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Abstract 
 
Let X  be a ringed space together with the data M  of a set xM  of prime ideals of ,X x  for each point 
x X . We introduce the localization of  ,X M , which is a locally ringed space Y  and a map of ringed 
spaces Y X  enjoying a universal property similar to the localization of a ring at a prime ideal. We use 
this to prove that the category of locally ringed spaces has all inverse limits, to compare them to the inverse 
limit in ringed spaces, and to construct a very general Spec functor. We conclude with a discussion of relative 
schemes. 
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1. Introduction 

Let Top , LRS , RS , and Sch  denote the categories 
of topological spaces, locally ringed spaces, ringed 
spaces, and schemes, respectively. Consider maps of 
schemes :i if X Y ( = 1, 2i ) and their fibered product 

1 2YX X  as schemes. Let X  denote the topological 
space underlying a scheme X . There is a natural 
comparison map  

1 21 2: Y YX X X X     

which is not generally an isomorphism, even if 

1 2, ,X X Y  are spectra of fields (e.g. if = SpecY  , 

1 2= = SpecX X  , the map   is two points mapping to 
one point). However, in some sense   fails to be an 
isomorphism only to the extent to which it failed in the 
case of spectra of fields: According to [EGA I.3.4.7] the 
fiber  1

1 2,x x  over a point   1 21 2, Yx x X X   
(with common image    1 1 2 2= =y f x f x ) is naturally 
bijective with the set  

     1 2Spec .k yk x k x  

In fact, one can show that this bijection is a 
homeomorphism when  1

1 2,x x  is given the topo- 
logy it inherits from 1 2YX X . One can even describe 
the sheaf of rings  1

1 2,x x  inherits from 1 2YX X  
as follows: Let 

  


1 2 , , ,1 1 , 2 2
, := Spec :

               = for = 1,2 .

X x X x X xY y i i

xi

S x x z z

i

   


 

Then ( Spec  of) the natural surjection  

   , , 1 ( ) 21 1 , 2 2X x X x k yY y
k x k x     

identifies      1 2 k ySpec k x k x  with a closed subspace 
of , ,1 1 , 2 2

Spec X x X xY y
   and  1

1 21 2
,X XY

x x
  

naturally coincides, under the EGA isomorphism, to the 
restriction of the structure sheaf of  

, ,1 1 , 2 2
Spec X x X xY y

   to the closed subspace  

   1 ( ) 2 , ,1 1 , 2 2
Spec Spec .k y X x X xY y

k x k x    1 

It is perhaps less well-known that this entire discus- 
sion remains true for LRS  morphisms 1 2,f f . 

From the discussion above, we see that it is possible to 
describe 21 XX Y , at least as a set, from the following 
data: 

1) the ringed space fibered product 1 2YX XRS  
(which carries the data of the rings , ,1 1 , 2 2X x X xY y

   
as stalks of its structure sheaf) and  

2) the subsets  1 2 , ,1 1 , 2 2
, Spec X x X xY y

S x x      
It turns out that one can actually recover 1 2YX X  as 

a scheme solely from this data, as follows: Given a pair 
 ,X M  consisting of a ringed space X  and a subset 

,Specx X xM    for each x X , one can construct a 
locally ringed space  ,

loc
X M  with a map of ringed 

spaces  ,
loc

X M X . In a special case, this constru- 
ction coincides with M. Hakim’s spectrum of a ringed 
topos. Performing this general construction to 

1There is no sense in which this sheaf of rings on 

     1 2Spec 
k y

k x k x  is “quasi-coherent”. It isn’t even a module over 

the usual structure sheaf of      1 2Spec 
k y

k x k x  



W. D. GILLAM 
 

Copyright © 2011 SciRes.                                                                                 APM 

251

   1 2 1 2, ,YX X S x xRS  

yields the comparison map  , and, in particular, the 
scheme 1 2YX X . A similar construction in fact yields 
all inverse limits in LRS  ( § 3.1) and the comparison 
map to the inverse limit in RS , and allows one to easily 
prove that a finite inverse limits of schemes, taken in 
LRS , is a scheme (Theorem 8). Using this description 
of the comparison map   one can easily describe some 
circumstances under which it is an isomorphism (§ 3.2), 
and one can easily see, for example, that it is a loca- 
lization morphism (Definition 1), hence has zero cotangent 
complex. 

The localization construction also allows us construct 
(§ 3.3), for any X LRS , a very general relative spec 
functor 

 op
Spec :X X X Alg LRS  

which coincides with the usual one when X  is a 
scheme and we restrict to quasi-coherent X  algebras. 
We can also construct (§ 3.5) a “good geometric realiza-
tion” functor from M. Hakim’s stack of relative schemes 
over a locally ringed space X  to XLRS .2 It should 
be emphasized at this point that there is essentially only 
one construction, the localization of a ringed space of 
§ 2.2, in this paper, and one (fairly easy) theorem (Theo-
rem 2) about it; everything else follows formally from 
general nonsense. 

Despite all these results about inverse limits, I stum-
bled upon this construction while studying direct limits. I 
was interested in comparing the quotient of, say, a finite 
étale groupoid in schemes, taken in sheaves on the étale 
site, with the same quotient taken in LRS . In order to 
compare these meaningfully, one must somehow put 
them in the same category. An appealing way to do this 
is to prove that the (functor of points of the) LRS  quo-
tient is a sheaf on the étale site. In fact, one can prove 
that for any X LRS , the presheaf  

 LRS ,Y Hom Y X  

is a sheaf on schemes in both the fppf and fpqc topolo-
gies. Indeed, one can easily describe a topology on RS , 
analogous to the fppf and fpqc topologies on schemes, 
and prove it is subcanonical. To upgrade this to a sub-
canonical topology on LRS  one is naturally confronted 
with the comparison of fibered products in LRS  and 
RS . In particular, one is confronted with the question of 
whether   is an epimorphism in the category of ringed 
spaces. I do not know whether this is true for arbitrary 
LRS  morphisms 1 2,f f , but in the case of schemes it is 
possible to prove a result along these lines which is suf-

ficient to upgrade descent theorems for RS  to descent 
theorems for Sch . 

2. Localization 

We will begin the localization construction after making 
a few definitions. 

Definition 1. A morphism :f A B  of sheaves of 
rings on a space X  is called a localization morphism3 
iff there is a multiplicative subsheaf S A  so that f  
is isomorphic to the localization 1A S A  of A  at 
S .4 A morphism of ringed spaces :f X Y  is called 
a localization morphism iff # 1: Y Xf f     is a lo-
calization morphism. 

A localization morphism A B  in  XRings  is 
both flat and an epimorphism in  XRings .5 In par-
ticular, the cotangent complex (hence also the sheaf of 
Kähler differentials) of a localization morphism is zero 
[Ill II.2.3.2]. The basic example is: For any affine 
scheme =  X Spec A , X XA   is a localization mor-
phism. 

Definition 2. Let A  be a ring, Spec S A  any sub-
set. We write SpecAS  for the locally ringed space 
whose underlying topological space is S  with the topol-
ogy it inherits from Spec A  and whose sheaf of rings is 
the inverse image of the structure sheaf of Spec A . 

If A  is clear from context, we drop the subscript and 
simply write Spec S . There is one possible point of 
confusion here: If I A  is an ideal, and we think of 
Spec A I  as a subset of Spec A , then  

 Spec Spec Spec A A I A I  

(though they have the same topological space). 

2.1. Prime Systems 

Definition 3. Let  = , XX X   be a ringed space. A 
prime system M  on X  is a map xx M  assigning 
a subset ,Specx X xM    to each point x X . For 
prime systems ,M N  on X  we write M N  to 
mean x xM N  for all x X . Prime systems on X  
form a category  XPS  where there is a unique mor-
phism from M  to N  iff M N . The intersection 

i iM  of prime systems  iM XPS  is defined by  

   := .i i i ix x
M M   

A primed ringed space  ,X M  is a ringed space X  
equipped with a prime system M . Prime ringed spaces 
form a category PRS  where a morphism  : ,f X M  

 ,Y N  is a morphism of ringed spaces f  satisfy-

2Hakim already constructed such a functor, but ours is different from 
hers. 

3See [Ill II.2.3.2] and the reference therein. 
4See [Ill II.2.3.2] and the reference therein. 
5Both of these conditions can be checked at stalks. 
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ing 

   ( )Spec x x f xf M N  

for every x X . 
The inverse limit of a functor ii M  to  PS X  is 

clearly given by i iM . 
Remark 1. Suppose  ,Y N PRS  and :f X Y  

is an RS  morphism. The inverse image *f N  is the 
prime system on X  defined by  

      
    

1*

1
,

:= Spec 

= Spec : .

x f xx

X x x f x

f N f N

f N



   
 

Formation of inverse image prime systems enjoys the 
expected naturality in f :    ** * =g f M fg M . We 
can alternatively define a PRS  morphism  : ,f X M  

 ,Y N  to be an RS  morphism :f X Y  such 
that c *M f N  (i.e. together with a  XPS  mor-
phism *M f N ). 

For X LRS , the local prime system X  on X  
is defined by  , :=X x xm . If Y  is another locally 
ringed space, then a morphism :f X Y  in RS  
defines a morphism of primed ringed spaces  

   : , ,X Yf X Y   iff f  is a morphism in LRS , 
so we have a fully faithful functor  

 
:

, ,X

LRS PRS

X X







             (1) 

and we may regard LRS  as a full subcategory of 
 PRS . 

At the “opposite extreme” we also have, for any 
X RS , the terminal prime system X  defined by 

, ,:= SpecX x X x   (i.e. the terminal object in  XPS ). 
For  ,Y M PRS , we clearly have  

      , , , = , ,XHom Y M X Hom Y XPRS RS  

so the functor 

 
:

, XX X

RS PRS





               (2) 

is right adjoint to the forgetful functor PRS RS  
given by  ,X M X . 

2.2. Localization 

Now we begin the main construction of this section. Let 
 ,X M  be a primed ringed space. We now construct a 
locally ringed space  ,

loc
X M  (written locX  if M  is 

clear from context), and a PRS  morphism  

   π : , ,loc
locX

X X M  called the localization of 
X  at M . 

Definition 4. Let X  be a topological space, F  a 

sheaf on X . The category SecF  of local sections of 
F  is the category whose objects are pairs  ,U s  
where U  is an open subset of X  and  s UF , and 
where there is a unique morphism    , ,U s V t  if 
U V  and .t U s . 

As a set, the topological space locX  will be the set of 
pairs  ,x z , where x X  and xz M . Let  locX  
denote the category of subsets of locX  whose mor-
phisms are inclusions. For  , XU s Sec , set  

    , := , : , .loc
xU U s x z X x U s z    

This defines a functor  

 : loc
XU XSec   

satisfying: 

     
     >0

, , = , | |

, = , .

U V U V

n

U U s U V t U U V s t

U U s U U s n

  


 

The first formula implies that    loc
XU XSec   

is a basis for a topology on locX  where a basic open 
neighborhood of  ,x z  is a set  ,U U s  where x U , 

xs z . We always consider locX  with this topology. 
The map  

 
π :

,

locX X

x z x




 

is continuous because    1π = ,1U U U . 
We construct a sheaf of rings locX

  on locX  as 
follows. For an open subset locV X , we let  locX

V  
be the set of  

  
 

 ,
,

= , X x z
x z V

s s x z


    

satisfying the local consistency condition: For every 
 ,x z V , there is a basic open neighborhood  ,U U t  
of  ,x z  contained in V  and a section  

 Xn t

a
U

t
  

such that, for every    , ,x z U U t   , we have  

   ,, = .x
X xn z

x

a
s x z

t


 


     

(Of course, one can always take = 1n  since  
   , = , nU U t U U t .) The set  locX

V  becomes a ring 
under coordinatewise addition and multiplication, and 
the obvious restriction maps make locX

  a sheaf of rings 
on locX . There is a natural isomorphism  

   ,, ,
=loc X x zX x z

   

taking the germ of     = , locX
s s x z U  in the stalk 

 , ,locX x z
  to    ,, X x z

s x z   . This map is injective be- 
cause of the local consistency condition and surjective 
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because, given any  ,X x z
a b  , we can lift ,a b  to 

 , Xa b U  on some neighborhood U of x and define 
  ,locX

s U U b  by letting  

   ,, := .x X xx z
s x z a b  

     This s manifestly satisfies  

the local consistency condition and has  , =s x z a b . In 
particular, locX , with this sheaf of rings, is a locally 
ringed space. 

To lift π  to a map of ringed spaces π : locX X  we 
use the tautological map  

#
*π : πX locX

   

of sheaves of rings on X  defined on an open set 
U X  by  

         
  

#
*π : π = ,1

.

X loc locX X

x z

U U U U U

s s





  
 

It is clear that the induced map on stalks  

 , , ,,( , )
π : =x z X x loc X x zX x z

    

is the natural localization map, so  1
,π =x z z xz M   

and hence π  defines a PRS  morphism  

   π : , ,loc
locX

X X M . 

Remark 2. It would have been enough to construct the 
localization  ,

loc

XX   at the terminal prime system. 
Then to construct the localization  ,

loc
X M  at any 

other prime system, we just note that  ,
loc

X M  is 
clearly a subset of  ,

loc

XX  , and we give it the topol-
ogy and sheaf of rings it inherits from this inclusion. The 
construction of  ,

loc

XX   is “classical.” Indeed, M. 
Hakim [Hak] describes a construction of  ,

loc

XX   
that makes sense for any ringed topos X  (she calls it 
the spectrum of the ringed topos [Hak IV.1]), and attrib-
utes the analogous construction for ringed spaces to C. 
Chevalley [Hak IV.2]. Perhaps the main idea of this 
work is to define “prime systems,” and to demonstate 
their ubiquity. The additional flexibility afforded by 
non-terminal prime systems is indispensible in the appli-
cations of § 3. It is not clear to me whether this setup 
generalizes to ringed topoi. 

We sum up some basic properties of the localization 
map π  below. 

Proposition 1. Let  ,X M  be a primed ringed space 
with localization π : locX X . For x X , the fiber 

 1π x  is naturally isomorphic in LRS  to Spec xM  
(Definition 2).6 Under this identification, the stalk of π  

at xz M  is identified with the localization of ,X x  at 
z , hence π  is a localization morphism (Definition 1).  

Proof. With the exception of the fiber description, 
everything in the proposition was noted during the con-
struction of the localization. Clearly there is a natural 
bijection of sets  1= πxM x  taking xz M  to  
   1, πx z x . We first show that the topology inher-
ited from locX  coincides with the one inherited from 

,Spec X x . By definition of the topology on locX , a ba-
sic open neighborhood of xz M  is a set of the form  

   , = : ,x x xU U s M z M s z     

where U  is a neighborhood of x  in X  and 
 Xs U  satisfies xs z . Clearly this set depends 

only on the stalk of ,x X xs   of s  at x , and any 
element ,X xt  lifts to a section ( )Xt U  on some 
neighborhood of X , so the basic neighborhoods of 

xz M  are the sets of the form  

 :xz M t z    

where xt z . But for the same set of t , the sets  

   ,:= Spec :X xD t t p p  

form a basis for neighborhoods of z  in ,Spec X x  so 
the result is clear. 

We next show that the sheaf of rings on xM  inher-
ited from locX  is the same as the one inherited from 

,Spec X x . Given ,X xf  , a section of loc xX
M  

over the basic open set  xM D f  is an element  

  
 
 ,= X x z

z M D fx

s s z
 

    

satisfying the local consistency condition: For all  
 xz M D f  , there is a basic open neighborhood 

 ,U U t  of  ,x z  in locX  and an element  
   n

X t
a t U  such that, for all  

   ,xz M D f U U t   , we have    n
z zs z a t   . 

Note that 

     , =x x xM D f U U t M D ft    

and     Spec ,

n
x x xX x

a t D ft  . The sets  x xD ft M  
cover   ,Specx X xM D f   , and we have a “global 
formula” s  showing that the stalks of the various 

 n
x xa t  agree at any  xz M D f  , so they glue to 

yield an element     Spec , xX x
g s M D f   with 

   =
z

g s s z . We can define a morphism of sheaves on 

xM  by defining it on basic opens, so this defines a 
morphism of sheaves Spec ,

: loc x xX xX
g M M    

which is easily seen to be an isomorphism on stalks. 
Remark 3. Suppose  ,X M PRS  and U X  is 

an open subspace of X . Then it is clear from the con-
struction of  π : ,

loc
X M X  that  

   1π = , ,
loc

XU U U M U  . 

6By “fiber” here we mean     1 RS

,π := ,loc

X X xx X x   , which is just

the set theoretic preimage  1π locx X   with the topology and sheaf

of rings it inherits from locX . This differs from another common usage 

of “fiber” to mean     RS ,loc

XX x k x . 
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The following theorem describes the universal prop-
erty of localization. 

Theorem 2. Let    : , ,f X M Y N  be a morphism 
in PRS . Then there is a unique morphism  

   : , ,
loc loc

f X M Y N  in LRS  making the diagram 

   
π π

, ,
loc locf

f

X M Y N

X Y


 


       (3) 

commute in RS . Localization defines a functor  

PRS LRS  

   , ,
loc

X M X M  

       : , , : , ,
loc loc

f X M Y N f X M Y N   

retracting the inclusion functor : LRS PRS  and 
right adjoint to it: For any Y LRS , there is a natural 
bijection 

       , , = , , , .
loc

YHom Y X M Hom Y X MLRS PRS   

Proof. We first establish the existence of such a mor-
phism f . The fact that f  is a morphism of primed 
ringed spaces means that we have a function  

 x f xM N  

 1
xz f z  

for each x X , so we can complete the diagram of 
topological spaces 

 
π π

,
locfloc

f

X Y N

X Y


 


 

(at least on the level of sets) by setting  

      1, := , .loc
xf x z f x f z Y   

To see that f  is continuous it is enough to check 
that the preimage   1 ,f U U s  is open in locX  for 
each basic open subset  ,U U s  of locY . But it is clear 
from the definitions that 

      1 1 # 1, = ,f U U s U f U f f s    

(note      # 1 = x f xx
f f s f s ). 

Now we want to define a map # 1: loc YX
f f     of 

sheaves of rings on Y  (with “local stalks”) making the 
diagram 

#

-1 #

1

π1 1 1π π

loc loc

f

X Y

f
X X

f

f



  



 



 

 

 

commute in  locYRings . The stalk of this diagram at 
( , ) locx z X  is a diagram  

 
 

  
      

 

,

1,,

1
, ,

π
π

, ,

x z

f x f zxx z

x

f

X x xY f xz

X x Y f xf

f z





 


 

 

 

in Rings  where the vertical arrows are the natural lo-
calization maps; these are epimorphisms, and the uni-
versal property of localization ensures that there is a 
unique local morphism of local rings  ,x zf  completing 
this diagram. We now want to show that there is actually 
a (necessarily unique) map # 1: loc YX

f f     of 
sheaves of rings on locX  whose stalk at  ,x z  is the 
map  ,x zf . By the universal property of sheafification, 
we can work with the presheaf inverse image 1

pre locX
f   

instead. A section  ,V s  of this presheaf over an open 
subset locW X  is represented by a pair  ,V s  where 

locV Y  is an open subset of locY  containing  f W  
and  

      ,
( , )

= , .loc Y y zY
y z V

s s y z V


     

I claim that we can define a section  
   #

p ,re locX
f V s W  by the formula  

       # 1
p , , := , .re xf V s x z s f x f z  

It is clear that this element is independent of replacing 
V  with a smaller neighborhood of  f W  and 
restricting s , but we still must check that  

   p ,
( , )

,re X x z
x z W

f V s


    

satisfies the local consistency condition. Suppose  

 Xn t

a
U

t
  

witnesses local consistency for  locY
s V  on a basic 

open subset  ,U U t V . Then it is straightforward to 
check that the restriction of  

  
     

# 1

1

# 1
,Yn

f f a
f U U t

f f t





  

to  1 ,f U U t W   witnesses local consistency of 
 #

p ,ref V s  on  

     1 1 # 1, = , .f U U t W U f U f f t W     

It is clear that our formula for  #
p ,ref V s  respects 

restrictions and has the desired stalks and commutativity, 
so its sheafification provides the desired map of sheaves 
of rings. 

This completes the construction of : loc locf X Y  in 
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LRS  making (3) commute in RS . We now establish 
the uniqueness of f . Suppose : loc locf X Y   is a 
morphism in LRS  that also makes (3) commute in 
RS . We first prove that =f f   on the level of 
topological spaces. For x X  the commutativity of (3) 
ensures that     , = ,f x z f x z   for some  

( ) , ( )Spec ,f x Y f xz N    so it remains only to show that  

 1= .xz f z  The commutativity of (3) on the level of 
stalks at  , locx z X  gives a commutative diagram of 
rings  

   
  

    

 

,

-1 #

, ,

π ,π ,

π
, ,

x zf

X x Y f xz z

f x zx z

f
X x Y f x







 



 

 

 

where the vertical arrows are the natural localization 
maps. From the commutativity of this diagram and the 
fact that   

1

,
( ) =z zx z

f


 m m  (because  ,x zf   is local) 
we find  

 

    
 

 

1
( ),

11
( ), ,

1 1

1

= π ( )

= π

= π

= ( )

zf x z

zf x z x z

x x z

x

z

f

f

f z







 







m

m

m

 

as desired. This proves that =f f   on topological 
spaces, and we already argued the uniqueness of #f  
(which can be checked on stalks) during its construction. 

The last statements of the theorem follow easily once 
we prove that the localization morphism  

 π : ,
loc

XX X  is an isomorphism for any 
X LRS . On the level of topological spaces, it is clear 

that π  is a continuous bijection, so to prove it is an 
isomorphism we just need to prove it is open. To prove 
this, it is enough to prove that for any  , Sec XU s   , 
the image of the basic open set  ,U U s  under π  is 
open in X . Indeed, 

    
 *

,

π , = :

= :

x x

x X x

U U s x U s

x U s

 

 




 

is open in U , hence in X , because invertibility at the 
stalk implies invertibility on a neighborhood. To prove 
that π  is an isomorpism of locally ringed spaces, it 
remains only to prove that #π : X locX

   is an iso- 
morphism of sheaves of rings on = locX X . Indeed, 
Proposition 1 says the stalk of #π  at  , loc

xx Xm  is 
the localization of the local ring ,X x  at its unique 
maximal ideal, which is an isomorphism in LAn . 

Lemma 3. Let ARings be a ring, 
 , := Spec XX A , and let * be the punctual space. 

Define a prime system N  on  , XX A  by  

  ,:= Spec = Spec = .X xxN x A A X  

Let    : , , XXa X X A  be the natural RS  
morphism. Then  

*

,
=

X X
a N


  and the natural PRS  

morphisms 

     

  
,

*,

( , , ) , , *, ,Spec 

= *, ,

XX X X

A

X X A N A A

A

 


 


 

yield natural isomorphisms 

      

 
,

, = , , = , ,

= *, ,Spec

loc
loc

XX X X X

loc

X X X A N

A A


  

 

in LRS . 
Proof. Note that the stalk , ,: X xx X xa A   of a  at 

x X  is the localization map xA A , and, by defi- 
nition,  *

x
a N  is the set prime ideals z  of xA  pulling 

back to x A  under :x xa A A . The only such prime 
ideal is the maximal ideal x xAm , so  

   
*

, ,
= { } =x X xx X

a N m


 . 

Next, it is clear from the description of the localization 
of a PRS  morphism that the localizations of the mor-
phisms in question are bijective on the level of sets. In-
deed, the bijections are given by 

     , , *, ,xx x x x x  m  

so to prove that they are continuous, we just need to 
prove that they have the same topology. Indeed, we will 
show that they all have the usual (Zariski) topology on 

= Spec X A . This is clear for   ,
, ,X X X

X


   be-
cause localization retracts   (Theorem 2), so  

    ,
, , = ,

loc

X XX X
X X


   , and it is clear for  

 *, ,Spec A A  because of the description of the fibers of 
localization in Proposition 1. For  , ,XX A N , we note 
that the sets  ,U U s , as U  ranges over connected 
open subsets of X  (or any other family of basic opens 
for that matter), form a basis for the topology on 
 , ,

loc
XX A N . Since U  is connected,   =Xs A U A , 

and  ,U U s  is identified with the usual basic open 
subset ( )D s X  under the bijections above. This 
proves that the LRS  morphisms in question are iso-
morphisms on the level of spaces, so it remains only to 
prove that they are isomorphisms on the level of sheaves 
of rings, which we can check on stalks using the descrip-
tion of the stalks of a localization in Proposition 1.  

Remark 4. If X LRS , and M  is a prime system 
on X , the map π : locX X  is not generally a mor-
phism in LRS , even though , locX X LRS . For ex-
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ample, if X  is a point whose “sheaf” of rings is a local 
ring  ,A m , and = { }M p  for some p m , then 

locX  is a point with the “sheaf” of rings Ap , and the 
“stalk” of #π  is the localization map :l A A p . Even 
though ,A Ap  are local, this is not a local morphism 
because  1 =l A pp p m .  

3. Applications 

In this section we give some applications of localization 
of ringed spaces. 

3.1. Inverse Limits 

We first prove that LRS  has all inverse limits. 
Theorem 4. The category PRS  has all inverse limits, 

and both the localization functor PRS LRS  and the 
forgetful functor PRS RS  preserve them.  

Proof. Suppose  ,i ii X M  is an inverse limit sys-
tem in PRS . Let X  be the inverse limit of ii X  in 
Top  and let π :i iX X  be the projection. Let X  
be the direct limit of 1πi Xi

i    in  XRings  and let 
# 1π : πi i X Xi

    be the structure map to the direct limit, 
so we may regard  = , XX X   as a ringed space and 
πi  as a morphism of ringed spaces iX X . It imme-
diate from the definition of a morphism in RS  that X  
is the inverse limit of ii X  in RS . Let iM  be the 
prime system on X  given by the inverse limit (inter-
section) of the *πi iM . Then it is clear from the definition 
of a morphism in PRS  that  ,X M  is the inverse 
limit of  ,i ii X M , but we will spell out the details 
for the sake of concreteness and future use. 

Given a point  = ix x X , we have defined xM  to 
be the set of ,Spec X xz   such that  

 1
, ,π Speci x x X xi i i

z M     for every i , so that πi  
defines a PRS  morphism    π : , ,i i iX M X M . To 
see that  ,X M  is the direct limit of  ,i ii X M  
suppose    : , ,i i if Y N X M  are morphisms defining 
a natural transformation from the constant functor 

 ,i Y N  to  ,i ii X M . We want to show that 
there is a unique PRS  morphism    : , ,f Y N X M  
with π =i if f  for all i . Since X  is the inverse limit 
of i X  in RS , we know that there is a unique map 
of ringed spaces :f Y X  with π =i if f  for all i , 
so it suffices to show that this f  is a PRS  morphism. 
Let y Y , yz N . We must show    

1
y f xf z M  . By 

definition of M , we must show  

         
1 1

π( )
π =i y f yf xf x ii

f z M M
    for every i . But 

π =i if f  implies    ( )
π =y i if x y

f f , so  

        1 11

( )
π =i y if x y

f z f z
   is in  if yM  because if  

is a PRS  morphism. 
The fact that the localization functor preserves inverse 

limits follows formally from the adjointness in Theorem 
2. 

Corollary 5. The category LRS  has all inverse limits. 
Proof. Suppose ii X  is an inverse limit system in 

LRS . Composing with   yields an inverse limit sys-
tem  ,i Xi

i X   in PRS . By the theorem, the lo-
calization  ,

loc
X M  of the inverse limit  ,X M  of 

 ,i Xi
i X   is the inverse limit of  ,

loc

i Xi
i X   

in LRS . But localization retracts   (Theorem 2) so 

 ,
loc

i Xi
i X   is our original inverse limit system 

ii X .  
We can also obtain the following result of C. 

Chevalley mentioned in [Hak IV.2.4]. 
Corollary 6 The functor  

 
 

,
loc

XX X

RS LRS

 
 

is right adjoint to the inclusion LRS RS .  
Proof. This is immediate from the adjointness 

property of localization in Theorem 2 and the adjointness 
property of the functor  : For  Y LRS  we have  

  
    

 

, ,

= , , ,

= , .

loc

X

Y X

Hom Y X

Hom Y X

Hom Y X

LRS

PRS

RS



   

Our next task is to compare inverse limits in Sch  to 
those in LRS . Let *Top  be “the” punctual space 
(terminal object), so  * =Rings Rings . The functor  

 *,A A

Rings RS


 

is clearly left adjoint to 

 

op:

        , .XX X

 



RS Rings

 
 

By Lemma 3 (or Proposition 1) we have  

   *, := *, ,Spec 

= Spec .

loc loc
A A A

A


 

Theorem 2 yields an easy proof of the following result, 
which can be found in the Errata for [EGA I.1.8] printed 
at the end of [EGA II]. 

Proposition 7. For ARings , X LRS , the 
natural map  

    ,Spec , , XHom X A Hom A X LRS Rings   

is bijective, so Spec : Rings LRS  is left adjoint to 
op: LRS Rings . 

Proof. This is a completely formal consequence of 
various adjunctions: 
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Hom ,Spec = Hom , *,

= Hom , , *,

= Hom , *,

= Hom , , .

loc

X

X

X A X A

X A

X A

A X

LRS LRS

PRS

RS

Rings



 



 

Theorem 8. The category Sch  has all finite inverse 
limits, and the inclusion Sch LRS  preserves them.  

Proof. It is equivalent to show that, for a finite inverse 
limit system ii X  in Sch , the inverse limit X  in 
LRS  is a scheme. It suffices to treat the case of (finite) 
products and equalizers. For products, suppose  iX  is 
a finite set of schemes and = ii

X X  is their product 
in LRS . We want to show X  is a scheme. Let x  be  

a point of X , and let  = i ii
x x XRS

 be its image in 

the ringed space product. Let = Speci iU A  be an open 
affine neighborhood of ix  in iX . As we saw above,  

the map ii
X XRS

 is a localization and, as men-  

tioned in Remark 3, it follows that the product 
:= ii

U U  of the iU  in LRS  is an open neighbor-
hood of x  in X ,7 so it remains only to prove that 
there is an isomorphism Spec i iU A  , hence U  is 
affine.8 Indeed, we can see immediately from Proposition 
7 that U  and Spec i iA  represent the same functor 
on LRS :  

 

  

  
 

Hom ( , ) = Hom ,

= Hom , ,

= Hom , ,

= Hom ,Spec .

i
i

i Y
i

i i Y

i i

Y U Y U

A Y

A Y

Y A



 







LRS LRS

Rings

Rings

LRS





 

The case of equalizers is similar: Suppose X  is the 
LRS  equalizer of morphisms , :f g Y Z  of schemes, 
and x X . Let y Y  be the image of x  in Y , so 

( ) = ( ) =:f y g y z . Since ,Y Z  are schemes, we can find 
affine neighborhoods = SpecV B  of y  in Y  and 

= SpecW A  of z  in Z  so that ,f g  take V  into 
W . As before, it is clear that the equalizer U  of 

| , | :f V g V V W  in LRS  is an open neighborhood 
of x X , and we prove exactly as above that U  is 

affine by showing that it is isomorphic to Spec  of the 
coequalizer  

 # #= ( ) ( ) :C B f a g a a A   

of # #, :f g A B  in Rings .  
Remark 5. The basic results concerning the existence 

of inverse limits in LRS  and their coincidence with 
inverse limits in Sch  are, at least to some extent, “folk 
theorems”. I do not claim originality here. The construc-
tion of fibered products in LRS  can perhaps be attrib-
uted to Hanno Becker [HB], and the fact that a cartesian 
diagram in Sch  is also cartesian in LRS  is implicit in 
the [EGA] Erratum mentioned above. 

Remark 6. It is unclear to me whether the 2-category 
of locally ringed topoi has 2-fibered products, though 
Hakim seems to want such a fibered product in [Hak 
V.3.2.3]. 

3.2. Fibered Products 

In this section, we will more closely examine the con-
struction of fibered products in LRS  and explain the 
relationship between fibered products in LRS  and 
those in RS . By Theorem 8, the inclusion 
Sch LRS  preserves inverse limits, so these results 
will generalize the basic results comparing fibered prod-
ucts in Sch  to those in RS  (the proofs will become 
much more transparent as well). 

Definition 5. Suppose  

     1 1 1 2 2 2, , , , , , , ,A k B k B k LAnm m m  and  

:i if A B  are LAn  morphisms, so  1 =i if  m m  
for = 1, 2i . Let 1 2:j j Ai B B B    = 1, 2j  be the 
natural maps. Set 

     
  

1
1 2 1 2 1

1
1 2 2

, , := Spec :

= , = .

AS A B B B B i

i





 p p

m p m
   (4) 

Note that the kernel K  of the natural surjection  

   
1 2 1 2

1 2 1 2

A kB B k k

b b b b

  

 
 

is generated by the expressions 1 1m   and 21 m , 
where i im m , so  

   1 2 1 2Spec Speck Ak k B B   

is an isomorphism onto  1 2, ,S A B B . In particular,  

    1 2 1 2, , = Spec :AS A B B B B K  p p  

is closed in  1 2Spec AB B .  
The subset  1 2, ,S A B B  enjoys the following impor-

tant property: Suppose    : , ,i i ig B Cm n , = 1, 2i , 
are LAn  morphisms with 1 1 2 2=g f g f  and  

7This is the only place we need “finite”. If  iX  were infinite, the 

topological space product of the iU  might not be open in the topology 

on the topological space product of the iX  because the product to-

pology only allows “restriction in finitely many coordinates”. 
8There would not be a problem here even if  iX  were infinite: 

Rings  has all direct and inverse limits, so the (possibly infinite) ten-

sor product i iA  over   (coproduct in Rings ) makes sense. Our 

proof therefore shows that any inverse limit (not necessarily finite) of
affine schemes, taken in LRS , is a scheme. 
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 1 2 1 2= , : Ah f f B B C   is the induced map. Then 
   1

1 2, ,h S A B B n . Conversely, every  
 1 2, ,S A B Bp  arises in this manner: take  
 1 2= AC B B

p
. 

Setup: We will work with the following setup 
throughout this section. Let 1 1:f X Y , 2 2:f X Y  
be morphisms in LRS . From the universal property of 
fiber products we get a natural “comparison” map  

1 2 1 2: .Y YX X X X   LRS RS  

Let 1 2π :i Y iX X X RS  ( = 1, 2i ) denote the projec-
tions and let 1 1 2 2:= π = πg f f . Recall that the structure 
sheaf of 1 2YX XRS  is 1 1

1 1 21 2
π πX Xg Y

 



  . In par-
ticular, the stalk of this structure sheaf at a point 

 1 2 1 2= , Yx x x X X RS  is , ,1 1 , 2 2X x X xY y
  , where  

     1 1 2 2:= = = .y g x f x f x  

In this situation, we set  

   1 2 , , ,1 1 2 2
, := , ,Y y X x X xS x x S     

to save notation. 
Theorem 9. The comparison map   is surjective on 

topological spaces. More precisely, for any  
 1 2 1 2= , Yx x x X X RS ,  1 x  is in bijective corre-

spondence with the set  1 2,S x x , and in fact, there is an 
LRS  isomorphism  

   
 

1
1 2 , ,1 1 , 2 21 2

1 2, ,1 1 , 2 2

:= ,

= Spec , .

Y X x X xY yX XY

X x X xY y

x X X x

S x x







  LRS
RS







 
 

In particular, 1( )x  is isomorphic as a topological 
space to    1 ( ) 2Spec k yk x k x  (but not as a ringed 
space). The stalk of   at  1 2,z S x x  is identified 
with the localization map  

 , , , ,1 , 2 1 , 2
.X x X x X x X xY y Y y z

        

In particular,   is a localization morphism (Definition 
1).  

Proof. We saw in § 3.1 that the comparison map   
is identified with the localization of 1 2YX XRS  at the 
prime system    1 2 1 2, ,x x S x x , so these results 
follow from Proposition 1. 

Remark 7. When 1 2, ,X X Y Sch , the first statement 
of Theorem 9 is [EGA I.3.4.7].  

Remark 8. The fact that   is a localization 
morphism is often implicitly used in the theory of the 
cotangent complex. 

Definition 6. Let :f X Y  be an LRS  morphism. 
A point x X  is called rational over Y  (or “over 

 :=y f x  “ or “with respect to f ”) iff the map on 
residue fields    :xf k y k x  is an isomorphism 
(equivalently: is surjective). 

Corollary 10. Suppose 1 1x X  is rational over Y  
(i.e. with respect to 1 1:f X Y ). Then for any 

 1 2 1 2= , Yx x x X X RS , the fiber  1 x  of the 
comparison map   is punctual. In particular, if every 
point of 1X  is rational over Y , then   is bijective.  

Proof. Suppose 1 1x X  is rational over Y . Suppose 
 1 2 1 2= ,x x x X X RS . Set    1 1 2 2:= =y f x f x . Since 

1x  is rational,    1k y k x , so  
     1 ( ) 2 2Spec Speck yk x k x k x   has a single ele- 

ment. On the other hand, we saw in Definition 5 that this 
set is in bijective correspondence with the set  

   1 2 , ,1 1 , 2 2
, Spec X x X xY y

S x x     

appearing in Theorem 9, so that same theorem says that 
 1 x  consists of a single point.  

Remark 9. Even if every 1x X  is rational over Y , 
the comparison map  

1 2 1 2: Y YX X X X   LRS RS  

is not generally an isomorphism on topological spaces, 
even though it is bijective. The topology on 1 2YX XLRS  
is generally much finer than the product topology. In this 
situation, the set  1 2,S x x  always consists of a single 
element  1 2,z x x : namely, the maximal ideal of 

, ,1 1 , 2 2X x X xY y
   given by the kernel of the natural 

surjection  

       , , 1 2 21 1 , 2 2
= .X x X x k yY y

k x k x k x     

If we identify 1 2YX XLRS  and 1 2YX XRS  as sets via 
 , then the “finer” topology has basic open sets  

        1 21 2 1 2 1 2 1 2,, := , : ,Y Y x xU U U s x x U U s z x x     

as 1 2,U U  range over open subsets of 1 2,X X  and s  
ranges over  

  1 1
1 1 2 1 21 2
π π .X X Yg Y

U U 
 


   

This set is not generally open in the product topology 
because the stalks of  

1 1
1 1 21 2
π πX Xg Y

 



   

are not generally local rings, so not being in  1 2,z x x  
does not imply invertibility, hence is not generally an 
open condition on  1 2,x x .  

Remark 10. On the other hand, sometimes the topolo-
gies on 1X , 2X  are so fine that the sets  
 1 2 ,YU U U s  are easily seen to be open in the product 

topology. For example, suppose k  is a topological 
field.9 Then one often works in the full subcategory C  
of locally ringed spaces over k  consisting of those 
9I require all finite subsets of k  to be closed in the definition of 
“topological field”. 
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X kLRS  satisfying the conditions:  
1) Every point x X  is a k  point: the composition 

 ,X xk k x   yields an isomorphism  =k k x  
for every x X .  

2) The structure sheaf X  is continuous for the topo- 
logy on k  in the sense that, for every  , XU s Sec , 
the function  

 
(_) :s U k

x s x




 

is a continuous function on U . Here    s x k x  
denotes the image of the stalk ,x X xs   in the residue 
field ,( ) = X x xk x m , and we make the identification 

 =k k x  using 1).  
One can show that fiber products in C  are the same 

as those in LRS  and that the forgetful functor 
C Top  preserves fibered products (even though 
C  RS  may not). Indeed, given  

  1 1
1 1 2 1 21 2
π πX X Yg Y

s U U 
  


  , the set  

 1 2 ,YU U U s  is the preimage of *k k  under the 
map  _s , and we can see that  _s  is continuous as 
follows: By viewing the sheaf theoretic tensor product as 
the sheafification of the presheaf tensor product we see 
that, for any point  1 2 1 2, Yx x U U  , we can find a 
neighborhood 1 2YV V  of  1 2,x x  contained in 

1 2YU U  and sections  1 11
, , n Xa a V  ,  

 1 22
, , n Xb b V   such that the stalk ,1 2x xs

 
 agrees 

with    
1 2

i ii x x
a b

 
  at each  1 2 1 2, Yx x V V    . In 

particular, the function  _s  agrees with the function  

   1 2 1 2, ( )i i
i

x x a x b x k      

on 1 2YV V . Since this latter function is continuous in 
the product topology on 1 2YV V  (because each (_)ia , 

(_)ib  is continuous) and continuity is local,  _s  is 
continuous.  

Corollary 11. Suppose  1 , ( ) ,1 1 11
: Y f x X xx

f    is 
surjective for every 1 1x X . Then the comparison map 
  is an isomorphism. In particular,   is an isomor-
phism under either of the following hypotheses: 

1) 1f  is an immersion.  
2)  1 : Spec f k y Y  is the natural map associated 

to a point y Y . 
Proof. It is equivalent to show that 1 2:= YX X XRS  is 

in LRS  and the structure maps π :i iX X  are 
LRS  morphisms. Say  1 2= ,x x x X  and let  

   1 1 2 2:= =y f x f x . By construction of X , we have a 
pushout diagram of rings 

   

 

1 1

2 12

2

( )

, ,1 1

π

π

, ,2 2

x

x x

x

f

Y y X x

f

X x X x



 



 

 

 

hence it is clear from surjectivity of  1
1x

f  and locality 
of  2

2x
f  that ,X x  is local and    1 2π , π

x x
 are 

LAn  morphisms. 
Corollary 12. Suppose 

2

1 2

1

π
1 2 2
π

1

Y
f

f

X X X

X Y

 
 



 

is a cartesian diagram in LRS . Then:  
1) If 1 2Yz X X   is rational over Y , then  

    1 =z z  .  
2) Let  1 2 1 2, Yx x X X RS , and let  

   1 1 2 2:= π = π .y x x  Suppose  2k x  is isomorphic, 
as a field extesion of  k y , to a subfield of  1k x . 
Then there is a point 1 2Yz X X Sch  rational over 1X  
with π ( ) =i iz x , = 1, 2i .  

Proof. For 1), set    1 2, :=x x z ,  
   1 1 2 2:= π = πy x x . Then we have a commutative 

diagram  

   

   

2,

2,1, 2

1, 1

π
2

π

1

Z

xZ

x

f

f

k z k x

k x k y



 



 

of residue fields. By hypothesis, the compositions 
     ik y k x k z   are isomorphisms for = 1, 2i , 

so it must be that every map in this diagram is an 
isomorphism, hence the diagram is a pushout. On the 
other hand, according to the first statement of Theorem 9, 

  1 z   is in bijective correspondence with  

        1 2Spec = Spec ,k yk x k x k z  

which is punctual. 
For 2), let    2 1:i k x k x  be the hypothesized 

morphism of field extensions of ( )k y . By the universal 
property of the LRS  fibered product 1 2YX X , the 
maps 

   2 1 2, :Specx i k x X  

 1 1 1:Specx k x X  

give rise to a map  

 1 1 2:Spec .Yg k x X X   

Let 1 2Yz X X   be the point corresponding to this map. 
Then we have a commutative diagram of residue fields 

 1k x

 1k x  

 2k x  

 k y  

 k z  

1,π Z  

i 
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so  1, 1π : ( )z k x k z  must be an isomorphism. 

3.3. Spec Functor 

Suppose X LRS  and : Xf A  is an X  
algebra. Then f  may be viewed as a morphism of 
ringed spaces    : , , =Xf X A X X  . Give X  the 
local prime system X  as usual and  ,X A  the 
inverse image prime system   (Remark 1), so f  
may be viewed as a PRS  morphism  

   *: , , , , .X X Xf X A f X    

Explicitly: 

   * 1
,= : ( ) = .X x x x X xx

f A f  p p m   

By Theorem 2, there is a unique LRS  morphism  

   
loc loc*: , , , , =X X Xf X A f X X    

lifting f  to the localizations. We call  

 loc*Spec := , ,X XA X A f   

the spectrum (relative to X ) of A . SpecX  defines a 
functor  

  op
Spec : .X X X XRings LRS  

Note that  loc
Spec = , , =X X X XX X    by Theo- 

rem 2. 
Our functor SpecX  agrees with the usual one (c.f. 

[Har II.Ex.5.17]) on their common domain of definition: 
Lemma 13. Let :f X Y  be an affine morphism 

of schemes. Then *SpecX Xf   (as defined above) is na- 
turally isomorphic to X  in YLRS .  

Proof. This is local on Y , so we can assume 
= Spec Y A  is affine, and hence = Spec X B  is also 

affine, and f  corresponds to a ring map # :f A B . 
Then  

* = = ,YX A YY
f B B    

as Y  algebras, and the squares in the diagram  

    

   

   

*#
*

*#

, , , ,

, , , ,

*, ,Spec *, ,Spec

X Y Y Y

Y YY

Y f f Y

Y B f N Y A N

B B A A



 



 


   

 

in PRS  are cartesian in PRS , where N  is the prime 
system on  , YY A  given by  =yN y  discussed in 
Lemma 3. According to that lemma, the right vertical 
arrows become isomorphisms upon localizing, and 

according to Theorem 4, the diagram stays cartesian 
upon localizing, so the left vertical arrows also become 
isomorphisms upon localizing, hence  

  *#
* *Spec := , ,

= Spec 

= .

loc

Y X X Yf Y f f

B

X

  

 

Remark 11. Hakim [Hak IV.1] defines a “Spec func-
tor” from ringed topoi to locally ringed topoi, but it is not 
the same as ours on the common domain of definition. 
There is no meaningful situation in which Hakim’s Spec 
functor agrees with the “usual” one. When X  “is” a 
locally ringed space, Hakim’s SpecX  “is” (up to re-
placing a locally ringed space with the corresponding 
locally ringed topos) our  ,

loc

XX  . As mentioned in 
Remark 2, Hakim’s theory of localization is only devel-
oped for the terminal prime system, which can be a bit 
awkward at times. For example, if X  is a locally ringed 
space at least one of whose local rings has positive Krull 
dimension, Hakim’s sequence of spectra yields an infi-
nite strictly descending sequence of RS  morphisms  

 Spec Spec Spec .X X X    

The next results show that SpecX  takes direct limits 
of X  algebras to inverse limits in LRS  and that 
SpecX  is compatible with changing the base X . 

Lemma 14. The functor SpecX  preserves inverse 
limits. 

Proof. Let  :i X ii f A   be a direct limit sys-
tem in  X XRings , with direct limit : Xf A , 
and structure maps :i ij A A . We claim that  

 *Spec = , ,
loc

X XA X A f   is the inverse limit of  

 *Spec = , ,
loc

X i i i Xi A X A f  . By Theorem 4, it is  

enough to show that  *, , XX A f   is the inverse limit 
of  *, ,i i Xi X A f   in PRS . Certainly  ,X A  is 
the inverse limit of  , ii X A  in RS , so we just 
need to show that  * * *=X i i i Xf j f   as prime 
systems on  ,X A  (see the proof of Theorem 4), and 
this is clear because =i ij f f , so, in fact, 

 * * *=i i X Xj f f   for every i .  
Lemma 15. Let :f X Y  be a morphism of locally 

ringed spaces. Then for any Y  algebra : Yg A , 
the diagram  

*Spec SpecX Y

X

f

Y

A A
 


 

is cartesian in LRS . 
Proof. Note * 1

1:= Xf Y
f A f A



  as usual. One 

sees easily that  
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** 1 *, , , ,

, , , ,

X Y

X X Y Y

X f A f g Y A g

X Y

 

 


 

   

 

is cartesian in PRS  so the result follows from Theorem 
4.  

Example 1. When X  is a scheme, but A  is not a 
coherent X  module, SpecX A  may not be a scheme. 
For example, let B  be a local ring, := SpecX B , and 
let x  be the unique closed point of X . Let 

 *:=A x B XRings  be the skyscraper sheaf B  sup-
ported at x . Note , =X x B  and  

     * ,Hom , = Hom , ,X X xX x B BRingsRings    

so we have a natural map X A  in  XRings  
whose stalk at x  is :Id B B . Then  

  Spec = ,X A x A  is the punctual space with “sheaf” of 
rings A , mapping in LRS  to X  in the obvious 
manner. But   ,x A  is not a scheme unless A  is 
zero dimensional. 

Here is another related pathology example: Proceed as 
above, assuming B  is a local domain which is not a 
field and let K  be its fraction field. Let *:=A x K , and 
let X A  be the unique map whose stalk at x  is 
B K . Then SpecX A  is empty. 

Suppose X  is a scheme, and A  is an X  algebra 
such that SpecX A  is a scheme. I do not know whether 
this implies that the structure morphism SpecX A X  
is an affine morphism of schemes. 

3.4. Relative Schemes 

We begin by recalling some definitions. 
Definition 7. ([SGA1], [Vis 3.1]) Let :F C D  be 

a functor. A C  morphism :f c c  is called 
cartesian (relative to F ) iff, for any C  morphism 

:g c c   and any D  morphism :h Fc Fc   with 
=Fg h Ff  there is a unique C  morphism :h c c  

with =Fh h  and =f gh . The functor F  is called a 
fibered category iff, for any D  morphism :f d d   
and any object c  of C  with =Fc d  , there is a 
cartesian morphism :f c c  with =F f f . A 
morphism of fibered categories  

   : : 'F C D F C D     

is a functor : 'G C C  satisfying =F G F  and taking 
cartesian arrows to cartesian arrows. If D  has a 
topology (i.e. is a site), then a fibered category 

:F C D  is called a stack iff, for any object d D  
and any cover  id d  of d  in D , the category 

 1F d  is equivalent to the category   iF d d  of 
descent data (see [Vis 4.1]). 

Every fibered category F  admits a morphism of 
fibered categories, called the associated stack, to a stack 
universal among such morphisms [Gir I.4.1.2]. 

Definition 8. ([Hak V.1]) Let X  be a ringed space. 
Define a category pre

XSch  as follows. Objects of pre
XSch  

are pairs  , UU X  consisting of an open subset U X  
and a scheme UX  over  Spec X U . A morphism 
   , ,U VU X V X  is a pair  , U VU V X X   
consisting of an  Ouv X  morphism U V  (i.e. 
U V ) and a morphism of schemes U VX X  mak- 
ing the diagram  

   Spec Spec

U V

X X

X X

U V


 

 

      (5) 

commute in Sch . The forgetful functor 
 pre

X XSch Ouv  is clearly a fibered category, where 
a cartesian arrow is a pre

XSch  morphism 
 , U VU V X X   making (6) cartesian in Sch  
(equivalently in LRS ). Since  XOuv  has a topology, 
we can form the associated stack XSch . The category of 
relative schemes over X  is, by definition, the fiber 
category  X XSch  of XSch  over the terminal object 
X  of  XOuv .  

(The definition of relative scheme makes sense for a 
ringed topos X  with trivial modifications.) 

3.5. Geometric Realization 

Now let X  be a locally ringed space. Following [Hak 
V.3], we now define a functor  

: ( )X XF X XSch LRS  

called the geometric realization. Although a bit abstract, 
the fastest way to proceed is as follows: 

Definition 9. Let XLRS  be the category whose 
objects are pairs  , UU X  consisting of an open subset 
U X  and a locally ringed space UX  over 
 , XU U , and where a morphism    , ,U VU X V X  
is a pair  , U VU V X X   consisting of an 

 XOuv  morphism U V  (i.e. U V ) and an 
LRS  morphism U VX X  making the diagram  

   , ,

U V

X X

X X

U U V V


 

 

       (7) 

commute in LRS . The forgetful functor  , UU X U  
makes XLRS  a fibered category over  XOuv  
where a cartesian arrow is a morphism 
 , U VU V X X   making (8) cartesian in LRS .  

In fact the fibered category  X XLRS Ouv  is a 
stack: one can define locally ringed spaces and mor-
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phisms thereof over open subsets of X  locally. Using 
the universal property of stackification, we define XF  
to be the morphism of stacks (really, the corresponding 
morphism on fiber categories over the terminal object 

 X XOuv ) associated to the morphism of fibered 
categories  

:pre pre
X X XF Sch LRS  

    Spec ( ), , , .U U U XX
U X U X U ULRS    

The map    , SpecX XU U U   is the adjunc-
tion morphism for the adjoint functors of Proposition 7. 
This functor clearly takes cartesian arrows to cartesian 
arrows. 

Remark 12. Although we loosely follow [Hak V.3.2] 
in our construction of the geometric realization, our geo-
metric realization functor differs from Hakim’s on their 
common domain of definition. 

3.6. Relatively Affine Morphisms 

Let :f X Y  be an LRS  morphism. Consider the 

following conditions:  
RA1. Locally on Y  there is an  Y Y  algebra A 

and a cartesian diagram  

 

Spec

Spec

f

Y

X A

Y Y


 

 

 

in LRS .  
RA2. There is an Y  algebra A  so that f  is 

isomorphic to SpecY A  in YLRS .  
RA3. Same condition as above, but A  is required to 

be quasi-coherent.  
RA4. For any :g Z Y  in YLRS , the map  

     * *

#
*

Hom , Hom ,Y X ZYY
Z X f g

h g h

LRS Rings


  

 

is bijective. 
Remark 13. The condition (RA1) is equivalent to both 

of the following conditions: [label = RA1.., ref = RA1]  
RA1.1 Locally on Y  there is a ring homomorphism 

A B  and a cartesian diagram  

Spec

Spec

f

X B

Y A


 


 

in LRS .  
RA1.2. Locally on Y  there is an affine morphism of 

schemes X Y   and a cartesian diagram 

f

X X

Y Y


 


 

in LRS . 
The above two conditions are equivalent by definition 

of an affine morphism of schemes, and one sees the 
equivalence of (RA1) and (RA1.1) using Proposition 7, 
which ensures that the map Spec Y A  in (RA1) 
factors through  Spec YY Y  , hence  

   

    

Spec 

Spec Spec

Spec

= Spec

= Spec Spec

= Spec .

A

Y AYY

Y AYY

X Y B

Y Y B

Y Y B



 

 









 

Each of these conditions has some claim to be the 
definition of a relatively affine morphism in LRS . With 
the exception of (2), all of the conditions are equivalent, 
when Y  is a scheme, to f  being an affine morphism 
of schemes in the usual sense. With the exception of (4), 
each condition is closed under base change. For each pos- 
sible definition of a relatively affine morphism in LRS , 
one has a corresponding definition of relatively schema- 
tic morphism, namely: :f X Y  in LRS  is rela- 
tively schematic iff, locally on X , f  is relatively af- 
fine. 

The notion of “relatively schematic morphism” ob- 
tained from (1) is equivalent to: :f X Y  is in the 
essential image of the geometric realization functor YF . 

3.7. Monoidal Spaces 

The setup of localization of ringed spaces works equally 
well in other settings; for example in the category of 
monoidal spaces. We will sketch the relevant definitions 
and results. For our purposes, a monoid is a set P  
equipped with a commutative, associative binary opera- 
tion + such that there is an element 0 P  with 
0 =p p  for all p P . A morphism of monoids is a 
map of sets that respects + and takes 0 to 0. An ideal of a 
monoid P  is a subset I P  such that I P I  . An 
ideal I  is prime iff its complement is a submonoid (in 
particular, its complement must be non-empty). A sub- 
monoid whose complement is an ideal, necessarily prime, 
is called a face. For example, the faces of 2  are 
  0,0 , 0 , and 0 ; the diagonal 2:    

is a submonoid, but not a face. 
If S P  is a submonoid, the localization of P  at 

S  is the monoid 1S P  whose elements are equivalence 
classes  ,p s , p P , s S  where    , = ,p s p s   
iff there is some t S  with =t p s t p s     , and 
where      , , := ,p s p s p p s s      . The natural map 

1P S P  given by  ,0p p  is initial among mon-
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oid homomorphisms :h P Q  with   *h S Q . The 
localization of a monoid at a prime ideal is, by definition, 
the localization at the complementary face. 

A monoidal space  , XX   is a topological space 
X  equipped with a sheaf of monoids X . Monoidal 

spaces form a category MS  where a morphism 
     †= , : , ,X Yf f f X Y   consists of a con- 

tinuous map :f X Y  together with a map   of 
sheaves of monoids on X . A monoidal space 
 , XX   is called local iff each stalk monoid X  
has a unique maximal ideal xm . Local monoidal spaces 
form a category LMS  where a morphism is a map of 
the underlying monoidal spaces such that each stalk map 

†
, ( ) ,:x Y f x X xf    is local in the sense  

   
1† = xf xf


m m . A primed monoidal space is a mo-  

noidal space equipped with a set of primes xM  in each 
stalk monoid ,X x . The localization of a primed mo- 
noidal space is a map of monoidal spaces  
   loc

, , ,X XX M X   from a local monoidal space 
constructed in an obvious manner analogous to the con- 
struction of § 2.2 and enjoying a similar universal pro- 
perty. In particular, we let SpecP  denote the locali- 
zation of the punctual space with “sheaf” of monoids P  
at the terminal prime system. A scheme over 1  is a 
locally monoidal space locally isomorphic to SpecP  for 
various monoids P . (This is not my terminology.) 

The same “general nonsense” arguments of this paper 
allow us to construct inverse limits of local monoidal 
spaces, to prove that a finite inverse limit of schemes 
over 1 , taken in local monoidal spaces, is again a 
scheme over 1 , to construct a relative Spec  functor  

    op
Spec : ,X XX XMon LMS   

for any  , XX LMS  which preserves inverse limits, 
and to prove that the natural map 

     Hom , ,Spec Hom ,X XX P P XLMS Mon   

is bijective. 
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