = OX
& ()= S+A ’
dP
andrg(x):%:—r%(x).

2.3. Stability Analysis of the Primary System

The equlibrium, steady state points are constant solutions, S(x), A(x), and P(X)
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which satisfy the nonlinear system of equations 9 _ 0, aA_ 0 and @ _ =0. These
dx dx dx

points govern the behaviour of physical models. Thus we obtain A (X) =1 (form po-

tential), s (X) =-1 (space accesory potential), and P (X) =-1 (negative bind-

ing-orientation potential). It is important to note that the convective potential at equi-

librium (primary level) is negative (nullifying/ compensating accesory potential). Fur-

thermore, it has the value of 1.

Local Analysis near Steady-State Points (S* A

)

P
Local analysis is studied near each steady state point ( ) We begin by the fol-

lowing,
S(x)=8"(x)+v(x), (6)
A(x)= A (x)+£(x), (7)
P(x)=P" (x)+y (x), (8)
where v(x), ¢(x) and y(x) are small
‘(’j_:=h(s*(x)+v(x),A*(x)+;(x),ﬁ*(x)w(x))z% ah AUl (9)
ﬂ—i=q(s*<x)+v<x>,A*<x>+4<x>ﬁ*<x>+w<x>)~§—gv+§—2 a‘; (10)

d - - 5" ow_ow . ow
d—f:W(S (x)+v(x), A" (x)+<&(x),P (x)+w(x))z£v+a—Ag+G_§v,_ (11)

The partial derivatives are evaluated at the equilibrium point (S*, A, Is*). The sta-

bility of the steady state point (S*, A, |3*) is investigated by studying the eigenvalues

of the Jacobian matrix (A matrix of the partial derivatives). The Jacobian matrix for the

primary system is given by,

(o o on]
oS OA oP _’US/% ,u:é 0
« o=« |00 069 0Oq | & A A
J(S AP )— = A 3 =| Mk (ﬂAs+TA§+U ) Tﬁé (12)
woow ow 0 - o
| 6S  0A aﬁ_(sg,ﬁ*)

Ay _

* ()Undisturbed potential (x=0), ( s}

Ty Al =0 . The characteristic equation of Jis given by,

A+ ulieha=0,

Hsp AP

Eigenvalues of this system are given by, (0 I\/ yé}f (A

i

Ao A
SA AP

e =0, Z':%Z—T%) where

) The equilibrium

point has neutral stability. Thus the primary unique space interacting potential has a

neutral equilibrium before “disturbances”.
e (II) Disturbed (dissolving) potential (X > O) , (O'A3

e e Rty =g )

The dynamic eigenvalues follows from the characteristic equation of /given by,
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- _ _ _
Pl (ol — s - 2 ) A+ iyl (s + 1f2 ) =0,
which is similar,
As-i-yéf (T:%)-FIUSZ\K ( )ﬂ, O'A3/JSA 7,5 =0.

Thus the eigenvalues for this system are,

M N
AT
M z N
CRPTIS

And
_IM N
2N 6

where 2 =1+i\/§, z =1—i\/§, M = ,ufj (O'AS +T:1F—,), and

Wl

276A3y:,§ " \/7295)&3/1‘\2 A12+108,uA23( A3-|—r:\15>3
2

* (III) Saturated potential (I X, #0: o™ (X ) =0, —,uSZ\j ( )= T (XS) =0,
T :lﬁ (XS) = T:}\( ) 0). The characteristic equation is given by,

A*=0.
2.4. The Secondary System of Solution Particle

The product of advective primary interaction potential with its unique space (the relative
uptake) results in a secondary advective movement system [9]. A solution particle with
concentration (x) is made up of three movement components (variables) at secondary level

C,, —convective, A —advective,and S, —Saturation at secondary level satisfying

Cru (X) =S, (X)+ Ay (X). (13)
This is represented by the following constituent system (See Figure 2),
ds,, A
= (0 (08 AT (O A = (S A, ()
d . A
S (08 (™ (04402 () Ay = 0(800 A, (19

Subject to,
00+ 0 (X)+ ) (x) =0,

Ary
With 0'( ks , yéA'”AEu ,u&m )5 € R (variable parameters). The condition allows no net
change in the volumetric consituents of the movement components. Where,

o,, —single phase third generation solution sub-particle at secondary level, form
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Figure 2. A compartmental representation of the model for solution particle movement state
dynamics at secondary level driven by the advective component.

inducing movement interaction with four main movement entities,
U, —single phase second generation solution sub-particle at secondary level with
four main movement entities.

Solving the secondary system above (13) - (15),

dc,,
(Aru)y () _ _dx
? (X) 1_Au '
u An 3 dSru
PN i L
'usruArj (X) = S + Ar !
) B 50k () oM (x)s,,
and y&f v)a (x) = s TA
uvru " + y

2.5. Stability Analysis of the Secondary System

The equlibrium, steady state points are constant solutions, S, (x) and A, (X), which

satisfy the nonlinear system of equations dj’” =0 and dgﬁ =0. It is shown that this
X X

system is orbitally stable, which signifies that the solutions remain near the equilibrium

point.

Local Analysis near Steady-State Points (S:u AL )

Considering,
ds,,
dx
A, _
dx
Ary Ary
Thus we obtain, A, (X) =1 (form state), and S}, (X)= i (X)+ﬂ§‘m325 (%) -

w2 (x)
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(space accessory state). It is important to note that the convective movement at sec-
ondary level is a stable state which is 0 (nullifying/stabilising accessory state). We study
local analysis near each steady state point (S:u , A:u) for Equations (14) & (15). We be-
gin by the following,

Sw (X) =Sy (X)+€(x), (16)
Ay (%)= Ay (x)+n(x), (17)

where €(x) and 7(x) are small. Next we substitute Equations (16) & (17) into (18) &
(19).

de . . of of
= f (Sru(X)’LE(X)’Aru(X)+U(X))~af+%ﬂl (18)
dp . « _ 09 a9
P g (Sm (x)+e(x), A, (X)+77(X)) N_(?Sm €+_5Am n. (19)

The Jacobian matrix for the secondary system is given by,

a o o (Ao,
j(s* "\) aS,, OA, Hs,pr, AruSt (20)
iy ) T = )y Am3 /3,“2 '
—ag —ag /ué:JrAju _(O—( ) +y(Afu52u)
B A s m,)
(s

The eigenvalues 4, and A, for this system are given by —i,/o
ATU) (AfU )2

3
ILISTLI Afu and

iy Hs respectively. The secondary system gives a form of neutral stability.

u

3. Results

3.1. Numerical Projections of Sub-Particle and Particle of Solution for
the Primary System

The graphical representation of the advective components z, x4, o (sub-systems) are
shown (see Figure 3). The solution is developed from the primary system equation in
Nemaura (2015) and the system (1 - 5).

The primary system and sub-system equations and estimated parameters are given
(See Equations (21) - (27) and Table 1).

Primary system equation,

KD
+%%, Scientific Research Publishing

-S(x)
A(X) —
A ) 6, 6; x Ty a0
SAX) =67 | F+1 [+ —+ 6 xe ®. (21)
X O, +x ——
[N — C(X)
P(x)
Primary o —sub-particle equation given by,
o G5 x o
ol (x)=67 (e“’2X —1)+3—+6?5"xe"9ﬁ X, (22)
0; +x
Primary p,; —sub-particle equation given by,
- 1% x _gtAs
2 (x) =6 (e o7 —1)+—3 +Osxe %, (23)
Has ( ) 1 0% 1 x 5
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Figure 3. (a) The intra-advective movement potential of the primary sub-system from A4 to
P against concentration. Note the intra-advective movement potential of the primary sub-
system from P to A against concentration is equivalent to —72. (b) The intra-advective
movement potential of the primary sub-system from A to S against concentration. (c) The
intra-advective movement potential of the primary sub-system from §to A against concen-
tration. (d) The intra-advective movement potential of the primary sub-system against con-

centration.

Table 1. Parameter estimates in modelling movement rates associated with the primary system.

Advective Parameters Estimate Std Error tvalue Pr (> ‘t‘)
Hl): -13
: 0.0034 0.0002 14.010 2.43x10
o, 0.8808 0.0874 10.076 2.75x10™
- o; —0.0561 0.0057 -9.764 5.18x10™
o: 7.4315 0.6922 10.737 7.49x10™
o 0.0089 0.0003 32289 <2x107
o 0.0598 0.0015 39.930 < 2%107
o
0.0457 0.0145 3.146 0.0032
o 1.4843 0.2279 6.512 1.01x107
N oy 0.0452 0.0147 3.073 0.0039
7 o 0.2333(Fix) - - -
o 0.0083 0.0020 4.092 0.0002
o 0.3241 0.0360 9.011 4.48x10™
glﬂu -16
, ~0.1852 0.0047 -39.74 <2x10
o 0.3691 0.0131 28.19 <2x10%
N o —0.2551 0.0064 -39.84 <2x10™
s op 0.2333 0.0133 17.49 <2x107
o 0.0072 0.0004 17.74 <2x107%
g 0.0254 0.0007 37.56 <2x107%
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Continued
Hsa
a 0.1803 0.0047 38.489 <2x107
8 0.3549 0.0170 20.869 <2x10%
N o 0.2393 0.0028 84.021 <2x107
Hau e 0.2333(Fix) - - -
o ~0.0061 0.0006 -9.459 1.21x10"
oo 0.0242 0.0014 17326 <2x10°
0w
01 AP -16
1.6961 0.0036 471.62 <2x10
T g~ 3.1504 0.002 1599.33 <2x107
" 3.8206 0.0954 40.04 <2x10%
o*
A8
N 0% 2.32x10° 1.313x10" 1.7664x10° <2x107
pne ol 9.477x10° 4514x10™ 210 <2x10%
2
0
" 0" ~2.33x10° 4.067x10” -572.9 1.91x107
e o 8.529x10° 8.458x10™ 100.8 6.41x10™

Primary 7, —sub-particle equation given by,

_ HSA
B (x) =gy [ %7 _1) X gpoaxe % (24)
Hsp 1 9rsh 5 :
o+ X

Primary ¢,;—sub-particle (&) equation given by,

(e) (@)
HTAP r(a,) 7grAF7’X
s (X)= 1(@ +0%e 7, 0<x<X, (25)

AP
b,

d
where X, =L =0.
dX |,y
Primary r,;—sub-particle (/) equation given by,

) (8)
6,%* AB) g,
= +0,%e % T, X <X<X.. (26)
X —X 1 n m

m

T;‘,Aﬁ (x)

Primary r,;—sub-particle () equation given by,

gf(AyF”) 0
r“f(x)z 1 —9{‘*%’02 XS X (27)

m

where X, =29.6184242885 is the point when the system is projected to show consi-
derable loss of homogeneity-potential.

Furthermore, Top =—Tp5-

3.2. Numerical Projections of Sub-Particle and Particle of Solution
Movement for the Secondary System

The graphical representation of the advective components ,o (sub-systems) are
shown (see Figure 4). The solution is developed from the secondary system equation in
Nemaura (2015) and the system (13 - 15).
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Figure 4. (a) The advective intra-secondary sub-system modelling the movement from A, to
S,, against concentration. (b) The advective intra-secondary sub-system modelling the move-

ment from S, to A, against concentration. (c) The advective intra-secondary sub-system

which initiates the process against concentration.

The secondary system and sub-system equations and estimated parameters are given

(See Equations (28) - (31) and Table 2). Secondary system equation is given by,

Am(x) s Cru(x)
—_— X r—‘hﬁz
T (X) =2 4 g xe (28)
, +X
=Sru(x)

Secondary ¢ —sub-particle equation given by,

; 2 X 7
o Au)s (X) =7 ((pge% x _1)+ﬁ+¢gxe*‘/’7 X (29)
5

Secondary u,  —sub-particle equation given by,

= HAySry HAuSry HALS

(Au) Hasn | P2 D3 X Hpys —gpf PruSru

Ha s (X)) = @ | 2——+1 e ™ : (30)
X (p4 w4y

Secondary ug , —sub-particle equation given by,

HSruAr HSruAn Z
X _HSruAru
#(Afu)z (X):q)/‘sru%\fu R ) +¢)3—+¢”5ruAfu xe %X, (31)
SruAu 1 X (DﬂsruAfu + X >
4

3.3. Stability Numerical Analysis for Secondary System

- ATU ~ u . . . .
Let 7= G( k ;é:*Af)j and the plot of 7 against xis given (See Figure 5). The results

show that 7 >0 for almost all values of concentration (x). The following is proposed
o (X),u(A“')2 (x)=7z(x)+¢(x), where ¢(x) isthe error term in estimating
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Table 2. Parameter estimates in modelling movement rates associated with the secondary system.

Advective Parameters Estimate Std Error t value Pr (> ‘t‘)
)
¢’1 —0.8281 0.0059 —141.37 <2x107
- @ 6.9213 0.1615 42.87 <2x107
> 0.1345 0.0007 186.53 <2x107
(2
o 0.0566 0.0002 233.96 <2x107
X
24
; —0.2354 0.0108 ~21.89 <2x10
. 0.4450 0.0235 18.94 <2x10%
»: 0.2771 0.0221 12.57 <2x107
REA o7 0.2354 0.0108 21.89 <2x10™
o 9.199(Fix) - - -
o ~0.0100 0.0005 -19.57 <2x107
. 0.0470 0.0005 86.54 <2x10"
?;
N
. —0.2665 0.0033 -81.76 <2x10™*
?: 0.4271 0.0084 51 <2x10™%
(), oy 0.2665 0.0033 81.76 <2x10®
Hys, P 9.1990 0.4912 18.73 <2x10™
. 0.0110 0.0003 33.19 <2x107
s 0.0351 0.0004 87.31 < 2%107
HaySry
@
e
- 0.1013 0.0026 38.40 <2x107
#. 1.1959 0.0400 29.90 <2x107
() @ -0.1013 0.0026 -38.4 <2x107™
oo g 9.199(Fix) - - -
v ~0.0052 0.0002 -23.9 <2x10°7
P 0.0304 0.0009 32.26 <2%107
Hsp, Ay
@
0.0025
+
0.002
d
0.0015 S
T +
0.001 *
+*
4
0.0005 " o 1ae s TYVER
“0‘“
. ’0 oo
L 4 "
& L 4
* *
+ .
0 ’o.“o : . ‘
0 10 20 30 40 50 60 70
X
-0.0005
Figure 5. The value 7 of the characteristic equation against concentration x.
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ol (x) Pl (X) . The system is inferred to be stable.

4. Discussion

A nonautonomous linear system is developed that enables characterisation of the pro-
jected movement in a solution-particle [5] [6]. There are four main movement potential
components at primary level with respect to advection. They are held together by the
sub-system also a potential which is inferred to have five distinct systems (that is the
two u's, o and two ¢’s). While, the secondary system consists of two u's and o
The variable parameters in the system of ordinary differential equations are inferred to
describe (advective) form components of movement. The movement description gives
the state of solution particle and there is suggestion of the constituent entities.

The primary system is generally projected to be an unstable system relative to con-
centration. The saturated system is inferred to have stable potential. The reaction al-
lowing state (non-saturated concentration) has unstable equilibrium potential at pri-
mary level. However, the secondary system is stable.

This work has managed to describe the possible state of kinetics of a solution-particle
of efavirenz. It has shown that a saturated state can be equated to a stable state both at
primary and secondary level. The constructed matrix in this case is traceless that is it
has zero trace. The volume conserving systems have been considered in modelling of
the physical systems and the theoretical framework is also developed in Lie Theory [10]
[11].
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